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FOR ALMO S T H AL F a century, ACID transactions 
(satisfying the properties of atomicity, consistency, 
isolation, and durability) have been the abstraction 
of choice for ensuring consistency in data-storage 
systems. The well-known atomicity property ensures 
that either all or none of a transaction’s writes take 

effect in the case of a failure; isolation 
prevents interference from concur-
rently running transactions; and dura-
bility ensures that writes made by com-
mitted transactions are not lost in the 
case of a failure.

While transactions work well within 
the scope of a single database product, 
transactions that span several differ-
ent data-storage products from distinct 
vendors have been problematic: many 
storage systems do not support them, 
and those that do often perform poorly. 
Today, large-scale applications are of-
ten implemented by combining several 
distinct data-storage technologies that 
are optimized for different access pat-
terns. Distributed transactions have 
failed to gain adoption in most such 
settings, and most large-scale applica-
tions instead rely on ad hoc, unreliable 
approaches for maintaining the con-
sistency of their data systems.

In recent years, however, there has 
been an increase in the use of event 

logs as a data-management mecha-
nism in large-scale applications. This 
trend includes the event-sourcing 
approach to data modeling, the use 
of change data capture systems, and 
the increasing popularity of log-based 
publish/subscribe systems such as 
Apache Kafka. Although many data-
bases use logs internally (for example, 
write-ahead logs or replication logs), 
this new generation of log-based sys-
tems is different: rather than using 
logs as an implementation detail, 
they raise them to the level of the ap-
plication-programming model.

Since this approach uses applica-
tion-defined events to solve problems 
that traditionally fall in the transac-
tion-processing domain, we name 
it OLEP (online event processing) to 
contrast with OLTP (online transac-
tion processing) and OLAP (online 
analytical processing). This article ex-
plains the reasons for the emergence 
of OLEP and shows how it allows ap-
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plications to guarantee strong con-
sistency properties across heteroge-
neous data systems, without resorting 
to atomic commit protocols or dis-
tributed locking. The architecture of 
OLEP systems allows them to achieve 
consistent high performance, fault 
tolerance, and scalability.

Application Architecture 
Today: Polyglot Persistence
Different data-storage systems are de-
signed for different access patterns, 
and there is no single one-size-fits-all 
storage technology that is able to serve 
all possible uses of data efficiently. Con-
sequently, many applications today use 
a combination of several different stor-
age technologies, an approach some-
times known as polyglot persistence. 

For example:
˲˲ Full-text search. When users 

need to perform a keyword search 
on a dataset (for example, a product 
catalog), a full-text search index is 
required. Although some relational 
databases, such as PostgreSQL, in-
clude a basic full-text indexing fea-
ture, more advanced uses generally 
require a dedicated search server 
such as Elasticsearch. To improve 
the indexing or search result rank-
ing algorithms, the search engine’s 
indexes may need to be rebuilt from 
time to time.

˲˲ Data warehousing. Most enter-
prises export operational data from 
their OLTP databases and load it into 
a data warehouse for business analyt-
ics. The storage layouts that perform 
well for such analytic workloads, 
such as column-oriented encoding, 
are very different from those of OLTP 
storage engines, necessitating the 
use of distinct systems.

˲˲ Stream processing. Message bro-
kers allow an application to subscribe 
to a stream of events as they happen 
(for example, representing the actions 
of users on a website), and stream 
processors provide infrastructure for 
interpreting and reacting to those 
streams (for example, detecting pat-
terns of fraud or abuse).

˲˲ Application-level caching. To 
improve the performance of read-
only requests, applications often 
maintain caches of frequently ac-
cessed objects (for example, in 
memcached). When the underlying 

data changes, applications employ 
custom logic to update the affected 
cache entries accordingly.

Note these storage systems are 
not fully independent of each other. 
Rather, it is common for one system 
to hold a copy or materialized view of 
data in another system. Thus, when 
data in one system is updated, it often 
needs to be updated in another, as il-
lustrated in Figure 1.

OLTP transactions are predefined 
and short. In the traditional view, as 
implemented by most relational da-
tabase products today, a transaction 
is an interactive session in which a 
client’s queries and data modifica-
tion commands are interleaved with 
arbitrary processing and business 
logic on the client. Moreover, there 
is no time limit for the duration of a 
transaction, since the session tradi-
tionally may have included human 
interaction.

However, reality today looks differ-
ent. Most OLTP database transactions 
are triggered by a user request made 
via HTTP to a Web application or Web 
service. In the vast majority of appli-
cations, the span of a transaction ex-
tends no longer than the handling of 
a single HTTP request. This means 
that by the time the service sends its 
response to the user, any transactions 
on the underlying databases have al-
ready been committed or aborted. 
In a user workflow that spans several 
HTTP requests (for example, adding 
an item to a cart, going to checkout, 
confirming the shipping address, en-
tering payment details, and giving a 
final confirmation), no one transac-
tion spans the entire user workflow; 
there are only short, noninteractive 
transactions to handle single steps of 
the workflow.

Moreover, an OLTP system gen-
erally executes a fairly small set of 
known transaction patterns. On this 
basis, some database systems encap-
sulate the business logic of transac-
tions as stored procedures that are 
registered ahead of time by the ap-
plication. To execute a transaction, a 
stored procedure is invoked with cer-
tain input parameters, and the pro-
cedure then runs to completion on a 
single execution thread without com-
municating with any nodes outside of 
the database.

The architecture 
of online event 
processing systems 
allows them to 
achieve consistent 
high performance, 
fault tolerance, and 
scalability. 



MAY 2019  |   VOL.  62  |   NO.  5  |   COMMUNICATIONS OF THE ACM     45

practice

˲˲ Appending a single event to a log is 
atomic; thus, either both subscribers 
see an event, or neither does. If a sub-
scriber fails and recovers, it resumes 
processing any events that it has not 
processed previously. Thus, if an up-
date is written to the log, it will eventu-
ally be processed by all subscribers.

˲˲ All subscribers of the log see its 
events in the same order. Thus, each of 
the storage systems will write records 
in the same serial order.

In this example, the log serializes 
writes only, but the application may 
read from the storage systems at any 
time. Since the log subscribers are 
asynchronous, reading the index may 
return a record that does not yet ex-
ist in the database, or vice versa; such 
transient inconsistencies are not a 
problem for many applications. For 
those applications that require it, 
reads can also be serialized through 
the log; an example of this is present-
ed later.

The log abstraction. There are sev-

Heterogeneous distributed trans-
actions are problematic. It is impor-
tant to distinguish between two types 
of distributed transactions:

˲˲ Homogeneous distributed transac-
tions are those in which the participat-
ing nodes are all running the same da-
tabase software. For example, Google’s 
Cloud Spanner and VoltDB are recent 
database systems that support homo-
geneous distributed transactions.

˲˲ Heterogeneous distributed trans-
actions span several different storage 
technologies by distinct vendors. For 
example, the X/Open XA (extended ar-
chitecture) standard defines a trans-
action model for performing 2PC 
(two-phase commit) across hetero-
geneous systems, and the JTA (Java 
Transaction API) makes XA available 
to Java applications.

While some homogeneous trans-
action implementations have proved 
successful, heterogeneous transac-
tions continue to be problematic. By 
their nature, they can only rely on a 
lowest common denominator of par-
ticipating systems. For example, XA 
transactions block execution if the 
application process fails during the 
prepare phase; moreover, XA pro-
vides no deadlock detection and no 
support for optimistic concurrency-
control schemes.3

Many of the systems listed here, 
such as search indexes, do not support 
XA or any other heterogeneous transac-
tion model. Thus, ensuring the atomi-
city of writes across different storage 
technologies remains a challenging 
problem for applications.

Building Upon Event Logs
Figure 1 shows an example of poly-
glot persistence: an application that 
needs to maintain records in two 
separate storage systems such as an 
OLTP database (for example, an RD-
BMS) and a full-text search server. If 
heterogeneous distributed transac-
tions are available, the system can 
ensure atomicity of writes across the 
two systems. Most search servers do 
not support distributed transactions, 
however, leaving the system vulnera-
ble to these potential inconsistencies:

˲˲ Non-atomic writes. If a failure oc-
curs, a record may be written to one of 
the systems but not the other, leaving 
them inconsistent with each other.

˲˲ Different order of writes. If there are 
two concurrent update requests A and 
B for the same record, one system may 
process them in the order A, B while 
the other system processes them in 
the order B, A. Thus, the systems may 
disagree on which write was the latest, 
leaving them inconsistent.

Figure 2 presents a simple solution 
to these problems: when the applica-
tion wants to update a record, rather 
than performing direct writes to the 
two storage systems, it appends an up-
date event to a log. The database and 
the search index each subscribe to this 
log and write updates to their storage 
in the order they appear in the log.4 
By sequencing updates through a log, 
the database and the search index ap-
ply the same set of writes in the same 
order, keeping them consistent with 
each other. In effect, the database and 
the search index are materialized views 
onto the sequence of events in the log. 
This approach solves both of the afore-
mentioned problems as follows:

Figure 1. Record written to a database and to search index.
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eral log implementations that can 
serve this role, including Apache Kaf-
ka, CORFU (from Microsoft Research), 
Apache Pulsar, and Facebook’s LogDe-
vice. The required log abstraction has 
the following properties:

˲˲ Durable. The log is written to disk 
and replicated to several nodes, ensur-
ing that no events are lost in a failure.

˲˲ Append-only. New events can be 
added to the log only by appending 
them at the end. Besides appending, 
the log may allow old events to be dis-
carded (for example, by truncating log 
segments older than some retention 
period or by performing key-based log 
compaction).

˲˲ Sequential reads. All subscribers 
of the log see the same events in the 
same order. Each event is assigned a 
monotonically increasing LSN (log se-
quence number). A subscriber reads 
the log by starting from a specified 
LSN and then receiving all subse-
quent events in log order.

˲˲ Fault-tolerant. The log remains 
highly available for reads and writes in 
the presence of failures.

˲˲ Partitioned. An individual log may 
have a maximum throughput it can 
support (for example, the throughput 
of a single network interface or a sin-
gle disk). The system can be assumed 
to scale linearly, however, by having 

many partitions—that is, many inde-
pendent logs that can be distributed 
across many machines—and to have 
no ordering guarantee across differ-
ent log partitions. Multiple logical logs 
may be multiplexed into a single physi-
cal log partition.

The following assumptions are 
made about subscribers of a log:

˲˲ A subscriber may maintain state (for 
example, a database) that is read and 
updated based on the events in the log, 
and that survives crashes. Moreover, a 
subscriber may append further events to 
any log (including its own input).

˲˲ A subscriber periodically check-
points the latest LSN it has processed 
to stable storage. When a subscriber 
crashes, upon recovery it resumes pro-
cessing from the latest checkpointed 
LSN. Thus, a subscriber may process 
some events twice (those processed 
between the last checkpoint and the 
crash), but it never skips any events. 
Events in the log are processed at least 
once by each subscriber.

˲˲ The events in a single log partition 
are processed sequentially on a sin-
gle thread, using deterministic logic. 
Thus, if a subscriber crashes and re-
starts, it may append duplicate events 
to other logs.

These assumptions are satisfied by 
existing log-based stream-processing 

frameworks such as Apache Kafka 
Streams and Apache Samza. Updating 
state deterministically based on an 
ordered log corresponds to the clas-
sic state machine replication principle.5 
Since it is possible for an event to be 
processed more than once when re-
covering from a failure, state updates 
must also be idempotent.

Aside: Exactly-once semantics. 
Some log-based stream processors 
such as Apache Flink support so-called 
exactly-once semantics, which means 
that even though an event may be pro-
cessed more than once, the effect of 
the processing will be the same as if it 
had been processed exactly once. This 
behavior is implemented by manag-
ing side effects within the processing 
framework and atomically commit-
ting these side effects together with the 
checkpoint that marks a section of the 
log as processed.

When a log consumer writes to exter-
nal storage systems, however, as in Fig-
ure 2, exactly-once semantics cannot be 
ensured, since doing so would require 
a heterogeneous atomic commit proto-
col across the stream processor and the 
storage system, which is not available 
on many storage systems, such as full-
text search indexes. Thus, frameworks 
with exactly-once semantics still exhib-
it at-least-once processing when inter-
acting with external storage and rely on 
idempotence to eliminate the effects of 
duplicate processing.

Atomicity and enforcing con-
straints. A classic example where at-
omicity is required is in a banking/
payments system, where a transfer of 
funds from one account to another ac-
count must happen atomically, even 
if the two accounts are stored on dif-
ferent nodes. Moreover, such a system 
typically needs to maintain consisten-
cy properties or invariants (for exam-
ple, an account cannot be overdrawn 
by more than some set limit). Figure 
3 shows how such a payments appli-
cation can be implemented using the 
OLEP approach instead of distributed 
transactions. Arrows with solid heads 
denote appending an event to a log, 
while arrows with hollow heads denote 
subscribing to the events in a log. It 
works as follows:

1.	 When a user wishes to transfer 
funds from a source account to a desti-
nation account, he or she first appends 

Figure 3. Flow of events in a financial payments system.
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before the crash. Since the executor 
is deterministic, upon recovery it will 
make the same decisions to approve or 
decline requests, and thus potentially 
append duplicate payment events to 
the source, destination, and fees logs. 
Based on the ID in the events, however, 
it is easy for downstream processes to 
detect and ignore such duplicates.

Multipartition processing. In this 
payment example, each account has a 
separate log and thus may be stored on 
a different node. Moreover, each pay-
ment executor only needs to subscribe 
to events from a single account, and 
different executors handle different ac-
counts. These factors allow the system 
to scale linearly to an arbitrary number 
of accounts.

In this example, the decision of 
whether to allow the payment request 
is conditional only on the balance of 
the source account; you can assume 
that the payment into the destination 
account always succeeds, since its bal-
ance can only increase. For this rea-
son, the payment executor needs to se-
rialize the payment request only with 
respect to other events in the source 
account. If other log partitions need 
to contribute to the decision, the ap-
proval of the payment request can be 
performed as a multistage process in 
which each stage serializes the request 
with respect to a particular log.

Splitting a “transaction” into a mul-
tistage pipeline of stream processors 
allows each stage to make progress 
based only on local data; it ensures that 
one partition is never blocked waiting 
for communication or coordination 
with another partition. Unlike mul-
tipartition transactions, which often 
impose a scalability bottleneck in dis-
tributed transaction implementations, 
this pipelined design allows OLEP sys-
tems to scale linearly.

Advantages of event processing. 
Besides this scalability advantage, de-
veloping applications in an OLEP style 
has several further advantages:

˲˲ Since every log can support many 
independent subscribers, it is easy to 
create new derived views or services 
based on an event log. For example, 
in the payment scenario of Figure 3, 
a new account log subscriber could 
send a push notification to a custom-
er’s smartphone if a certain spending 
limit on the customer’s credit card is 

a payment request event to the log of the 
source account. This event merely in-
dicates the intention to transfer funds; 
it does not imply that the transfer has 
been successful. The event carries a 
unique ID to identify the request.

2.	 A single-threaded payment execu-
tor process subscribes to the source-
account log. It maintains a database 
containing transactions on the source 
account and the current balance. 
This process deterministically checks 
whether the payment request should 
be allowed, based on the current bal-
ance and perhaps other factors. This 
log consumer is very similar to the ex-
ecution of a stored procedure.

3.	 If the executor decides to grant 
the payment request, it writes that 
fact to its local database and appends 
events to several different logs: as 
a minimum, an outgoing payment 
event to the source account log and 
an incoming payment event to the log 
for the destination account. If a fee is 
due for this payment (for example, be-
cause of an overdrawn account or cur-
rency conversion), an additional out-
going payment event for the fees may 
be appended to the source-account 
log, and a corresponding incoming 
payment event may be appended to 
the log of a fees account. The origi-
nal event ID is included in all of these 
generated events so that their origin 
can be traced.

4.	 Since the executor subscribes to 
the source-account log, the outgoing 
payment event will be delivered back to 
the executor. It uses the unique event 
ID to determine that it has already pro-
cessed this payment and recorded it in 
its database.

5.	 The payment events on other ac-
counts, such as the incoming payment 
on the destination account, are simi-
larly processed by single-threaded ex-
ecutors, with a separate executor per 
account. The event processing is made 
idempotent by suppressing duplicates 
based on the original event ID.

6.	 The server handling the user’s re-
quest may also subscribe to the source-
account log and thus be notified when 
the payment request has been pro-
cessed. This status information can be 
returned to the user.

If the payment executor crashes and 
restarts, it may reprocess some payment 
requests that were partially processed 

Heterogeneous 
transactions 
continue to be 
problematic.  
By their very nature, 
they can only  
rely on a lowest 
common 
denominator 
of participating 
systems.  
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reached. A new search index or view 
over an existing dataset can be built 
simply by consuming the event log 
from beginning to end.3

˲˲ If an application bug causes bad 
events to be appended to a log, it is 
fairly easy to recover: subscribers can 
be programmed to ignore the incor-
rect events, and any views derived 
from the events can be recomputed. 
In contrast, in a database that sup-
ports arbitrary insertions, updates, 
and deletes, it is much harder to re-
cover from incorrect writes, poten-
tially requiring the database to be re-
stored from a backup.

˲˲ Similarly, debugging is much 
easier with an append-only log than a 
mutable database, because events can 
be replayed in order to diagnose what 
happened in a particular situation.

˲˲ For data-modeling purposes, an 
append-only event log is increasingly 
preferred over freeform database mu-
tations; this approach is known in the 
domain-driven design community as 
event sourcing.2 The rationale is that 
events capture state transitions and 
business processes more accurately 
than insert/update/delete operations 
on tables, and those state updates 
are better described as side effects re-
sulting from processing an event. For 
example, the event “student cancelled 
course enrollment” clearly expresses 
intent, whereas the side effects “one 
row was deleted from the enrollments 
table” and “one cancellation reason 
was added to the student feedback ta-
ble” are much less clear.

˲˲ From a data analysis point of view, 
an event log is more valuable than the 
state in a database. For example, in an 
e-commerce setting, it is valuable for 
business analysts to see not only the 
final state of the cart at checkout, but 
also the full sequence of items added 
to and removed from the cart, since 
the removed items carry information, 
too (for example, one product is a sub-
stitute for another, or the customer 
may return to buy a certain item on a 
later occasion).

˲˲ With a distributed transaction, 
if any one of the participating nodes 
is unavailable, the whole transaction 
must abort, so failures are amplified. In 
contrast, if a log has multiple subscrib-
ers, they make progress independently 
from each other: if one subscriber fails, 

that does not impede the operation of 
the publisher or other subscribers, so 
faults are contained.

Disadvantages of the OLEP ap-
proach. In the previous examples, log 
consumers update the state in data 
stores (the database and search index 
in Figure 2; the account balances and 
account statements in Figure 3). While 
the OLEP approach ensures every event 
in the log will eventually be processed 
by every consumer, even in the face of 
crashes, there is no upper bound on 
the time until an event is processed.

This means if a client reads from 
two different data stores that are up-
dated by two different consumers or 
log partitions, then the values read by 
the client may be inconsistent with 
each other. For example, reading the 
source and destination accounts of 
a payment may return the source ac-
count after the payment has been pro-
cessed, but the destination account 
before it has been processed. Thus, 
even though the accounts will even-
tually converge toward a consistent 
state, they may be inconsistent when 
read at one particular point in time.

Note that in an ACID context, 
preventing this anomaly falls un-
der the heading of isolation, not 
atomicity; a system with atomicity 
alone does not guarantee that two 
accounts will be read in a consis-
tent state. A database transaction 
running at “read committed” iso-
lation level—the default isolation 
level in many systems including 
PostgreSQL, Oracle DB, and SQL 
Server—may experience the same 
anomaly when reading from two ac-
counts.3 Preventing this anomaly 
requires a stronger isolation level: 
“repeatable read,” snapshot isola-
tion, or serializability.

At present, the OLEP approach 
does not provide isolation for read 
requests that are sent directly to data 
stores (rather than being serialized 
through the log). Hopefully, future 
research will enable stronger isola-
tion levels such as snapshot isolation 
across data stores that are updated 
from a log.

Case Study: The New York Times
The New York Times maintains all tex-
tual content published since the news-
paper’s founding in 1851 in a single log 

Debugging is much 
easier with an 
append-only log 
than a mutable 
database because 
events can be 
replayed in order 
to diagnose what 
happened in a 
particular situation.



MAY 2019  |   VOL.  62  |   NO.  5  |   COMMUNICATIONS OF THE ACM     49

practice

  Related articles  
  on queue.acm.org

Consistently Eventual
Pat Helland
https://queue.acm.org/detail.cfm?id=3226077

Evolution and Practice: Low-latency 
Distributed Applications in Finance
Andrew Brook
https://queue.acm.org/detail.cfm?id=2770868

It Isn’t Your Father’s Real Time Anymore
Phillip Laplante
https://queue.acm.org/detail.cfm?id=1117409

References
1.	 Betts, D., Domínguez, J., Melnik, G., Simonazzi, F. and 

Subramanian, M. Exploring CQRS and Event Sourcing. 
Microsoft Patterns & Practices, 2012; http://aka.ms/cqrs.

2.	 Fowler, M. Event sourcing, 2005; https://www.
martinfowler.com/eaaDev/EventSourcing.html.

3.	 Kleppmann, M. Designing Data-intensive Applications. 
O’Reilly Media, 2017.

4.	 Kreps, J. The log: What every software engineer 
should know about real-time data’s unifying 
abstraction. LinkedIn Engineering, 2013; https://bit.
ly/199iMwY.

5.	 Schneider, F.B. Implementing fault-tolerant services 
using the state machine approach: A tutorial. ACM 
Computing Surveys 22, 4 (1990), 299–319; https://
dl.acm.org/citation.cfm?doid=98163.98167.

6.	 Svingen, B. Publishing with Apache Kafka at the New 
York Times, (Sept. 5 2017); https://open.nytimes.com/
publishing-with-apache-kafka-at-the-new-york-times-
7f0e3b7d2077.

7.	 Vernon, V. Implementing Domain-driven Design. 
Addison-Wesley, 2013. 

Martin Kleppmann is a distributed-systems researcher 
at the University of Cambridge and author of Designing 
Data-Intensive Applications (http://dataintensive.net/). 
Previously he was a software engineer, cofounding two 
startups and working on large-scale data infrastructure 
at LinkedIn.

Alastair R. Beresford is a reader in computer security  
at the University of Cambridge. His work examines  
the security and privacy of large-scale distributed 
computer systems, with a particular focus on networked 
mobile devices.

Boerge Svingen a director of engineering at the New 
York Times. He was a founder of Fast Search & Transfer 
(alltheweb.com, FAST ESP) as well as a founder and CTO 
of Open AdExchange.

Copyright held by owner/author.  
Publication rights licensed to ACM.

partition in Apache Kafka.6 Image files 
are stored in a separate system, but 
URLs and captions of images are also 
stored as log events.

Whenever a piece of content 
(known as an asset) is published or 
updated, an event is appended to 
this log. Several systems subscribe to 
this log: for example, the full text of 
each article is written to an indexing 
service for full-text search; various 
cached pages (for example, the list 
of articles with a particular tag, or all 
pieces by a particular author) need to 
be updated; and personalization sys-
tems notify readers who may be inter-
ested in a new article.

Each asset is given a unique identi-
fier, and an event may create or update 
an asset with a given ID. Moreover, an 
event may reference the identifiers 
of other assets—much like a normal-
ized schema in a relational database, 
where one record may reference the 
primary key of another record. For 
example, an image (with caption and 
other metadata) is an asset that may 
be referenced by one or more articles.

The order of events in the log satis-
fies two rules:

˲˲ Whenever one asset references an-
other, the event that publishes the ref-
erenced asset appears in the log before 
the referencing asset.

˲˲ When an asset is updated, the lat-
est version is the one published by the 
latest event in the log.

For example, an editor might pub-
lish an image and then update an ar-
ticle to reference the image. Every con-
sumer of the log then passes through 
three states in sequence:

1.	 The old version of the article (not 
referencing the image) exists.

2.	 The image also exists but is not 
yet referenced by any article.

3.	 The article and image both exist, 
with the article referencing the image.

Different log consumers will pass 
through these three states at different 
times but in the same order. The log or-
der ensures that no consumer is ever in 
a state where the article references an 
image that does not yet exist, ensuring 
referential integrity.

Moreover, whenever an image or 
caption is updated, all articles refer-
encing that image need to be updated 
in caches and search indexes. This 
can easily be achieved with a log con-

sumer that uses a database to keep 
track of references between articles 
and images. This consistency model 
lends itself very easily to a log, and 
it provides most of the benefits of 
distributed transactions without the 
performance costs.

Further details on the New York 
Times’s approach appear in a blog post.6

Conclusion
Support for distributed transac-
tions across heterogeneous storage 
technologies is either nonexistent 
or suffers from poor operational 
and performance characteristics. In 
contrast, OLEP is increasingly used 
to provide good performance and 
strong consistency guarantees in 
such settings.

In data systems it is very common 
for logs (for example, write-ahead 
logs) to be used as internal implemen-
tation details. The OLEP approach 
is different: it uses event logs, rather 
than transactions, as the primary ap-
plication programming model for data 
management. Traditional databases 
are still used, but their writes come 
from a log rather than directly from 
the application. This approach has 
been explored by several influential 
figures in industry, such as Jay Kreps,4 
Martin Fowler,2 and Greg Young un-
der names such as event sourcing and 
CQRS (Command/Query Responsibil-
ity Segregation).1,7

The use of OLEP is not simply 
pragmatism on the part of develop-
ers, but rather it offers a number of 
advantages. These include linear 
scalability; a means of effectively 
managing polyglot persistence; sup-
port for incremental development 
where new application features or 
storage technologies are added or re-
moved iteratively; excellent support 
for debugging via direct access to the 
event log; and improved availabil-
ity (because running nodes can con-
tinue to make progress when other 
nodes have failed).

Consequently, OLEP is expected to be 
increasingly used to provide strong con-
sistency in large-scale systems that use 
heterogeneous storage technologies.
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