
MAY 2019 | VOL. 62 | NO. 5 | COMMUNICATIONS OF THE ACM 43

FOR ALMO S T H AL F a century, ACID transactions
(satisfying the properties of atomicity, consistency,
isolation, and durability) have been the abstraction
of choice for ensuring consistency in data-storage
systems. The well-known atomicity property ensures
that either all or none of a transaction’s writes take

effect in the case of a failure; isolation
prevents interference from concur-
rently running transactions; and dura-
bility ensures that writes made by com-
mitted transactions are not lost in the
case of a failure.

While transactions work well within
the scope of a single database product,
transactions that span several differ-
ent data-storage products from distinct
vendors have been problematic: many
storage systems do not support them,
and those that do often perform poorly.
Today, large-scale applications are of-
ten implemented by combining several
distinct data-storage technologies that
are optimized for different access pat-
terns. Distributed transactions have
failed to gain adoption in most such
settings, and most large-scale applica-
tions instead rely on ad hoc, unreliable
approaches for maintaining the con-
sistency of their data systems.

In recent years, however, there has
been an increase in the use of event

logs as a data-management mecha-
nism in large-scale applications. This
trend includes the event-sourcing
approach to data modeling, the use
of change data capture systems, and
the increasing popularity of log-based
publish/subscribe systems such as
Apache Kafka. Although many data-
bases use logs internally (for example,
write-ahead logs or replication logs),
this new generation of log-based sys-
tems is different: rather than using
logs as an implementation detail,
they raise them to the level of the ap-
plication-programming model.

Since this approach uses applica-
tion-defined events to solve problems
that traditionally fall in the transac-
tion-processing domain, we name
it OLEP (online event processing) to
contrast with OLTP (online transac-
tion processing) and OLAP (online
analytical processing). This article ex-
plains the reasons for the emergence
of OLEP and shows how it allows ap-

Online Event
Processing

DOI:10.1145/3312527

	� Article development led by
queue.acm.org

Achieving consistency where distributed
transactions have failed.

BY MARTIN KLEPPMANN, ALASTAIR R. BERESFORD,
AND BOERGE SVINGEN

http://dx.doi.org/10.1145/3312527

44 COMMUNICATIONS OF THE ACM | MAY 2019 | VOL. 62 | NO. 5

practice

plications to guarantee strong con-
sistency properties across heteroge-
neous data systems, without resorting
to atomic commit protocols or dis-
tributed locking. The architecture of
OLEP systems allows them to achieve
consistent high performance, fault
tolerance, and scalability.

Application Architecture
Today: Polyglot Persistence
Different data-storage systems are de-
signed for different access patterns,
and there is no single one-size-fits-all
storage technology that is able to serve
all possible uses of data efficiently. Con-
sequently, many applications today use
a combination of several different stor-
age technologies, an approach some-
times known as polyglot persistence.

For example:
˲˲ Full-text search. When users

need to perform a keyword search
on a dataset (for example, a product
catalog), a full-text search index is
required. Although some relational
databases, such as PostgreSQL, in-
clude a basic full-text indexing fea-
ture, more advanced uses generally
require a dedicated search server
such as Elasticsearch. To improve
the indexing or search result rank-
ing algorithms, the search engine’s
indexes may need to be rebuilt from
time to time.

˲˲ Data warehousing. Most enter-
prises export operational data from
their OLTP databases and load it into
a data warehouse for business analyt-
ics. The storage layouts that perform
well for such analytic workloads,
such as column-oriented encoding,
are very different from those of OLTP
storage engines, necessitating the
use of distinct systems.

˲˲ Stream processing. Message bro-
kers allow an application to subscribe
to a stream of events as they happen
(for example, representing the actions
of users on a website), and stream
processors provide infrastructure for
interpreting and reacting to those
streams (for example, detecting pat-
terns of fraud or abuse).

˲˲ Application-level caching. To
improve the performance of read-
only requests, applications often
maintain caches of frequently ac-
cessed objects (for example, in
memcached). When the underlying

data changes, applications employ
custom logic to update the affected
cache entries accordingly.

Note these storage systems are
not fully independent of each other.
Rather, it is common for one system
to hold a copy or materialized view of
data in another system. Thus, when
data in one system is updated, it often
needs to be updated in another, as il-
lustrated in Figure 1.

OLTP transactions are predefined
and short. In the traditional view, as
implemented by most relational da-
tabase products today, a transaction
is an interactive session in which a
client’s queries and data modifica-
tion commands are interleaved with
arbitrary processing and business
logic on the client. Moreover, there
is no time limit for the duration of a
transaction, since the session tradi-
tionally may have included human
interaction.

However, reality today looks differ-
ent. Most OLTP database transactions
are triggered by a user request made
via HTTP to a Web application or Web
service. In the vast majority of appli-
cations, the span of a transaction ex-
tends no longer than the handling of
a single HTTP request. This means
that by the time the service sends its
response to the user, any transactions
on the underlying databases have al-
ready been committed or aborted.
In a user workflow that spans several
HTTP requests (for example, adding
an item to a cart, going to checkout,
confirming the shipping address, en-
tering payment details, and giving a
final confirmation), no one transac-
tion spans the entire user workflow;
there are only short, noninteractive
transactions to handle single steps of
the workflow.

Moreover, an OLTP system gen-
erally executes a fairly small set of
known transaction patterns. On this
basis, some database systems encap-
sulate the business logic of transac-
tions as stored procedures that are
registered ahead of time by the ap-
plication. To execute a transaction, a
stored procedure is invoked with cer-
tain input parameters, and the pro-
cedure then runs to completion on a
single execution thread without com-
municating with any nodes outside of
the database.

The architecture
of online event
processing systems
allows them to
achieve consistent
high performance,
fault tolerance, and
scalability.

MAY 2019 | VOL. 62 | NO. 5 | COMMUNICATIONS OF THE ACM 45

practice

˲˲ Appending a single event to a log is
atomic; thus, either both subscribers
see an event, or neither does. If a sub-
scriber fails and recovers, it resumes
processing any events that it has not
processed previously. Thus, if an up-
date is written to the log, it will eventu-
ally be processed by all subscribers.

˲˲ All subscribers of the log see its
events in the same order. Thus, each of
the storage systems will write records
in the same serial order.

In this example, the log serializes
writes only, but the application may
read from the storage systems at any
time. Since the log subscribers are
asynchronous, reading the index may
return a record that does not yet ex-
ist in the database, or vice versa; such
transient inconsistencies are not a
problem for many applications. For
those applications that require it,
reads can also be serialized through
the log; an example of this is present-
ed later.

The log abstraction. There are sev-

Heterogeneous distributed trans-
actions are problematic. It is impor-
tant to distinguish between two types
of distributed transactions:

˲˲ Homogeneous distributed transac-
tions are those in which the participat-
ing nodes are all running the same da-
tabase software. For example, Google’s
Cloud Spanner and VoltDB are recent
database systems that support homo-
geneous distributed transactions.

˲˲ Heterogeneous distributed trans-
actions span several different storage
technologies by distinct vendors. For
example, the X/Open XA (extended ar-
chitecture) standard defines a trans-
action model for performing 2PC
(two-phase commit) across hetero-
geneous systems, and the JTA (Java
Transaction API) makes XA available
to Java applications.

While some homogeneous trans-
action implementations have proved
successful, heterogeneous transac-
tions continue to be problematic. By
their nature, they can only rely on a
lowest common denominator of par-
ticipating systems. For example, XA
transactions block execution if the
application process fails during the
prepare phase; moreover, XA pro-
vides no deadlock detection and no
support for optimistic concurrency-
control schemes.3

Many of the systems listed here,
such as search indexes, do not support
XA or any other heterogeneous transac-
tion model. Thus, ensuring the atomi-
city of writes across different storage
technologies remains a challenging
problem for applications.

Building Upon Event Logs
Figure 1 shows an example of poly-
glot persistence: an application that
needs to maintain records in two
separate storage systems such as an
OLTP database (for example, an RD-
BMS) and a full-text search server. If
heterogeneous distributed transac-
tions are available, the system can
ensure atomicity of writes across the
two systems. Most search servers do
not support distributed transactions,
however, leaving the system vulnera-
ble to these potential inconsistencies:

˲˲ Non-atomic writes. If a failure oc-
curs, a record may be written to one of
the systems but not the other, leaving
them inconsistent with each other.

˲˲ Different order of writes. If there are
two concurrent update requests A and
B for the same record, one system may
process them in the order A, B while
the other system processes them in
the order B, A. Thus, the systems may
disagree on which write was the latest,
leaving them inconsistent.

Figure 2 presents a simple solution
to these problems: when the applica-
tion wants to update a record, rather
than performing direct writes to the
two storage systems, it appends an up-
date event to a log. The database and
the search index each subscribe to this
log and write updates to their storage
in the order they appear in the log.4
By sequencing updates through a log,
the database and the search index ap-
ply the same set of writes in the same
order, keeping them consistent with
each other. In effect, the database and
the search index are materialized views
onto the sequence of events in the log.
This approach solves both of the afore-
mentioned problems as follows:

Figure 1. Record written to a database and to search index.

request
handler

Update Write

Write

OLTP Database

Search Index

Figure 2. Database and Index use a log to maintain consistency.

Request
Handler

Update Append

Update Log

Subscribe

Database

Index

46 COMMUNICATIONS OF THE ACM | MAY 2019 | VOL. 62 | NO. 5

practice

eral log implementations that can
serve this role, including Apache Kaf-
ka, CORFU (from Microsoft Research),
Apache Pulsar, and Facebook’s LogDe-
vice. The required log abstraction has
the following properties:

˲˲ Durable. The log is written to disk
and replicated to several nodes, ensur-
ing that no events are lost in a failure.

˲˲ Append-only. New events can be
added to the log only by appending
them at the end. Besides appending,
the log may allow old events to be dis-
carded (for example, by truncating log
segments older than some retention
period or by performing key-based log
compaction).

˲˲ Sequential reads. All subscribers
of the log see the same events in the
same order. Each event is assigned a
monotonically increasing LSN (log se-
quence number). A subscriber reads
the log by starting from a specified
LSN and then receiving all subse-
quent events in log order.

˲˲ Fault-tolerant. The log remains
highly available for reads and writes in
the presence of failures.

˲˲ Partitioned. An individual log may
have a maximum throughput it can
support (for example, the throughput
of a single network interface or a sin-
gle disk). The system can be assumed
to scale linearly, however, by having

many partitions—that is, many inde-
pendent logs that can be distributed
across many machines—and to have
no ordering guarantee across differ-
ent log partitions. Multiple logical logs
may be multiplexed into a single physi-
cal log partition.

The following assumptions are
made about subscribers of a log:

˲˲ A subscriber may maintain state (for
example, a database) that is read and
updated based on the events in the log,
and that survives crashes. Moreover, a
subscriber may append further events to
any log (including its own input).

˲˲ A subscriber periodically check-
points the latest LSN it has processed
to stable storage. When a subscriber
crashes, upon recovery it resumes pro-
cessing from the latest checkpointed
LSN. Thus, a subscriber may process
some events twice (those processed
between the last checkpoint and the
crash), but it never skips any events.
Events in the log are processed at least
once by each subscriber.

˲˲ The events in a single log partition
are processed sequentially on a sin-
gle thread, using deterministic logic.
Thus, if a subscriber crashes and re-
starts, it may append duplicate events
to other logs.

These assumptions are satisfied by
existing log-based stream-processing

frameworks such as Apache Kafka
Streams and Apache Samza. Updating
state deterministically based on an
ordered log corresponds to the clas-
sic state machine replication principle.5
Since it is possible for an event to be
processed more than once when re-
covering from a failure, state updates
must also be idempotent.

Aside: Exactly-once semantics.
Some log-based stream processors
such as Apache Flink support so-called
exactly-once semantics, which means
that even though an event may be pro-
cessed more than once, the effect of
the processing will be the same as if it
had been processed exactly once. This
behavior is implemented by manag-
ing side effects within the processing
framework and atomically commit-
ting these side effects together with the
checkpoint that marks a section of the
log as processed.

When a log consumer writes to exter-
nal storage systems, however, as in Fig-
ure 2, exactly-once semantics cannot be
ensured, since doing so would require
a heterogeneous atomic commit proto-
col across the stream processor and the
storage system, which is not available
on many storage systems, such as full-
text search indexes. Thus, frameworks
with exactly-once semantics still exhib-
it at-least-once processing when inter-
acting with external storage and rely on
idempotence to eliminate the effects of
duplicate processing.

Atomicity and enforcing con-
straints. A classic example where at-
omicity is required is in a banking/
payments system, where a transfer of
funds from one account to another ac-
count must happen atomically, even
if the two accounts are stored on dif-
ferent nodes. Moreover, such a system
typically needs to maintain consisten-
cy properties or invariants (for exam-
ple, an account cannot be overdrawn
by more than some set limit). Figure
3 shows how such a payments appli-
cation can be implemented using the
OLEP approach instead of distributed
transactions. Arrows with solid heads
denote appending an event to a log,
while arrows with hollow heads denote
subscribing to the events in a log. It
works as follows:

1.	 When a user wishes to transfer
funds from a source account to a desti-
nation account, he or she first appends

Figure 3. Flow of events in a financial payments system.

Request
Handler

Payment
Executor

Payment
Request

Payment
Request

Outgoing Payment

Source
Account Log

Incoming Fees
Incoming
Payment

Fees Account Log

Destination
Account Log

Source
Account

State

MAY 2019 | VOL. 62 | NO. 5 | COMMUNICATIONS OF THE ACM 47

practice

before the crash. Since the executor
is deterministic, upon recovery it will
make the same decisions to approve or
decline requests, and thus potentially
append duplicate payment events to
the source, destination, and fees logs.
Based on the ID in the events, however,
it is easy for downstream processes to
detect and ignore such duplicates.

Multipartition processing. In this
payment example, each account has a
separate log and thus may be stored on
a different node. Moreover, each pay-
ment executor only needs to subscribe
to events from a single account, and
different executors handle different ac-
counts. These factors allow the system
to scale linearly to an arbitrary number
of accounts.

In this example, the decision of
whether to allow the payment request
is conditional only on the balance of
the source account; you can assume
that the payment into the destination
account always succeeds, since its bal-
ance can only increase. For this rea-
son, the payment executor needs to se-
rialize the payment request only with
respect to other events in the source
account. If other log partitions need
to contribute to the decision, the ap-
proval of the payment request can be
performed as a multistage process in
which each stage serializes the request
with respect to a particular log.

Splitting a “transaction” into a mul-
tistage pipeline of stream processors
allows each stage to make progress
based only on local data; it ensures that
one partition is never blocked waiting
for communication or coordination
with another partition. Unlike mul-
tipartition transactions, which often
impose a scalability bottleneck in dis-
tributed transaction implementations,
this pipelined design allows OLEP sys-
tems to scale linearly.

Advantages of event processing.
Besides this scalability advantage, de-
veloping applications in an OLEP style
has several further advantages:

˲˲ Since every log can support many
independent subscribers, it is easy to
create new derived views or services
based on an event log. For example,
in the payment scenario of Figure 3,
a new account log subscriber could
send a push notification to a custom-
er’s smartphone if a certain spending
limit on the customer’s credit card is

a payment request event to the log of the
source account. This event merely in-
dicates the intention to transfer funds;
it does not imply that the transfer has
been successful. The event carries a
unique ID to identify the request.

2.	 A single-threaded payment execu-
tor process subscribes to the source-
account log. It maintains a database
containing transactions on the source
account and the current balance.
This process deterministically checks
whether the payment request should
be allowed, based on the current bal-
ance and perhaps other factors. This
log consumer is very similar to the ex-
ecution of a stored procedure.

3.	 If the executor decides to grant
the payment request, it writes that
fact to its local database and appends
events to several different logs: as
a minimum, an outgoing payment
event to the source account log and
an incoming payment event to the log
for the destination account. If a fee is
due for this payment (for example, be-
cause of an overdrawn account or cur-
rency conversion), an additional out-
going payment event for the fees may
be appended to the source-account
log, and a corresponding incoming
payment event may be appended to
the log of a fees account. The origi-
nal event ID is included in all of these
generated events so that their origin
can be traced.

4.	 Since the executor subscribes to
the source-account log, the outgoing
payment event will be delivered back to
the executor. It uses the unique event
ID to determine that it has already pro-
cessed this payment and recorded it in
its database.

5.	 The payment events on other ac-
counts, such as the incoming payment
on the destination account, are simi-
larly processed by single-threaded ex-
ecutors, with a separate executor per
account. The event processing is made
idempotent by suppressing duplicates
based on the original event ID.

6.	 The server handling the user’s re-
quest may also subscribe to the source-
account log and thus be notified when
the payment request has been pro-
cessed. This status information can be
returned to the user.

If the payment executor crashes and
restarts, it may reprocess some payment
requests that were partially processed

Heterogeneous
transactions
continue to be
problematic.
By their very nature,
they can only
rely on a lowest
common
denominator
of participating
systems.

48 COMMUNICATIONS OF THE ACM | MAY 2019 | VOL. 62 | NO. 5

practice

reached. A new search index or view
over an existing dataset can be built
simply by consuming the event log
from beginning to end.3

˲˲ If an application bug causes bad
events to be appended to a log, it is
fairly easy to recover: subscribers can
be programmed to ignore the incor-
rect events, and any views derived
from the events can be recomputed.
In contrast, in a database that sup-
ports arbitrary insertions, updates,
and deletes, it is much harder to re-
cover from incorrect writes, poten-
tially requiring the database to be re-
stored from a backup.

˲˲ Similarly, debugging is much
easier with an append-only log than a
mutable database, because events can
be replayed in order to diagnose what
happened in a particular situation.

˲˲ For data-modeling purposes, an
append-only event log is increasingly
preferred over freeform database mu-
tations; this approach is known in the
domain-driven design community as
event sourcing.2 The rationale is that
events capture state transitions and
business processes more accurately
than insert/update/delete operations
on tables, and those state updates
are better described as side effects re-
sulting from processing an event. For
example, the event “student cancelled
course enrollment” clearly expresses
intent, whereas the side effects “one
row was deleted from the enrollments
table” and “one cancellation reason
was added to the student feedback ta-
ble” are much less clear.

˲˲ From a data analysis point of view,
an event log is more valuable than the
state in a database. For example, in an
e-commerce setting, it is valuable for
business analysts to see not only the
final state of the cart at checkout, but
also the full sequence of items added
to and removed from the cart, since
the removed items carry information,
too (for example, one product is a sub-
stitute for another, or the customer
may return to buy a certain item on a
later occasion).

˲˲ With a distributed transaction,
if any one of the participating nodes
is unavailable, the whole transaction
must abort, so failures are amplified. In
contrast, if a log has multiple subscrib-
ers, they make progress independently
from each other: if one subscriber fails,

that does not impede the operation of
the publisher or other subscribers, so
faults are contained.

Disadvantages of the OLEP ap-
proach. In the previous examples, log
consumers update the state in data
stores (the database and search index
in Figure 2; the account balances and
account statements in Figure 3). While
the OLEP approach ensures every event
in the log will eventually be processed
by every consumer, even in the face of
crashes, there is no upper bound on
the time until an event is processed.

This means if a client reads from
two different data stores that are up-
dated by two different consumers or
log partitions, then the values read by
the client may be inconsistent with
each other. For example, reading the
source and destination accounts of
a payment may return the source ac-
count after the payment has been pro-
cessed, but the destination account
before it has been processed. Thus,
even though the accounts will even-
tually converge toward a consistent
state, they may be inconsistent when
read at one particular point in time.

Note that in an ACID context,
preventing this anomaly falls un-
der the heading of isolation, not
atomicity; a system with atomicity
alone does not guarantee that two
accounts will be read in a consis-
tent state. A database transaction
running at “read committed” iso-
lation level—the default isolation
level in many systems including
PostgreSQL, Oracle DB, and SQL
Server—may experience the same
anomaly when reading from two ac-
counts.3 Preventing this anomaly
requires a stronger isolation level:
“repeatable read,” snapshot isola-
tion, or serializability.

At present, the OLEP approach
does not provide isolation for read
requests that are sent directly to data
stores (rather than being serialized
through the log). Hopefully, future
research will enable stronger isola-
tion levels such as snapshot isolation
across data stores that are updated
from a log.

Case Study: The New York Times
The New York Times maintains all tex-
tual content published since the news-
paper’s founding in 1851 in a single log

Debugging is much
easier with an
append-only log
than a mutable
database because
events can be
replayed in order
to diagnose what
happened in a
particular situation.

MAY 2019 | VOL. 62 | NO. 5 | COMMUNICATIONS OF THE ACM 49

practice

 Related articles
 on queue.acm.org

Consistently Eventual
Pat Helland
https://queue.acm.org/detail.cfm?id=3226077

Evolution and Practice: Low-latency
Distributed Applications in Finance
Andrew Brook
https://queue.acm.org/detail.cfm?id=2770868

It Isn’t Your Father’s Real Time Anymore
Phillip Laplante
https://queue.acm.org/detail.cfm?id=1117409

References
1.	 Betts, D., Domínguez, J., Melnik, G., Simonazzi, F. and

Subramanian, M. Exploring CQRS and Event Sourcing.
Microsoft Patterns & Practices, 2012; http://aka.ms/cqrs.

2.	 Fowler, M. Event sourcing, 2005; https://www.
martinfowler.com/eaaDev/EventSourcing.html.

3.	 Kleppmann, M. Designing Data-intensive Applications.
O’Reilly Media, 2017.

4.	 Kreps, J. The log: What every software engineer
should know about real-time data’s unifying
abstraction. LinkedIn Engineering, 2013; https://bit.
ly/199iMwY.

5.	 Schneider, F.B. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys 22, 4 (1990), 299–319; https://
dl.acm.org/citation.cfm?doid=98163.98167.

6.	 Svingen, B. Publishing with Apache Kafka at the New
York Times, (Sept. 5 2017); https://open.nytimes.com/
publishing-with-apache-kafka-at-the-new-york-times-
7f0e3b7d2077.

7.	 Vernon, V. Implementing Domain-driven Design.
Addison-Wesley, 2013.

Martin Kleppmann is a distributed-systems researcher
at the University of Cambridge and author of Designing
Data-Intensive Applications (http://dataintensive.net/).
Previously he was a software engineer, cofounding two
startups and working on large-scale data infrastructure
at LinkedIn.

Alastair R. Beresford is a reader in computer security
at the University of Cambridge. His work examines
the security and privacy of large-scale distributed
computer systems, with a particular focus on networked
mobile devices.

Boerge Svingen a director of engineering at the New
York Times. He was a founder of Fast Search & Transfer
(alltheweb.com, FAST ESP) as well as a founder and CTO
of Open AdExchange.

Copyright held by owner/author.
Publication rights licensed to ACM.

partition in Apache Kafka.6 Image files
are stored in a separate system, but
URLs and captions of images are also
stored as log events.

Whenever a piece of content
(known as an asset) is published or
updated, an event is appended to
this log. Several systems subscribe to
this log: for example, the full text of
each article is written to an indexing
service for full-text search; various
cached pages (for example, the list
of articles with a particular tag, or all
pieces by a particular author) need to
be updated; and personalization sys-
tems notify readers who may be inter-
ested in a new article.

Each asset is given a unique identi-
fier, and an event may create or update
an asset with a given ID. Moreover, an
event may reference the identifiers
of other assets—much like a normal-
ized schema in a relational database,
where one record may reference the
primary key of another record. For
example, an image (with caption and
other metadata) is an asset that may
be referenced by one or more articles.

The order of events in the log satis-
fies two rules:

˲˲ Whenever one asset references an-
other, the event that publishes the ref-
erenced asset appears in the log before
the referencing asset.

˲˲ When an asset is updated, the lat-
est version is the one published by the
latest event in the log.

For example, an editor might pub-
lish an image and then update an ar-
ticle to reference the image. Every con-
sumer of the log then passes through
three states in sequence:

1.	 The old version of the article (not
referencing the image) exists.

2.	 The image also exists but is not
yet referenced by any article.

3.	 The article and image both exist,
with the article referencing the image.

Different log consumers will pass
through these three states at different
times but in the same order. The log or-
der ensures that no consumer is ever in
a state where the article references an
image that does not yet exist, ensuring
referential integrity.

Moreover, whenever an image or
caption is updated, all articles refer-
encing that image need to be updated
in caches and search indexes. This
can easily be achieved with a log con-

sumer that uses a database to keep
track of references between articles
and images. This consistency model
lends itself very easily to a log, and
it provides most of the benefits of
distributed transactions without the
performance costs.

Further details on the New York
Times’s approach appear in a blog post.6

Conclusion
Support for distributed transac-
tions across heterogeneous storage
technologies is either nonexistent
or suffers from poor operational
and performance characteristics. In
contrast, OLEP is increasingly used
to provide good performance and
strong consistency guarantees in
such settings.

In data systems it is very common
for logs (for example, write-ahead
logs) to be used as internal implemen-
tation details. The OLEP approach
is different: it uses event logs, rather
than transactions, as the primary ap-
plication programming model for data
management. Traditional databases
are still used, but their writes come
from a log rather than directly from
the application. This approach has
been explored by several influential
figures in industry, such as Jay Kreps,4
Martin Fowler,2 and Greg Young un-
der names such as event sourcing and
CQRS (Command/Query Responsibil-
ity Segregation).1,7

The use of OLEP is not simply
pragmatism on the part of develop-
ers, but rather it offers a number of
advantages. These include linear
scalability; a means of effectively
managing polyglot persistence; sup-
port for incremental development
where new application features or
storage technologies are added or re-
moved iteratively; excellent support
for debugging via direct access to the
event log; and improved availabil-
ity (because running nodes can con-
tinue to make progress when other
nodes have failed).

Consequently, OLEP is expected to be
increasingly used to provide strong con-
sistency in large-scale systems that use
heterogeneous storage technologies.

Acknowledgments. This work was
supported by a grant from The Boeing
Company. Thanks to Pat Helland for
feedback on a draft of this article.	

