
A framework for establishing Strong Eventual Consistency for

Conflict-free Replicated Data types

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan,
Alastair R. Beresford

July 7, 2017

Abstract

In this work, we focus on the correctness of Conflict-free Replicated Data Types (CRDTs),
a class of algorithm that provides strong eventual consistency guarantees for replicated data.
We develop a modular and reusable framework for verifying the correctness of CRDT algo-
rithms. We avoid correctness issues that have dogged previous mechanised proofs in this area
by including a network model in our formalisation, and proving that our theorems hold in all
possible network behaviours. Our axiomatic network model is a standard abstraction that
accurately reflects the behaviour of real-world computer networks. Moreover, we identify an
abstract convergence theorem, a property of order relations, which provides a formal defi-
nition of strong eventual consistency. We then obtain the first machine-checked correctness
theorems for three concrete CRDTs: the Replicated Growable Array, the Observed-Remove
Set, and an Increment-Decrement Counter.

Contents

1 Introduction 2

2 Technical Lemmas 2
2.1 Kleisli arrow composition . 3
2.2 Lemmas about sets . 3
2.3 Lemmas about list . 3

3 Strong Eventual Consistency 6
3.1 Concurrent operations . 6
3.2 Happens-before consistency . 7
3.3 Apply operations . 9
3.4 Concurrent operations commute . 9
3.5 Abstract convergence theorem . 10
3.6 Convergence and progress . 11

4 Axiomatic network models 12
4.1 Node histories . 12
4.2 Asynchronous broadcast networks . 15
4.3 Causal networks . 16
4.4 Dummy network models . 22

5 Replicated Growable Array 22
5.1 Insert and delete operations . 22
5.2 Well-definedness of insert and delete . 23
5.3 Preservation of element indices . 24

1

5.4 Commutativity of concurrent operations . 24
5.5 Alternative definition of insert . 25
5.6 Network . 27
5.7 Strong eventual consistency . 36

6 Increment-Decrement Counter 37

7 Observed-Remove Set 38

1 Introduction

Strong eventual consistency (SEC) is a model that strikes a compromise between strong and
eventual consistency [12]. Informally, it guarantees that whenever two nodes have received the
same set of messages—possibly in a different order—their view of the shared state is identical,
and any conflicting concurrent updates must be merged automatically. Large-scale deployments
of SEC algorithms include datacentre-based applications using the Riak distributed database
[3], and collaborative editing applications such as Google Docs [5]. Unlike strong consistency
models, it is possible to implement SEC in decentralised settings without any central server or
leader, and it allows local execution at each node to proceed without waiting for communication
with other nodes. However, algorithms for achieving decentralised SEC are currently poorly
understood: several such algorithms, published in peer-reviewed venues, were subsequently
shown to violate their supposed guarantees [6, 7, 9]. Informal reasoning has repeatedly produced
plausible-looking but incorrect algorithms, and there have even been examples of mechanised
formal proofs of SEC algorithm correctness later being shown to be flawed. These mechanised
proofs failed because, in formalising the algorithm, they made false assumptions about the
execution environment.

In this work we use the Isabelle/HOL proof assistant [13] to create a framework for reliably
reasoning about the correctness of a particular class of decentralised replication algorithms.
We do this by formalising not only the replication algorithms, but also the network in which
they execute, allowing us to prove that the algorithm’s assumptions hold in all possible network
behaviours. We model the network using the axioms of asynchronous unreliable causal broadcast,
a well-understood abstraction that is commonly implemented by network protocols, and which
can run on almost any computer network, including large-scale networks that delay, reorder, or
drop messages, and in which nodes may fail.

We then use this framework to produce machine-checked proofs of correctness for three Conflict-
Free Replicated Data Types (CRDTs), a class of replication algorithms that ensure strong
eventual consistency [11, 12]. To our knowledge, this is the first machine-checked verification
of SEC algorithms that explicitly models the network and reasons about all possible network
behaviours. The framework is modular and reusable, making it easy to formulate proofs for
new algorithms. We provide the first mechanised proofs of the Replicated Growable Array, the
operation-based Observed-Remove Set, and the operation-based counter CRDT.

2 Technical Lemmas

This section contains a list of helper definitions and lemmas about sets, lists and the option
monad.

theory
Util

imports
Main
∼∼/src/HOL/Library/Monad-Syntax

2

begin

2.1 Kleisli arrow composition

definition kleisli :: (′b ⇒ ′b option) ⇒ (′b ⇒ ′b option) ⇒ (′b ⇒ ′b option) (infixr B 65) where
f B g ≡ λx . (f x >>= (λy . g y))

lemma kleisli-comm-cong :
assumes x B y = y B x
shows z B x B y = z B y B x
using assms by(clarsimp simp add : kleisli-def)

lemma kleisli-assoc:
shows (z B x) B y = z B (x B y)
by(auto simp add : kleisli-def)

2.2 Lemmas about sets

lemma distinct-set-notin [dest]:
assumes distinct (x#xs)
shows x /∈ set xs
using assms by(induction xs, auto)

lemma set-membership-equality-technicalD [dest]:
assumes {x} ∪ (set xs) = {y} ∪ (set ys)
shows x = y ∨ y ∈ set xs
using assms by(induction xs, auto)

lemma set-equality-technical :
assumes {x} ∪ (set xs) = {y} ∪ (set ys)

and x /∈ set xs
and y /∈ set ys
and y ∈ set xs

shows {x} ∪ (set xs − {y}) = set ys
using assms by (induction xs) auto

lemma set-elem-nth:
assumes x ∈ set xs
shows ∃m. m < length xs ∧ xs ! m = x
using assms by(induction xs, simp) (meson in-set-conv-nth)

2.3 Lemmas about list

lemma list-nil-or-snoc:
shows xs = [] ∨ (∃ y ys. xs = ys@[y])
by (induction xs, auto)

lemma suffix-eq-distinct-list :
assumes distinct xs

and ys@suf1 = xs
and ys@suf2 = xs

shows suf1 = suf2
using assms by(induction xs arbitrary : suf1 suf2 rule: rev-induct , simp) (metis append-eq-append-conv)

lemma pre-suf-eq-distinct-list :
assumes distinct xs

and ys 6= []
and pre1 @ys@suf1 = xs

3

and pre2 @ys@suf2 = xs
shows pre1 = pre2 ∧ suf1 = suf2

using assms
apply(induction xs arbitrary : pre1 pre2 ys, simp)
apply(case-tac pre1 ; case-tac pre2 ; clarify)
apply(metis suffix-eq-distinct-list append-Nil)

apply(metis Un-iff append-eq-Cons-conv distinct .simps(2) list .set-intros(1) set-append suffix-eq-distinct-list)
apply(metis Un-iff append-eq-Cons-conv distinct .simps(2) list .set-intros(1) set-append suffix-eq-distinct-list)
apply(metis distinct .simps(2) hd-append2 list .sel(1) list .sel(3) list .simps(3) tl-append2)
done

lemma list-head-unaffected :
assumes hd (x @ [y , z]) = v

shows hd (x @ [y]) = v
using assms by (metis hd-append list .sel(1))

lemma list-head-butlast :
assumes hd xs = v
and length xs > 1
shows hd (butlast xs) = v
using assms by (metis hd-conv-nth length-butlast length-greater-0-conv less-trans nth-butlast zero-less-diff

zero-less-one)

lemma list-head-length-one:
assumes hd xs = x

and length xs = 1
shows xs = [x]
using assms by(metis One-nat-def Suc-length-conv hd-Cons-tl length-0-conv list .sel(3))

lemma list-two-at-end :
assumes length xs > 1
shows ∃ xs ′ x y . xs = xs ′ @ [x , y]
using assms
apply(induction xs rule: rev-induct , simp)
apply(case-tac length xs = 1 , simp)
apply(metis append-self-conv2 length-0-conv length-Suc-conv)

apply(rule-tac x=butlast xs in exI , rule-tac x=last xs in exI , simp)
done

lemma list-nth-split-technical :
assumes m < length cs

and cs 6= []
shows ∃ xs ys. cs = xs@(cs!m)#ys

using assms
apply(induction m arbitrary : cs)
apply(meson in-set-conv-decomp nth-mem)

apply(metis in-set-conv-decomp length-list-update set-swap set-update-memI)
done

lemma list-nth-split :
assumes m < length cs

and n < m
and 1 < length cs

shows ∃ xs ys zs. cs = xs@(cs!n)#ys@(cs!m)#zs
using assms proof(induction n arbitrary : cs m)

case 0 thus ?case
apply(case-tac cs; clarsimp)
apply(rule-tac x=[] in exI , clarsimp)

4

apply(rule list-nth-split-technical , simp, force)
done

next
case (Suc n)
thus ?case
proof (cases cs)

case Nil
then show ?thesis

using Suc.prems by auto
next

case (Cons a as)
hence m−1 < length as n < m−1

using Suc by force+
then obtain xs ys zs where as = xs @ as ! n # ys @ as ! (m−1) # zs

using Suc by force
thus ?thesis

apply(rule-tac x=a#xs in exI)
using Suc Cons apply force
done

qed
qed

lemma list-split-two-elems:
assumes distinct cs

and x ∈ set cs
and y ∈ set cs
and x 6= y

shows ∃ pre mid suf . cs = pre @ x # mid @ y # suf ∨ cs = pre @ y # mid @ x # suf
proof −

obtain xi yi where ∗: xi < length cs ∧ x = cs ! xi yi < length cs ∧ y = cs ! yi xi 6= yi
using set-elem-nth linorder-neqE-nat assms by metis

thus ?thesis
by (metis list-nth-split One-nat-def less-Suc-eq linorder-neqE-nat not-less-zero)

qed

lemma split-list-unique-prefix :
assumes x ∈ set xs
shows ∃ pre suf . xs = pre @ x # suf ∧ (∀ y ∈ set pre. x 6= y)

using assms proof(induction xs)
case Nil thus ?case by clarsimp

next
case (Cons y ys)
then show ?case

proof (cases y=x)
case True
then show ?thesis by force

next
case False
then obtain pre suf where ys = pre @ x # suf ∧ (∀ y∈set pre. x 6= y)

using assms Cons by auto
thus ?thesis

using split-list-first by force
qed

qed

lemma map-filter-append :
shows List .map-filter P (xs @ ys) = List .map-filter P xs @ List .map-filter P ys
by(auto simp add : List .map-filter-def)

5

end

3 Strong Eventual Consistency

In this section we formalise the notion of strong eventual consistency. We do not make any
assumptions about networks or data structures; instead, we use an abstract model of operations
that may be reordered, and we reason about the properties that those operations must satisfy.
We then provide concrete implementations of that abstract model in later sections.

theory
Convergence

imports
Util

begin

The happens-before relation, as introduced by [8], captures causal dependencies between opera-
tions. It can be defined in terms of sending and receiving messages on a network. However, for
now, we keep it abstract, our only restriction on the happens-before relation is that it must be
a strict partial order, that is, it must be irreflexive and transitive, which implies that it is also
antisymmetric. We describe the state of a node using an abstract type variable. To model state
changes, we assume the existence of an interpretation function interp which lifts an operation
into a state transformer—a function that either maps an old state to a new state, or fails.

locale happens-before = preorder hb-weak hb
for hb-weak :: ′a ⇒ ′a ⇒ bool (infix � 50)
and hb :: ′a ⇒ ′a ⇒ bool (infix ≺ 50) +
fixes interp :: ′a ⇒ ′b ⇀ ′b (〈-〉 [0] 1000)

begin

3.1 Concurrent operations

We say that two operations x and y are concurrent, written x‖y, whenever one does not happen
before the other: ¬(x ≺ y) and ¬(y ≺ x).

definition concurrent :: ′a ⇒ ′a ⇒ bool (infix ‖ 50) where
s1 ‖ s2 ≡ ¬ (s1 ≺ s2) ∧ ¬ (s2 ≺ s1)

lemma concurrentI [intro!]: ¬ (s1 ≺ s2) =⇒ ¬ (s2 ≺ s1) =⇒ s1 ‖ s2
by (auto simp: concurrent-def)

lemma concurrentD1 [dest]: s1 ‖ s2 =⇒ ¬ (s1 ≺ s2)
by (auto simp: concurrent-def)

lemma concurrentD2 [dest]: s1 ‖ s2 =⇒ ¬ (s2 ≺ s1)
by (auto simp: concurrent-def)

lemma concurrent-refl [intro!, simp]: s ‖ s
by (auto simp: concurrent-def)

lemma concurrent-comm: s1 ‖ s2 ←→ s2 ‖ s1
by (auto simp: concurrent-def)

definition concurrent-set :: ′a ⇒ ′a list ⇒ bool where
concurrent-set x xs ≡ ∀ y ∈ set xs. x ‖ y

lemma concurrent-set-empty [simp, intro!]:
concurrent-set x []

6

by (auto simp: concurrent-set-def)

lemma concurrent-set-ConsE [elim!]:
assumes concurrent-set a (x#xs)

and concurrent-set a xs =⇒ concurrent x a =⇒ G
shows G

using assms by (auto simp: concurrent-set-def)

lemma concurrent-set-ConsI [intro!]:
concurrent-set a xs =⇒ concurrent a x =⇒ concurrent-set a (x#xs)
by (auto simp: concurrent-set-def)

lemma concurrent-set-appendI [intro!]:
concurrent-set a xs =⇒ concurrent-set a ys =⇒ concurrent-set a (xs@ys)
by (auto simp: concurrent-set-def)

lemma concurrent-set-Cons-Snoc [simp]:
concurrent-set a (xs@[x]) = concurrent-set a (x#xs)
by (auto simp: concurrent-set-def)

3.2 Happens-before consistency

The purpose of the happens-before relation is to require that some operations must be applied
in a particular order, while allowing concurrent operations to be reordered with respect to each
other. We assume that each node applies operations in some sequential order (a standard
assumption for distributed algorithms), and so we can model the execution history of a node as
a list of operations.

inductive hb-consistent :: ′a list ⇒ bool where
[intro!]: hb-consistent [] |
[intro!]: [[hb-consistent xs; ∀ x ∈ set xs. ¬ y ≺ x]] =⇒ hb-consistent (xs @ [y])

As a result, whenever two operations x and y appear in a hb-consistent list, and x ≺ y, then x
must appear before y in the list. However, if x‖y, the operations can appear in the list in either
order.

lemma (x ≺ y ∨ concurrent x y) = (¬ y ≺ x)
using less-asym by blast

lemma consistentI [intro!]:
assumes hb-consistent (xs @ ys)
and ∀ x ∈ set (xs @ ys). ¬ z ≺ x
shows hb-consistent (xs @ ys @ [z])
using assms hb-consistent .intros append-assoc by metis

inductive-cases hb-consistent-elim [elim]:
hb-consistent []
hb-consistent (xs@[y])
hb-consistent (xs@ys)
hb-consistent (xs@ys@[z])

inductive-cases hb-consistent-elim-gen:
hb-consistent zs

lemma hb-consistent-append-D1 [dest]:
assumes hb-consistent (xs @ ys)
shows hb-consistent xs
using assms by(induction ys arbitrary : xs rule: List .rev-induct) auto

7

lemma hb-consistent-append-D2 [dest]:
assumes hb-consistent (xs @ ys)
shows hb-consistent ys
using assms by(induction ys arbitrary : xs rule: List .rev-induct) fastforce+

lemma hb-consistent-append-elim-ConsD [elim]:
assumes hb-consistent (y#ys)
shows hb-consistent ys
using assms hb-consistent-append-D2 by(metis append-Cons append-Nil)

lemma hb-consistent-remove1 [intro]:
assumes hb-consistent xs
shows hb-consistent (remove1 x xs)
using assms by (induction rule: hb-consistent .induct) (auto simp: remove1-append)

lemma hb-consistent-singleton [intro!]:
shows hb-consistent [x]
using hb-consistent .intros by fastforce

lemma hb-consistent-prefix-suffix-exists:
assumes hb-consistent ys

hb-consistent (xs @ [x])
{x} ∪ set xs = set ys
distinct (x#xs)
distinct ys

shows ∃ prefix suffix . ys = prefix @ x # suffix ∧ concurrent-set x suffix
using assms proof (induction arbitrary : xs rule: hb-consistent .induct , simp)

fix xs y ys
assume IH : (

∧
xs. hb-consistent (xs @ [x]) =⇒

{x} ∪ set xs = set ys =⇒
distinct (x # xs) =⇒ distinct ys =⇒
∃ prefix suffix . ys = prefix @ x # suffix ∧ concurrent-set x suffix)

assume assms: hb-consistent ys ∀ x∈set ys. ¬ hb y x
hb-consistent (xs @ [x])
{x} ∪ set xs = set (ys @ [y])
distinct (x # xs) distinct (ys @ [y])

hence x = y ∨ y ∈ set xs
using assms by auto

moreover {
assume x = y
hence ∃ prefix suffix . ys @ [y] = prefix @ x # suffix ∧ concurrent-set x suffix

by force
}
moreover {

assume y-in-xs: y ∈ set xs
hence {x} ∪ (set xs − {y}) = set ys

using assms by (auto intro: set-equality-technical)
hence remove-y-in-xs: {x} ∪ set (remove1 y xs) = set ys

using assms by auto
moreover have hb-consistent ((remove1 y xs) @ [x])

using assms hb-consistent-remove1 by force
moreover have distinct (x # (remove1 y xs))

using assms by simp
moreover have distinct ys

using assms by simp
ultimately obtain prefix suffix where ys-split : ys = prefix @ x # suffix ∧ concurrent-set x suffix

using IH by force
moreover {

8

have concurrent x y
using assms y-in-xs remove-y-in-xs concurrent-def by blast

hence concurrent-set x (suffix@[y])
using ys-split by clarsimp

}
ultimately have ∃ prefix suffix . ys @ [y] = prefix @ x # suffix ∧ concurrent-set x suffix

by force
}
ultimately show ∃ prefix suffix . ys @ [y] = prefix @ x # suffix ∧ concurrent-set x suffix

by auto
qed

lemma hb-consistent-append [intro!]:
assumes hb-consistent suffix

hb-consistent prefix∧
s p. s ∈ set suffix =⇒ p ∈ set prefix =⇒ ¬ s ≺ p

shows hb-consistent (prefix @ suffix)
using assms by (induction rule: hb-consistent .induct) force+

lemma hb-consistent-append-porder :
assumes hb-consistent (xs @ ys)

x ∈ set xs
y ∈ set ys

shows ¬ y ≺ x
using assms by (induction ys arbitrary : xs rule: rev-induct) force+

3.3 Apply operations

We can now define a function apply-operations that composes an arbitrary list of operations into
a state transformer. We first map interp across the list to obtain a state transformer for each
operation, and then collectively compose them using the Kleisli arrow composition combinator.

definition apply-operations :: ′a list ⇒ ′b ⇀ ′b where
apply-operations es ≡ foldl (op B) Some (map interp es)

lemma apply-operations-empty [simp]: apply-operations [] s = Some s
by(auto simp: apply-operations-def)

lemma apply-operations-Snoc [simp]:
apply-operations (xs@[x]) = (apply-operations xs) B 〈x 〉
by(auto simp add : apply-operations-def kleisli-def)

3.4 Concurrent operations commute

We say that two operations x and y commute whenever 〈x〉B 〈y〉 = 〈y〉B 〈x〉, i.e. when we can
swap the order of the composition of their interpretations without changing the resulting state
transformer. For our purposes, requiring that this property holds for all pairs of operations is
too strong. Rather, the commutation property is only required to hold for operations that are
concurrent.

definition concurrent-ops-commute :: ′a list ⇒ bool where
concurrent-ops-commute xs ≡
∀ x y . {x , y} ⊆ set xs −→ concurrent x y −→ 〈x 〉B〈y〉 = 〈y〉B〈x 〉

lemma concurrent-ops-commute-empty [intro!]: concurrent-ops-commute []
by(auto simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-singleton [intro!]: concurrent-ops-commute [x]

9

by(auto simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-appendD [dest]:
assumes concurrent-ops-commute (xs@ys)

shows concurrent-ops-commute xs
using assms by (auto simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-rearrange:
concurrent-ops-commute (xs@x#ys) = concurrent-ops-commute (xs@ys@[x])
by (clarsimp simp: concurrent-ops-commute-def)

lemma concurrent-ops-commute-concurrent-set :
assumes concurrent-ops-commute (prefix@suffix@[x])

concurrent-set x suffix
distinct (prefix @ x # suffix)

shows apply-operations (prefix @ suffix @ [x]) = apply-operations (prefix @ x # suffix)
using assms proof(induction suffix arbitrary : rule: rev-induct , force)

fix a xs
assume IH : concurrent-ops-commute (prefix @ xs @ [x]) =⇒

concurrent-set x xs =⇒ distinct (prefix @ x # xs) =⇒
apply-operations (prefix @ xs @ [x]) = apply-operations (prefix @ x # xs)

assume assms: concurrent-ops-commute (prefix @ (xs @ [a]) @ [x])
concurrent-set x (xs @ [a]) distinct (prefix @ x # xs @ [a])

hence ac-comm: 〈a〉 B 〈x 〉 = 〈x 〉 B 〈a〉
by (clarsimp simp: concurrent-ops-commute-def) blast

have copc: concurrent-ops-commute (prefix @ xs @ [x])
using assms by (clarsimp simp: concurrent-ops-commute-def) blast

have apply-operations ((prefix @ x # xs) @ [a]) = (apply-operations (prefix @ x # xs)) B 〈a〉
by (simp del : append-assoc)

also have ... = (apply-operations (prefix @ xs @ [x])) B 〈a〉
using IH assms copc by auto

also have ... = ((apply-operations (prefix @ xs)) B 〈x 〉) B 〈a〉
by (simp add : append-assoc[symmetric] del : append-assoc)

also have ... = (apply-operations (prefix @ xs)) B (〈a〉 B 〈x 〉)
using ac-comm kleisli-comm-cong kleisli-assoc by simp

finally show apply-operations (prefix @ (xs @ [a]) @ [x]) = apply-operations (prefix @ x # xs @ [a])
by (metis Cons-eq-appendI append-assoc apply-operations-Snoc kleisli-assoc)

qed

3.5 Abstract convergence theorem

We can now state and prove our main theorem, convergence. This theorem states that two
hb-consistent lists of distinct operations, which are permutations of each other and in which
concurrent operations commute, have the same interpretation.

theorem convergence:
assumes set xs = set ys

concurrent-ops-commute xs
concurrent-ops-commute ys
distinct xs
distinct ys
hb-consistent xs
hb-consistent ys

shows apply-operations xs = apply-operations ys
using assms proof(induction xs arbitrary : ys rule: rev-induct , simp)

case assms: (snoc x xs)
then obtain prefix suffix where ys-split : ys = prefix @ x # suffix ∧ concurrent-set x suffix

using hb-consistent-prefix-suffix-exists by fastforce

10

moreover hence ∗: distinct (prefix @ suffix) hb-consistent xs
using assms by auto

moreover {
have hb-consistent prefix hb-consistent suffix

using ys-split assms hb-consistent-append-D2 hb-consistent-append-elim-ConsD by blast+
hence hb-consistent (prefix @ suffix)

by (metis assms(8) hb-consistent-append hb-consistent-append-porder list .set-intros(2) ys-split)
}
moreover have ∗∗: concurrent-ops-commute (prefix @ suffix @ [x])

using assms ys-split by (clarsimp simp: concurrent-ops-commute-def)
moreover hence concurrent-ops-commute (prefix @ suffix)

by (force simp del : append-assoc simp add : append-assoc[symmetric])
ultimately have apply-operations xs = apply-operations (prefix@suffix)
using assms by simp (metis Diff-insert-absorb Un-iff ∗ concurrent-ops-commute-appendD set-append)
moreover have apply-operations (prefix@suffix @ [x]) = apply-operations (prefix@x # suffix)

using ys-split assms ∗∗ concurrent-ops-commute-concurrent-set by force
ultimately show ?case

using ys-split by (force simp: append-assoc[symmetric] simp del : append-assoc)
qed

corollary convergence-ext :
assumes set xs = set ys

concurrent-ops-commute xs
concurrent-ops-commute ys
distinct xs
distinct ys
hb-consistent xs
hb-consistent ys

shows apply-operations xs s = apply-operations ys s
using convergence assms by metis

end

3.6 Convergence and progress

Besides convergence, another required property of SEC is progress: if a valid operation was
issued on one node, then applying that operation on other nodes must also succeed—that is,
the execution must not become stuck in an error state. Although the type signature of the
interpretation function allows operations to fail, we need to prove that in all hb-consistent
network behaviours such failure never actually occurs. We capture the combined requirements
in the strong-eventual-consistency locale, which extends happens-before.

locale strong-eventual-consistency = happens-before +
fixes op-history :: ′a list ⇒ bool

and initial-state :: ′b
assumes causality : op-history xs =⇒ hb-consistent xs
assumes distinctness: op-history xs =⇒ distinct xs
assumes commutativity : op-history xs =⇒ concurrent-ops-commute xs
assumes no-failure: op-history(xs@[x]) =⇒ apply-operations xs initial-state = Some state =⇒ 〈x 〉

state 6= None
assumes trunc-history : op-history(xs@[x]) =⇒ op-history xs

begin

theorem sec-convergence:
assumes set xs = set ys

op-history xs
op-history ys

shows apply-operations xs = apply-operations ys
by (meson assms convergence causality commutativity distinctness)

11

theorem sec-progress:
assumes op-history xs
shows apply-operations xs initial-state 6= None

using assms proof(induction xs rule: rev-induct , simp)
case (snoc x xs)
have apply-operations xs initial-state 6= None

using snoc.IH snoc.prems trunc-history kleisli-def bind-def by blast
moreover have apply-operations (xs @ [x]) = apply-operations xs B 〈x 〉

by simp
ultimately show ?case

using no-failure snoc.prems by (clarsimp simp add : kleisli-def split : bind-splits)
qed

end
end

4 Axiomatic network models

In this section we develop a formal definition of an asynchronous unreliable causal broadcast
network. We choose this model because it satisfies the causal delivery requirements of many
operation-based CRDTs [1, 2]. Moreover, it is suitable for use in decentralised settings, as
motivated in the introduction, since it does not require waiting for communication with a
central server or a quorum of nodes.

theory
Network

imports
Convergence

begin

4.1 Node histories

We model a distributed system as an unbounded number of communicating nodes. We assume
nothing about the communication pattern of nodes—we assume only that each node is uniquely
identified by a natural number, and that the flow of execution at each node consists of a finite,
totally ordered sequence of execution steps (events). We call that sequence of events at node
i the history of that node. For convenience, we assume that every event or execution step is
unique within a node’s history.

locale node-histories =
fixes history :: nat ⇒ ′evt list
assumes histories-distinct [intro!, simp]: distinct (history i)

lemma (in node-histories) history-finite:
shows finite (set (history i))

by auto

definition (in node-histories) history-order :: ′evt ⇒ nat ⇒ ′evt ⇒ bool (-/ @-/ - [50 ,1000 ,50]50)
where

x @i z ≡ ∃ xs ys zs. xs@x#ys@z#zs = history i

lemma (in node-histories) node-total-order-trans:
assumes e1 @i e2

and e2 @i e3
shows e1 @i e3

12

proof −
obtain xs1 xs2 ys1 ys2 zs1 zs2 where ∗: xs1 @ e1 # ys1 @ e2 # zs1 = history i

xs2 @ e2 # ys2 @ e3 # zs2 = history i
using history-order-def assms by auto

hence xs1 @ e1 # ys1 = xs2 ∧ zs1 = ys2 @ e3 # zs2
by(rule-tac xs=history i and ys=[e2] in pre-suf-eq-distinct-list) auto

thus ?thesis
by(clarsimp simp: history-order-def) (metis ∗(2) append .assoc append-Cons)

qed

lemma (in node-histories) local-order-carrier-closed :
assumes e1 @i e2

shows {e1 ,e2} ⊆ set (history i)
using assms by (clarsimp simp add : history-order-def)

(metis in-set-conv-decomp Un-iff Un-subset-iff insert-subset list .simps(15)
set-append set-subset-Cons)+

lemma (in node-histories) node-total-order-irrefl :
shows ¬ (e @i e)
by(clarsimp simp add : history-order-def)

(metis Un-iff histories-distinct distinct-append distinct-set-notin
list .set-intros(1) set-append)

lemma (in node-histories) node-total-order-antisym:
assumes e1 @i e2

and e2 @i e1
shows False

using assms node-total-order-irrefl node-total-order-trans by blast

lemma (in node-histories) node-order-is-total :
assumes e1 ∈ set (history i)

and e2 ∈ set (history i)
and e1 6= e2

shows e1 @i e2 ∨ e2 @i e1
using assms unfolding history-order-def by(metis list-split-two-elems histories-distinct)

definition (in node-histories) prefix-of-node-history :: ′evt list ⇒ nat ⇒ bool (infix prefix of 50) where
xs prefix of i ≡ ∃ ys. xs@ys = history i

lemma (in node-histories) carriers-head-lt :
assumes y#ys = history i
shows ¬(x @i y)

using assms
apply(clarsimp simp add : history-order-def)
apply(rename-tac xs1 ys1 zs1)
apply (subgoal-tac xs1 @ x # ys1 = [] ∧ zs1 = ys)

apply clarsimp
apply (rule-tac xs=history i and ys=[y] in pre-suf-eq-distinct-list)
apply auto

done

lemma (in node-histories) prefix-of-ConsD [dest]:
assumes x # xs prefix of i

shows [x] prefix of i
using assms by(auto simp: prefix-of-node-history-def)

lemma (in node-histories) prefix-of-appendD [dest]:
assumes xs @ ys prefix of i

13

shows xs prefix of i
using assms by(auto simp: prefix-of-node-history-def)

lemma (in node-histories) prefix-distinct :
assumes xs prefix of i

shows distinct xs
using assms by(clarsimp simp: prefix-of-node-history-def) (metis histories-distinct distinct-append)

lemma (in node-histories) prefix-to-carriers [intro]:
assumes xs prefix of i

shows set xs ⊆ set (history i)
using assms by(clarsimp simp: prefix-of-node-history-def) (metis Un-iff set-append)

lemma (in node-histories) prefix-elem-to-carriers:
assumes xs prefix of i

and x ∈ set xs
shows x ∈ set (history i)

using assms by(clarsimp simp: prefix-of-node-history-def) (metis Un-iff set-append)

lemma (in node-histories) local-order-prefix-closed :
assumes x @i y

and xs prefix of i
and y ∈ set xs

shows x ∈ set xs
proof −

obtain ys where xs @ ys = history i
using assms prefix-of-node-history-def by blast

moreover obtain as bs cs where as @ x # bs @ y # cs = history i
using assms history-order-def by blast

moreover obtain pre suf where ∗: xs = pre @ y # suf
using assms split-list by fastforce

ultimately have pre = as @ x # bs ∧ suf @ ys = cs
by (rule-tac xs=history i and ys=[y] in pre-suf-eq-distinct-list) auto

thus ?thesis
using assms ∗ by clarsimp

qed

lemma (in node-histories) local-order-prefix-closed-last :
assumes x @i y

and xs@[y] prefix of i
shows x ∈ set xs

proof −
have x ∈ set (xs @ [y])

using assms by (force dest : local-order-prefix-closed)
thus ?thesis

using assms by(force simp add : node-total-order-irrefl prefix-to-carriers)
qed

lemma (in node-histories) events-before-exist :
assumes x ∈ set (history i)
shows ∃ pre. pre @ [x] prefix of i

proof −
have ∃ idx . idx < length (history i) ∧ (history i) ! idx = x

using assms by(simp add : set-elem-nth)
thus ?thesis

by(metis append-take-drop-id take-Suc-conv-app-nth prefix-of-node-history-def)
qed

14

lemma (in node-histories) events-in-local-order :
assumes pre @ [e2] prefix of i
and e1 ∈ set pre
shows e1 @i e2
using assms split-list unfolding history-order-def prefix-of-node-history-def by fastforce

4.2 Asynchronous broadcast networks

We define a new locale network containing three axioms that define how broadcast and deliver
events may interact, with these axioms defining the properties of our network model.

datatype ′msg event
= Broadcast ′msg
| Deliver ′msg

locale network = node-histories history for history :: nat ⇒ ′msg event list +
fixes msg-id :: ′msg ⇒ ′msgid

assumes delivery-has-a-cause: [[Deliver m ∈ set (history i)]] =⇒
∃ j . Broadcast m ∈ set (history j)

and deliver-locally : [[Broadcast m ∈ set (history i)]] =⇒
Broadcast m @i Deliver m

and msg-id-unique: [[Broadcast m1 ∈ set (history i);
Broadcast m2 ∈ set (history j);
msg-id m1 = msg-id m2]] =⇒ i = j ∧ m1 = m2

The axioms can be understood as follows:

delivery-has-a-cause: If some message m was delivered at some node, then there exists some
node on which m was broadcast. With this axiom, we assert that messages are not created
“out of thin air” by the network itself, and that the only source of messages are the nodes.

deliver-locally: If a node broadcasts some message m, then the same node must subsequently
also deliver m to itself. Since m does not actually travel over the network, this local
delivery is always possible, even if the network is interrupted. Local delivery may seem
redundant, since the effect of the delivery could also be implemented by the broadcast
event itself; however, it is standard practice in the description of broadcast protocols that
the sender of a message also sends it to itself, since this property simplifies the definition
of algorithms built on top of the broadcast abstraction [4].

msg-id-unique: We do not assume that the message type ′msg has any particular structure;
we only assume the existence of a function msg-id:: ′msg⇒ ′msgid that maps every message
to some globally unique identifier of type ′msgid. We assert this uniqueness by stating
that if m1 and m2 are any two messages broadcast by any two nodes, and their msg-ids
are the same, then they were in fact broadcast by the same node and the two messages are
identical. In practice, these globally unique IDs can by implemented using unique node
identifiers, sequence numbers or timestamps.

lemma (in network) broadcast-before-delivery :
assumes Deliver m ∈ set (history i)
shows ∃ j . Broadcast m @j Deliver m
using assms deliver-locally delivery-has-a-cause by blast

lemma (in network) broadcasts-unique:
assumes i 6= j

and Broadcast m ∈ set (history i)
shows Broadcast m /∈ set (history j)

15

using assms msg-id-unique by blast

Based on the well-known definition by [8], we say that m1 ≺ m2 if any of the following is true:

1. m1 and m2 were broadcast by the same node, and m1 was broadcast before m2.

2. The node that broadcast m2 had delivered m1 before it broadcast m2.

3. There exists some operation m3 such that m1 ≺ m3 and m3 ≺ m2.

inductive (in network) hb :: ′msg ⇒ ′msg ⇒ bool where
hb-broadcast : [[Broadcast m1 @i Broadcast m2]] =⇒ hb m1 m2 |
hb-deliver : [[Deliver m1 @i Broadcast m2]] =⇒ hb m1 m2 |
hb-trans: [[hb m1 m2 ; hb m2 m3]] =⇒ hb m1 m3

inductive-cases (in network) hb-elim: hb x y

definition (in network) weak-hb :: ′msg ⇒ ′msg ⇒ bool where
weak-hb m1 m2 ≡ hb m1 m2 ∨ m1 = m2

locale causal-network = network +
assumes causal-delivery : Deliver m2 ∈ set (history j) =⇒ hb m1 m2 =⇒ Deliver m1 @j Deliver m2

lemma (in causal-network) causal-broadcast :
assumes Deliver m2 ∈ set (history j)

and Deliver m1 @i Broadcast m2
shows Deliver m1 @j Deliver m2

using assms causal-delivery hb.intros(2) by blast

lemma (in network) hb-broadcast-exists1 :
assumes hb m1 m2
shows ∃ i . Broadcast m1 ∈ set (history i)
using assms
apply(induction rule: hb.induct)

apply(meson insert-subset node-histories.local-order-carrier-closed node-histories-axioms)
apply(meson delivery-has-a-cause insert-subset local-order-carrier-closed)

apply simp
done

lemma (in network) hb-broadcast-exists2 :
assumes hb m1 m2
shows ∃ i . Broadcast m2 ∈ set (history i)
using assms
apply(induction rule: hb.induct)

apply(meson insert-subset node-histories.local-order-carrier-closed node-histories-axioms)
apply(meson delivery-has-a-cause insert-subset local-order-carrier-closed)

apply simp
done

4.3 Causal networks

lemma (in causal-network) hb-has-a-reason:
assumes hb m1 m2

and Broadcast m2 ∈ set (history i)
shows Deliver m1 ∈ set (history i) ∨ Broadcast m1 ∈ set (history i)
using assms apply (induction rule: hb.induct)

apply(metis insert-subset local-order-carrier-closed network .broadcasts-unique network-axioms)
apply(metis insert-subset local-order-carrier-closed network .broadcasts-unique network-axioms)

using hb-trans causal-delivery local-order-carrier-closed apply blast

16

done

lemma (in causal-network) hb-cross-node-delivery :
assumes hb m1 m2

and Broadcast m1 ∈ set (history i)
and Broadcast m2 ∈ set (history j)
and i 6= j

shows Deliver m1 ∈ set (history j)
using assms
apply(induction rule: hb.induct)

apply(metis broadcasts-unique insert-subset local-order-carrier-closed)
apply(metis insert-subset local-order-carrier-closed network .broadcasts-unique network-axioms)

using broadcasts-unique hb.intros(3) hb-has-a-reason apply blast
done

lemma (in causal-network) hb-irrefl :
assumes hb m1 m2
shows m1 6= m2

using assms proof(induction rule: hb.induct)
case (hb-broadcast m1 i m2) thus ?case

using node-total-order-antisym by blast
next

case (hb-deliver m1 i m2) thus ?case
by(meson causal-broadcast insert-subset local-order-carrier-closed node-total-order-irrefl)

next
case (hb-trans m1 m2 m3)
then obtain i j where Broadcast m3 ∈ set (history i) Broadcast m2 ∈ set (history j)

using hb-broadcast-exists2 by blast
then show ?case

using assms hb-trans by (meson causal-network .causal-delivery causal-network-axioms
deliver-locally insert-subset network .hb.intros(3) network-axioms
node-histories.local-order-carrier-closed assms hb-trans
node-histories-axioms node-total-order-irrefl)

qed

lemma (in causal-network) hb-broadcast-broadcast-order :
assumes hb m1 m2

and Broadcast m1 ∈ set (history i)
and Broadcast m2 ∈ set (history i)

shows Broadcast m1 @i Broadcast m2
using assms proof(induction rule: hb.induct)

case (hb-broadcast m1 i m2) thus ?case
by(metis insertI1 local-order-carrier-closed network .broadcasts-unique network-axioms subsetCE)

next
case (hb-deliver m1 i m2) thus ?case

by(metis broadcasts-unique insert-subset local-order-carrier-closed
network .broadcast-before-delivery network-axioms node-total-order-trans)

next
case (hb-trans m1 m2 m3)
then show ?case
proof (cases Broadcast m2 ∈ set (history i))

case True thus ?thesis
using hb-trans node-total-order-trans by blast

next
case False hence Deliver m2 ∈ set (history i) m1 6= m2 m2 6= m3

using hb-has-a-reason hb-trans by auto
thus ?thesis

by(metis hb-trans event .inject(1) hb.intros(1) hb-irrefl network .hb.intros(3) network-axioms

17

node-order-is-total hb-irrefl)
qed

qed

lemma (in causal-network) hb-antisym:
assumes hb x y

and hb y x
shows False

using assms proof(induction rule: hb.induct)
fix m1 i m2
assume hb m2 m1 and Broadcast m1 @i Broadcast m2
thus False

apply − proof(erule hb-elim)
show

∧
ia. Broadcast m1 @i Broadcast m2 =⇒ Broadcast m2 @ia Broadcast m1 =⇒ False

by(metis broadcasts-unique insert-subset local-order-carrier-closed node-total-order-irrefl node-total-order-trans)
next

show
∧

ia. Broadcast m1 @i Broadcast m2 =⇒ Deliver m2 @ia Broadcast m1 =⇒ False
by(metis broadcast-before-delivery broadcasts-unique insert-subset local-order-carrier-closed node-total-order-irrefl

node-total-order-trans)
next

show
∧

m2a. Broadcast m1 @i Broadcast m2 =⇒ hb m2 m2a =⇒ hb m2a m1 =⇒ False
using assms(1) assms(2) hb.intros(3) hb-irrefl by blast

qed
next

fix m1 i m2
assume hb m2 m1

and Deliver m1 @i Broadcast m2
thus False

apply − proof(erule hb-elim)
show

∧
ia. Deliver m1 @i Broadcast m2 =⇒ Broadcast m2 @ia Broadcast m1 =⇒ False

by (metis broadcast-before-delivery broadcasts-unique insert-subset local-order-carrier-closed node-total-order-irrefl
node-total-order-trans)

next
show

∧
ia. Deliver m1 @i Broadcast m2 =⇒ Deliver m2 @ia Broadcast m1 =⇒ False

by (meson causal-network .causal-delivery causal-network-axioms hb.intros(2) hb.intros(3) insert-subset
local-order-carrier-closed node-total-order-irrefl)

next
show

∧
m2a. Deliver m1 @i Broadcast m2 =⇒ hb m2 m2a =⇒ hb m2a m1 =⇒ False

by (meson causal-delivery hb.intros(2) insert-subset local-order-carrier-closed network .hb.intros(3)
network-axioms node-total-order-irrefl)

qed
next

fix m1 m2 m3
assume hb m1 m2 hb m2 m3 hb m3 m1

and (hb m2 m1 =⇒ False) (hb m3 m2 =⇒ False)
thus False

using hb.intros(3) by blast
qed

definition (in network) node-deliver-messages :: ′msg event list ⇒ ′msg list where
node-deliver-messages cs ≡ List .map-filter (λe. case e of Deliver m ⇒ Some m | - ⇒ None) cs

lemma (in network) node-deliver-messages-empty [simp]:
shows node-deliver-messages [] = []
by(auto simp add : node-deliver-messages-def List .map-filter-simps)

lemma (in network) node-deliver-messages-Cons:
shows node-deliver-messages (x#xs) = (node-deliver-messages [x])@(node-deliver-messages xs)

18

by(auto simp add : node-deliver-messages-def map-filter-def)

lemma (in network) node-deliver-messages-append :
shows node-deliver-messages (xs@ys) = (node-deliver-messages xs)@(node-deliver-messages ys)
by(auto simp add : node-deliver-messages-def map-filter-def)

lemma (in network) node-deliver-messages-Broadcast [simp]:
shows node-deliver-messages [Broadcast m] = []
by(clarsimp simp: node-deliver-messages-def map-filter-def)

lemma (in network) node-deliver-messages-Deliver [simp]:
shows node-deliver-messages [Deliver m] = [m]
by(clarsimp simp: node-deliver-messages-def map-filter-def)

lemma (in network) prefix-msg-in-history :
assumes es prefix of i

and m ∈ set (node-deliver-messages es)
shows Deliver m ∈ set (history i)

using assms prefix-to-carriers by(fastforce simp: node-deliver-messages-def map-filter-def split : event .split-asm)

lemma (in network) prefix-contains-msg :
assumes es prefix of i

and m ∈ set (node-deliver-messages es)
shows Deliver m ∈ set es

using assms by(auto simp: node-deliver-messages-def map-filter-def split : event .split-asm)

lemma (in network) node-deliver-messages-distinct :
assumes xs prefix of i
shows distinct (node-deliver-messages xs)

using assms proof(induction xs rule: rev-induct)
case Nil thus ?case by simp

next
case (snoc x xs)
{ fix y assume ∗: y ∈ set (node-deliver-messages xs) y ∈ set (node-deliver-messages [x])

moreover have distinct (xs @ [x])
using assms snoc prefix-distinct by blast

ultimately have False
using assms apply(case-tac x ; clarsimp simp add : map-filter-def node-deliver-messages-def)
using ∗ prefix-contains-msg snoc.prems by blast

} thus ?case
using snoc by(fastforce simp add : node-deliver-messages-append node-deliver-messages-def map-filter-def)

qed

lemma (in network) drop-last-message:
assumes evts prefix of i
and node-deliver-messages evts = msgs @ [last-msg]
shows ∃ pre. pre prefix of i ∧ node-deliver-messages pre = msgs

proof −
have Deliver last-msg ∈ set evts

using assms network .prefix-contains-msg network-axioms by force
then obtain idx where ∗: idx < length evts evts ! idx = Deliver last-msg

by (meson set-elem-nth)
then obtain pre suf where evts = pre @ (evts ! idx) # suf

using id-take-nth-drop by blast
hence ∗∗: evts = pre @ (Deliver last-msg) # suf

using assms ∗ by auto
moreover hence distinct (node-deliver-messages ([Deliver last-msg] @ suf))
by (metis assms(1) assms(2) distinct-singleton node-deliver-messages-Cons node-deliver-messages-Deliver

19

node-deliver-messages-append node-deliver-messages-distinct not-Cons-self2 pre-suf-eq-distinct-list)
ultimately have node-deliver-messages ([Deliver last-msg] @ suf) = [last-msg] @ []
by (metis append-self-conv assms(1) assms(2) node-deliver-messages-Cons node-deliver-messages-Deliver

node-deliver-messages-append node-deliver-messages-distinct not-Cons-self2 pre-suf-eq-distinct-list)
thus ?thesis
using assms ∗ ∗∗ by (metis append1-eq-conv append-Cons append-Nil node-deliver-messages-append

prefix-of-appendD)
qed

locale network-with-ops = causal-network history fst
for history :: nat ⇒ (′msgid × ′op) event list +
fixes interp :: ′op ⇒ ′state ⇀ ′state
and initial-state :: ′state

context network-with-ops begin

definition interp-msg :: ′msgid × ′op ⇒ ′state ⇀ ′state where
interp-msg msg state ≡ interp (snd msg) state

sublocale hb: happens-before weak-hb hb interp-msg
proof

fix x y :: ′msgid × ′op
show hb x y = (weak-hb x y ∧ ¬ weak-hb y x)

unfolding weak-hb-def using hb-antisym by blast
next

fix x
show weak-hb x x

using weak-hb-def by blast
next

fix x y z
assume weak-hb x y weak-hb y z
thus weak-hb x z

using weak-hb-def by (metis network .hb.intros(3) network-axioms)
qed

end

definition (in network-with-ops) apply-operations :: (′msgid × ′op) event list ⇀ ′state where
apply-operations es ≡ hb.apply-operations (node-deliver-messages es) initial-state

definition (in network-with-ops) node-deliver-ops :: (′msgid × ′op) event list ⇒ ′op list where
node-deliver-ops cs ≡ map snd (node-deliver-messages cs)

lemma (in network-with-ops) apply-operations-empty [simp]:
shows apply-operations [] = Some initial-state
by(auto simp add : apply-operations-def)

lemma (in network-with-ops) apply-operations-Broadcast [simp]:
shows apply-operations (xs @ [Broadcast m]) = apply-operations xs
by(auto simp add : apply-operations-def node-deliver-messages-def map-filter-def)

lemma (in network-with-ops) apply-operations-Deliver [simp]:
shows apply-operations (xs @ [Deliver m]) = (apply-operations xs >>= interp-msg m)
by(auto simp add : apply-operations-def node-deliver-messages-def map-filter-def kleisli-def)

lemma (in network-with-ops) hb-consistent-technical :
assumes

∧
m n. m < length cs =⇒ n < m =⇒ cs ! n @i cs ! m

shows hb.hb-consistent (node-deliver-messages cs)

20

using assms proof (induction cs rule: rev-induct)
case Nil thus ?case
by(simp add : node-deliver-messages-def hb.hb-consistent .intros(1) map-filter-simps(2))

next
case (snoc x xs)
hence ∗: (

∧
m n. m < length xs =⇒ n < m =⇒ xs ! n @i xs ! m)

by(−, erule-tac x=m in meta-allE , erule-tac x=n in meta-allE , clarsimp simp add : nth-append)
then show ?case
proof (cases x)

case (Broadcast x1) thus ?thesis
using snoc ∗ by (simp add : node-deliver-messages-append)

next
case (Deliver x2) thus ?thesis
using snoc ∗ apply(clarsimp simp add : node-deliver-messages-def map-filter-def map-filter-append)
apply (rename-tac m m1 m2)
apply (case-tac m; clarsimp)
apply(drule set-elem-nth, erule exE , erule conjE)
apply(erule-tac x=length xs in meta-allE)
apply(clarsimp simp add : nth-append)
by (metis causal-delivery insert-subset node-histories.local-order-carrier-closed

node-histories-axioms node-total-order-antisym)
qed

qed

corollary (in network-with-ops)
shows hb.hb-consistent (node-deliver-messages (history i))
by (metis hb-consistent-technical history-order-def less-one linorder-neqE-nat list-nth-split zero-order(3))

lemma (in network-with-ops) hb-consistent-prefix :
assumes xs prefix of i
shows hb.hb-consistent (node-deliver-messages xs)

using assms proof (clarsimp simp: prefix-of-node-history-def , rule-tac i=i in hb-consistent-technical)
fix m n ys assume ∗: xs @ ys = history i m < length xs n < m
consider (a) xs = [] | (b) ∃ c. xs = [c] | (c) Suc 0 < length (xs)

by (metis Suc-pred length-Suc-conv length-greater-0-conv zero-less-diff)
thus xs ! n @i xs ! m
proof (cases)

case a thus ?thesis
using ∗ by clarsimp

next
case b thus ?thesis

using assms ∗ by clarsimp
next

case c thus ?thesis
using assms ∗ apply clarsimp
apply(drule list-nth-split , assumption, clarsimp simp: c)
apply (metis append .assoc append .simps(2) history-order-def)
done

qed
qed

locale network-with-constrained-ops = network-with-ops +
fixes valid-msg :: ′c ⇒ (′a × ′b) ⇒ bool
assumes broadcast-only-valid-msgs: pre @ [Broadcast m] prefix of i =⇒

∃ state. apply-operations pre = Some state ∧ valid-msg state m

lemma (in network-with-constrained-ops) broadcast-is-valid :
assumes Broadcast m ∈ set (history i)

21

shows ∃ state. valid-msg state m
using assms broadcast-only-valid-msgs events-before-exist by blast

lemma (in network-with-constrained-ops) deliver-is-valid :
assumes Deliver m ∈ set (history i)
shows ∃ j pre state. pre @ [Broadcast m] prefix of j ∧ apply-operations pre = Some state ∧ valid-msg

state m
using assms apply (clarsimp dest !: delivery-has-a-cause)
using broadcast-only-valid-msgs events-before-exist apply blast
done

lemma (in network-with-constrained-ops) deliver-in-prefix-is-valid :
assumes xs prefix of i

and Deliver m ∈ set xs
shows ∃ state. valid-msg state m

by (meson assms network-with-constrained-ops.deliver-is-valid network-with-constrained-ops-axioms
prefix-elem-to-carriers)

4.4 Dummy network models

interpretation trivial-node-histories: node-histories λm. []
by standard auto

interpretation trivial-network : network λm. [] id
by standard auto

interpretation trivial-causal-network : causal-network λm. [] id
by standard auto

interpretation trivial-network-with-ops: network-with-ops λm. [] (λx y . Some y) 0
by standard auto

interpretation trivial-network-with-constrained-ops: network-with-constrained-ops λm. [] (λx y . Some
y) 0 λx y . True

by standard (simp add : trivial-node-histories.prefix-of-node-history-def)

end

5 Replicated Growable Array

The RGA, introduced by [10], is a replicated ordered list (sequence) datatype that supports
insert and delete operations.

theory
Ordered-List

imports
Util

begin

type-synonym (′id , ′v) elt = ′id × ′v × bool

5.1 Insert and delete operations

Insertion operations place the new element after an existing list element with a given ID, or
at the head of the list if no ID is given. Deletion operations refer to the ID of the list element
that is to be deleted. However, it is not safe for a deletion operation to completely remove a
list element, because then a concurrent insertion after the deleted element would not be able to

22

locate the insertion position. Instead, the list retains so-called tombstones: a deletion operation
merely sets a flag on a list element to mark it as deleted, but the element actually remains in
the list. A separate garbage collection process can be used to eventually purge tombstones [10],
but we do not consider tombstone removal here.

hide-const insert

fun insert-body :: (′id ::{linorder}, ′v) elt list ⇒ (′id , ′v) elt ⇒ (′id , ′v) elt list where
insert-body [] e = [e] |
insert-body (x#xs) e =

(if fst x < fst e then
e#x#xs

else x#insert-body xs e)

fun insert :: (′id ::{linorder}, ′v) elt list ⇒ (′id , ′v) elt ⇒ ′id option ⇒ (′id , ′v) elt list option where
insert xs e None = Some (insert-body xs e) |
insert [] e (Some i) = None |
insert (x#xs) e (Some i) =

(if fst x = i then
Some (x#insert-body xs e)

else
insert xs e (Some i) >>= (λt . Some (x#t)))

fun delete :: (′id ::{linorder}, ′v) elt list ⇒ ′id ⇒ (′id , ′v) elt list option where
delete [] i = None |
delete ((i ′, v , flag)#xs) i =

(if i ′ = i then
Some ((i ′, v , True)#xs)

else
delete xs i >>= (λt . Some ((i ′,v ,flag)#t)))

5.2 Well-definedness of insert and delete

lemma insert-no-failure:
assumes i = None ∨ (∃ i ′. i = Some i ′ ∧ i ′ ∈ fst ‘ set xs)
shows ∃ xs ′. insert xs e i = Some xs ′

using assms by(induction rule: insert .induct ; force)

lemma insert-None-index-neq-None [dest]:
assumes insert xs e i = None
shows i 6= None

using assms by(cases i , auto)

lemma insert-Some-None-index-not-in [dest]:
assumes insert xs e (Some i) = None
shows i /∈ fst ‘ set xs

using assms by(induction xs, auto split : if-split-asm bind-splits)

lemma index-not-in-insert-Some-None [simp]:
assumes i /∈ fst ‘ set xs
shows insert xs e (Some i) = None

using assms by(induction xs, auto)

lemma delete-no-failure:
assumes i ∈ fst ‘ set xs
shows ∃ xs ′. delete xs i = Some xs ′

using assms by(induction xs; force)

23

lemma delete-None-index-not-in [dest]:
assumes delete xs i = None
shows i /∈ fst ‘ set xs

using assms by(induction xs, auto split : if-split-asm bind-splits simp add : fst-eq-Domain)

lemma index-not-in-delete-None [simp]:
assumes i /∈ fst ‘ set xs
shows delete xs i = None

using assms by(induction xs, auto)

5.3 Preservation of element indices

lemma insert-body-preserve-indices [simp]:
shows fst ‘ set (insert-body xs e) = fst ‘ set xs ∪ {fst e}

by(induction xs, auto simp add : insert-commute)

lemma insert-preserve-indices:
assumes ∃ ys. insert xs e i = Some ys
shows fst ‘ set (the (insert xs e i)) = fst ‘ set xs ∪ {fst e}

using assms by(induction xs; cases i ; auto simp add : insert-commute split : bind-splits)

corollary insert-preserve-indices ′:
assumes insert xs e i = Some ys
shows fst ‘ set (the (insert xs e i)) = fst ‘ set xs ∪ {fst e}

using assms insert-preserve-indices by blast

lemma delete-preserve-indices:
assumes delete xs i = Some ys
shows fst ‘ set xs = fst ‘ set ys

using assms by(induction xs arbitrary : ys, simp) (case-tac a; auto split : if-split-asm bind-splits)

5.4 Commutativity of concurrent operations

lemma insert-body-commutes:
assumes fst e1 6= fst e2
shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1

using assms by(induction xs, auto)

lemma insert-insert-body :
assumes fst e1 6= fst e2

and i2 6= Some (fst e1)
shows insert (insert-body xs e1) e2 i2 = insert xs e2 i2 >>= (λys. Some (insert-body ys e1))

using assms by (induction xs; cases i2) (auto split : if-split-asm simp add : insert-body-commutes)

lemma insert-Nil-None:
assumes fst e1 6= fst e2

and i 6= fst e2
and i2 6= Some (fst e1)

shows insert [] e2 i2 >>= (λys. insert ys e1 (Some i)) = None
using assms by (cases i2) clarsimp+

lemma insert-insert-body-commute:
assumes i 6= fst e1

and fst e1 6= fst e2
shows insert (insert-body xs e1) e2 (Some i) =

insert xs e2 (Some i) >>= (λy . Some (insert-body y e1))
using assms by(induction xs, auto simp add : insert-body-commutes)

24

lemma insert-commutes:
assumes fst e1 6= fst e2

i1 = None ∨ i1 6= Some (fst e2)
i2 = None ∨ i2 6= Some (fst e1)

shows insert xs e1 i1 >>= (λys. insert ys e2 i2) =
insert xs e2 i2 >>= (λys. insert ys e1 i1)

using assms proof(induction rule: insert .induct)
fix xs and e :: (′a, ′b) elt
assume i2 = None ∨ i2 6= Some (fst e) and fst e 6= fst e2
thus insert xs e None >>= (λys. insert ys e2 i2) = insert xs e2 i2 >>= (λys. insert ys e None)

by(auto simp add : insert-body-commutes intro: insert-insert-body)
next

fix i and e :: (′a, ′b) elt
assume fst e 6= fst e2 and i2 = None ∨ i2 6= Some (fst e) and Some i = None ∨ Some i 6= Some

(fst e2)
thus insert [] e (Some i) >>= (λys. insert ys e2 i2) = insert [] e2 i2 >>= (λys. insert ys e (Some i))

by (auto intro: insert-Nil-None[symmetric])
next

fix xs i and x e :: (′a, ′b) elt
assume IH : (fst x 6= i =⇒

fst e 6= fst e2 =⇒
Some i = None ∨ Some i 6= Some (fst e2) =⇒
i2 = None ∨ i2 6= Some (fst e) =⇒

insert xs e (Some i) >>= (λys. insert ys e2 i2) = insert xs e2 i2 >>= (λys. insert ys e (Some
i)))

and fst e 6= fst e2
and Some i = None ∨ Some i 6= Some (fst e2)
and i2 = None ∨ i2 6= Some (fst e)

thus insert (x # xs) e (Some i) >>= (λys. insert ys e2 i2) = insert (x # xs) e2 i2 >>= (λys. insert
ys e (Some i))

apply −
apply(erule disjE , clarsimp, simp, rule conjI)
apply(case-tac i2 ; force simp add : insert-body-commutes insert-insert-body-commute)

apply(case-tac i2 ; clarsimp cong : Option.bind-cong simp add : insert-insert-body split : bind-splits)
apply force
done

qed

lemma delete-commutes:
shows delete xs i1 >>= (λys. delete ys i2) = delete xs i2 >>= (λys. delete ys i1)

by(induction xs, auto split : bind-splits if-split-asm)

lemma insert-body-delete-commute:
assumes i2 6= fst e
shows delete (insert-body xs e) i2 >>= (λt . Some (x#t)) =

delete xs i2 >>= (λy . Some (x#insert-body y e))
using assms by (induction xs arbitrary : x ; cases e, auto split : bind-splits if-split-asm)

lemma insert-delete-commute:
assumes i2 6= fst e
shows insert xs e i1 >>= (λys. delete ys i2) = delete xs i2 >>= (λys. insert ys e i1)

using assms by(induction xs; cases e; cases i1 , auto split : bind-splits if-split-asm simp add : insert-body-delete-commute)

5.5 Alternative definition of insert

fun insert ′ :: (′id ::{linorder}, ′v) elt list ⇒ (′id , ′v) elt ⇒ ′id option ⇀ (′id ::{linorder}, ′v) elt list
where

insert ′ [] e None = Some [e] |

25

insert ′ [] e (Some i) = None |
insert ′ (x#xs) e None =

(if fst x < fst e then
Some (e#x#xs)

else
case insert ′ xs e None of

None ⇒ None
| Some t ⇒ Some (x#t)) |

insert ′ (x#xs) e (Some i) =
(if fst x = i then

case insert ′ xs e None of
None ⇒ None
| Some t ⇒ Some (x#t)

else
case insert ′ xs e (Some i) of

None ⇒ None
| Some t ⇒ Some (x#t))

lemma [elim!, dest]:
assumes insert ′ xs e None = None
shows False

using assms by(induction xs, auto split : if-split-asm option.split-asm)

lemma insert-body-insert ′:
shows insert ′ xs e None = Some (insert-body xs e)

by(induction xs, auto)

lemma insert-insert ′:
shows insert xs e i = insert ′ xs e i

by(induction xs; cases e; cases i , auto split : option.split simp add : insert-body-insert ′)

lemma insert-body-stop-iteration:
assumes fst e > fst x
shows insert-body (x#xs) e = e#x#xs

using assms by simp

lemma insert-body-contains-new-elem:
shows ∃ p s. xs = p @ s ∧ insert-body xs e = p @ e # s

proof (induction xs)
case Nil thus ?case by force

next
case (Cons a xs)
then obtain p s where xs = p @ s ∧ insert-body xs e = p @ e # s by force
thus ?case

apply clarsimp
apply (rule conjI ; clarsimp)

apply force
apply (rule-tac x=a # p in exI , force)
done

qed

lemma insert-between-elements:
assumes xs = pre@ref #suf

and distinct (map fst xs)
and

∧
i ′. i ′ ∈ fst ‘ set xs =⇒ i ′ < fst e

shows insert xs e (Some (fst ref)) = Some (pre @ ref # e # suf)
using assms by(induction xs arbitrary : pre ref suf , force) (case-tac pre; case-tac suf ; force)

26

lemma insert-position-element-technical :
assumes ∀ x∈set as. a 6= fst x

and insert-body (cs @ ds) e = cs @ e # ds
shows insert (as @ (a, aa, b) # cs @ ds) e (Some a) = Some (as @ (a, aa, b) # cs @ e # ds)

using assms by (induction as arbitrary : cs ds; clarsimp)

lemma split-tuple-list-by-id :
assumes (a,b,c) ∈ set xs

and distinct (map fst xs)
shows ∃ pre suf . xs = pre @ (a,b,c) # suf ∧ (∀ y ∈ set pre. fst y 6= a)

using assms proof(induction xs, clarsimp)
case (Cons x xs)
{ assume x 6= (a, b, c)

hence (a, b, c) ∈ set xs distinct (map fst xs)
using Cons.prems by force+

then obtain pre suf where xs = pre @ (a, b, c) # suf ∧ (∀ y∈set pre. fst y 6= a)
using Cons.IH by force

hence ?case
apply(rule-tac x=x#pre in exI)
using Cons.prems(2) by auto

} thus ?case
by force

qed

lemma insert-preserves-order :
assumes i = None ∨ (∃ i ′. i = Some i ′ ∧ i ′ ∈ fst ‘ set xs)

and distinct (map fst xs)
shows ∃ pre suf . xs = pre@suf ∧ insert xs e i = Some (pre @ e # suf)

using assms proof −
{ assume i = None

hence ?thesis
by clarsimp (metis insert-body-contains-new-elem)

} moreover {
assume ∃ i ′. i = Some i ′ ∧ i ′ ∈ fst ‘ set xs
then obtain j v b where i = Some j (j , v , b) ∈ set xs by force
moreover then obtain as bs where xs = as@(j ,v ,b)#bs ∀ x ∈ set as. fst x 6= j

using assms by (metis split-tuple-list-by-id)
moreover then obtain cs ds where insert-body bs e = cs@e#ds cs@ds = bs

by(metis insert-body-contains-new-elem)
ultimately have ?thesis

by(rule-tac x=as@(j ,v ,b)#cs in exI ; clarsimp)(metis insert-position-element-technical)
} ultimately show ?thesis

using assms by force
qed
end

5.6 Network

theory
RGA

imports
Network
Ordered-List

begin

datatype (′id , ′v) operation =
Insert (′id , ′v) elt ′id option |
Delete ′id

27

fun interpret-opers :: (′id ::linorder , ′v) operation ⇒ (′id , ′v) elt list ⇀ (′id , ′v) elt list (〈-〉 [0] 1000)
where

interpret-opers (Insert e n) xs = insert xs e n |
interpret-opers (Delete n) xs = delete xs n

definition element-ids :: (′id , ′v) elt list ⇒ ′id set where
element-ids list ≡ set (map fst list)

definition valid-rga-msg :: (′id , ′v) elt list ⇒ ′id × (′id ::linorder , ′v) operation ⇒ bool where
valid-rga-msg list msg ≡ case msg of

(i , Insert e None) ⇒ fst e = i |
(i , Insert e (Some pos)) ⇒ fst e = i ∧ pos ∈ element-ids list |
(i , Delete pos) ⇒ pos ∈ element-ids list

locale rga = network-with-constrained-ops - interpret-opers [] valid-rga-msg

definition indices :: (′id × (′id , ′v) operation) event list ⇒ ′id list where
indices xs ≡

List .map-filter (λx . case x of Deliver (i , Insert e n) ⇒ Some (fst e) | - ⇒ None) xs

lemma indices-Nil [simp]:
shows indices [] = []

by(auto simp: indices-def map-filter-def)

lemma indices-append [simp]:
shows indices (xs@ys) = indices xs @ indices ys

by(auto simp: indices-def map-filter-def)

lemma indices-Broadcast-singleton [simp]:
shows indices [Broadcast b] = []

by(auto simp: indices-def map-filter-def)

lemma indices-Deliver-Insert [simp]:
shows indices [Deliver (i , Insert e n)] = [fst e]

by(auto simp: indices-def map-filter-def)

lemma indices-Deliver-Delete [simp]:
shows indices [Deliver (i , Delete n)] = []

by(auto simp: indices-def map-filter-def)

lemma (in rga) idx-in-elem-inserted [intro]:
assumes Deliver (i , Insert e n) ∈ set xs
shows fst e ∈ set (indices xs)

using assms by(induction xs, auto simp add : indices-def map-filter-def)

lemma (in rga) apply-opers-idx-elems:
assumes es prefix of i

and apply-operations es = Some xs
shows element-ids xs = set (indices es)

using assms unfolding element-ids-def
proof(induction es arbitrary : xs rule: rev-induct , clarsimp)

case (snoc x xs) thus ?case
proof (cases x , clarsimp, blast)

case (Deliver e)
moreover obtain a b where e = (a, b) by force
ultimately show ?thesis

28

using snoc assms apply (cases b; clarsimp split : bind-splits simp add : interp-msg-def)
apply (metis Un-insert-right append .right-neutral insert-preserve-indices ′ list .set(1)

option.sel prefix-of-appendD prod .sel(1) set-append)
by (metis delete-preserve-indices prefix-of-appendD)

qed
qed

lemma (in rga) delete-does-not-change-element-ids:
assumes es @ [Deliver (i , Delete n)] prefix of j
and apply-operations es = Some xs1
and apply-operations (es @ [Deliver (i , Delete n)]) = Some xs2
shows element-ids xs1 = element-ids xs2

proof −
have indices es = indices (es @ [Deliver (i , Delete n)])

by simp
then show ?thesis

by (metis (no-types) assms prefix-of-appendD rga.apply-opers-idx-elems rga-axioms)
qed

lemma (in rga) someone-inserted-id :
assumes es @ [Deliver (i , Insert (k , v , f) n)] prefix of j
and apply-operations es = Some xs1
and apply-operations (es @ [Deliver (i , Insert (k , v , f) n)]) = Some xs2
and a ∈ element-ids xs2
and a 6= k
shows a ∈ element-ids xs1

using assms apply-opers-idx-elems by auto

lemma (in rga) deliver-insert-exists:
assumes es prefix of j

and apply-operations es = Some xs
and a ∈ element-ids xs

shows ∃ i v f n. Deliver (i , Insert (a, v , f) n) ∈ set es
using assms unfolding element-ids-def
proof(induction es arbitrary : xs rule: rev-induct , clarsimp)

case (snoc x xs ys) thus ?case
proof (cases x)

case (Broadcast e) thus ?thesis
using snoc by(clarsimp, metis image-eqI prefix-of-appendD prod .sel(1))

next
case (Deliver e)
moreover then obtain xs ′ where ∗: apply-operations xs = Some xs ′

using snoc by fastforce
moreover obtain k v where ∗∗: e = (k , v) by force
ultimately show ?thesis

using assms snoc proof (cases v)
case (Insert el -) thus ?thesis

using snoc Deliver ∗ ∗∗
apply (cases el ; cases fst el = a; clarsimp)
apply (blast , metis (no-types, lifting) element-ids-def prefix-of-appendD set-map snoc.prems(2)

snoc.prems(3) someone-inserted-id)
done

next
case (Delete -) thus ?thesis

using snoc Deliver ∗∗ apply clarsimp
apply(drule prefix-of-appendD , clarsimp simp add : bind-eq-Some-conv interp-msg-def)
apply(metis delete-preserve-indices image-eqI prod .sel(1))
done

29

qed
qed

qed

lemma (in rga) insert-in-apply-set :
assumes es @ [Deliver (i , Insert e (Some a))] prefix of j

and Deliver (i ′, Insert e ′ n) ∈ set es
and apply-operations es = Some s

shows fst e ′ ∈ element-ids s
using assms apply-opers-idx-elems idx-in-elem-inserted prefix-of-appendD by blast

lemma (in rga) insert-msg-id :
assumes Broadcast (i , Insert e n) ∈ set (history j)
shows fst e = i

proof −
obtain state where 1 : valid-rga-msg state (i , Insert e n)

using assms broadcast-is-valid by blast
thus fst e = i

by(clarsimp simp add : valid-rga-msg-def split : option.split-asm)
qed

lemma (in rga) allowed-insert :
assumes Broadcast (i , Insert e n) ∈ set (history j)
shows n = None ∨ (∃ i ′ e ′ n ′. n = Some (fst e ′) ∧ Deliver (i ′, Insert e ′ n ′) @j Broadcast (i , Insert

e n))
proof −

obtain pre where 1 : pre @ [Broadcast (i , Insert e n)] prefix of j
using assms events-before-exist by blast

from this obtain state where 2 : apply-operations pre = Some state and 3 : valid-rga-msg state (i ,
Insert e n)

using broadcast-only-valid-msgs by blast
show n = None ∨ (∃ i ′ e ′ n ′. n = Some (fst e ′) ∧ Deliver (i ′, Insert e ′ n ′) @j Broadcast (i , Insert e

n))
proof(cases n)

fix a
assume 4 : n = Some a
hence a ∈ element-ids state and 5 : fst e = i

using 3 by(clarsimp simp add : valid-rga-msg-def)+
from this have ∃ i ′ v ′ f ′ n ′. Deliver (i ′, Insert (a, v ′, f ′) n ′) ∈ set pre

using deliver-insert-exists 2 1 by blast
thus n = None ∨ (∃ i ′ e ′ n ′. n = Some (fst e ′) ∧ Deliver (i ′, Insert e ′ n ′) @j Broadcast (i , Insert

e n))
using events-in-local-order 1 4 5 by(metis fst-conv)

qed simp
qed

lemma (in rga) allowed-delete:
assumes Broadcast (i , Delete x) ∈ set (history j)
shows ∃ i ′ n ′ v b. Deliver (i ′, Insert (x , v , b) n ′) @j Broadcast (i , Delete x)

proof −
obtain pre where 1 : pre @ [Broadcast (i , Delete x)] prefix of j

using assms events-before-exist by blast
from this obtain state where 2 : apply-operations pre = Some state

and valid-rga-msg state (i , Delete x)
using broadcast-only-valid-msgs by blast

hence x ∈ element-ids state
using apply-opers-idx-elems by(simp add : valid-rga-msg-def)

hence ∃ i ′ v ′ f ′ n ′. Deliver (i ′, Insert (x , v ′, f ′) n ′) ∈ set pre

30

using deliver-insert-exists 1 2 by blast
thus ∃ i ′ n ′ v b. Deliver (i ′, Insert (x , v , b) n ′) @j Broadcast (i , Delete x)

using events-in-local-order 1 by blast
qed

lemma (in rga) insert-id-unique:
assumes fst e1 = fst e2
and Broadcast (i1 , Insert e1 n1) ∈ set (history i)
and Broadcast (i2 , Insert e2 n2) ∈ set (history j)
shows Insert e1 n1 = Insert e2 n2

using assms insert-msg-id msg-id-unique Pair-inject fst-conv by metis

lemma (in rga) allowed-delete-deliver :
assumes Deliver (i , Delete x) ∈ set (history j)

shows ∃ i ′ n ′ v b. Deliver (i ′, Insert (x , v , b) n ′) @j Deliver (i , Delete x)
using assms by (meson allowed-delete bot-least causal-broadcast delivery-has-a-cause insert-subset)

lemma (in rga) allowed-delete-deliver-in-set :
assumes (es@[Deliver (i , Delete m)]) prefix of j
shows ∃ i ′ n v b. Deliver (i ′, Insert (m, v , b) n) ∈ set es

by(metis (no-types, lifting) Un-insert-right insert-iff list .simps(15) assms
local-order-prefix-closed-last rga.allowed-delete-deliver rga-axioms set-append subsetCE prefix-to-carriers)

lemma (in rga) allowed-insert-deliver :
assumes Deliver (i , Insert e n) ∈ set (history j)
shows n = None ∨ (∃ i ′ n ′ n ′′ v b. n = Some n ′ ∧ Deliver (i ′, Insert (n ′, v , b) n ′′) @j Deliver (i ,

Insert e n))
proof −

obtain ja where 1 : Broadcast (i , Insert e n) ∈ set (history ja)
using assms delivery-has-a-cause by blast

show n = None ∨ (∃ i ′ n ′ n ′′ v b. n = Some n ′ ∧ Deliver (i ′, Insert (n ′, v , b) n ′′) @j Deliver (i ,
Insert e n))

proof(cases n)
fix a
assume 3 : n = Some a
from this obtain i ′ e ′ n ′ where 4 : Some a = Some (fst e ′) and

2 : Deliver (i ′, Insert e ′ n ′) @ja Broadcast (i , Insert e (Some a))
using allowed-insert 1 by blast

hence Deliver (i ′, Insert e ′ n ′) ∈ set (history ja) and Broadcast (i , Insert e (Some a)) ∈ set (history
ja)

using local-order-carrier-closed by simp+
from this obtain jaa where Broadcast (i , Insert e (Some a)) ∈ set (history jaa)

using delivery-has-a-cause by simp
have ∃ i ′ n ′ n ′′ v b. n = Some n ′ ∧ Deliver (i ′, Insert (n ′, v , b) n ′′) @j Deliver (i , Insert e n)

using 2 3 4 by(metis assms causal-broadcast prod .collapse)
thus n = None ∨ (∃ i ′ n ′ n ′′ v b. n = Some n ′ ∧ Deliver (i ′, Insert (n ′, v , b) n ′′) @j Deliver (i ,

Insert e n))
by auto

qed simp
qed

lemma (in rga) allowed-insert-deliver-in-set :
assumes (es@[Deliver (i , Insert e m)]) prefix of j
shows m = None ∨ (∃ i ′ m ′ n v b. m = Some m ′ ∧ Deliver (i ′, Insert (m ′, v , b) n) ∈ set es)

by(metis assms Un-insert-right insert-subset list .simps(15) set-append prefix-to-carriers
allowed-insert-deliver local-order-prefix-closed-last)

lemma (in rga) Insert-no-failure:

31

assumes es @ [Deliver (i , Insert e n)] prefix of j
and apply-operations es = Some s

shows ∃ ys. insert s e n = Some ys
by(metis (no-types, lifting) element-ids-def allowed-insert-deliver-in-set assms fst-conv

insert-in-apply-set insert-no-failure set-map)

lemma (in rga) delete-no-failure:
assumes es @ [Deliver (i , Delete n)] prefix of j

and apply-operations es = Some s
shows ∃ ys. delete s n = Some ys

proof −
obtain i ′ na v b where 1 : Deliver (i ′, Insert (n, v , b) na) ∈ set es

using assms allowed-delete-deliver-in-set by blast
also have fst (n, v , b) ∈ set (indices es)

using assms idx-in-elem-inserted calculation by blast
from this assms and 1 show ∃ ys. delete s n = Some ys

apply −
apply(rule delete-no-failure)
apply(metis apply-opers-idx-elems element-ids-def prefix-of-appendD prod .sel(1) set-map)
done

qed

lemma (in rga) Insert-equal :
assumes fst e1 = fst e2

and Broadcast (i1 , Insert e1 n1) ∈ set (history i)
and Broadcast (i2 , Insert e2 n2) ∈ set (history j)

shows Insert e1 n1 = Insert e2 n2
using insert-id-unique assms by simp

lemma (in rga) same-insert :
assumes fst e1 = fst e2

and xs prefix of i
and (i1 , Insert e1 n1) ∈ set (node-deliver-messages xs)
and (i2 , Insert e2 n2) ∈ set (node-deliver-messages xs)

shows Insert e1 n1 = Insert e2 n2
proof −

have Deliver (i1 , Insert e1 n1) ∈ set (history i)
using assms by(auto simp add : node-deliver-messages-def prefix-msg-in-history)

from this obtain j where 1 : Broadcast (i1 , Insert e1 n1) ∈ set (history j)
using delivery-has-a-cause by blast

have Deliver (i2 , Insert e2 n2) ∈ set (history i)
using assms by(auto simp add : node-deliver-messages-def prefix-msg-in-history)

from this obtain k where 2 : Broadcast (i2 , Insert e2 n2) ∈ set (history k)
using delivery-has-a-cause by blast

show Insert e1 n1 = Insert e2 n2
by(rule Insert-equal ; force simp add : assms intro: 1 2)

qed

lemma (in rga) insert-commute-assms:
assumes {Deliver (i , Insert e n), Deliver (i ′, Insert e ′ n ′)} ⊆ set (history j)

and hb.concurrent (i , Insert e n) (i ′, Insert e ′ n ′)
shows n = None ∨ n 6= Some (fst e ′)

using assms
apply(clarsimp simp: hb.concurrent-def)
apply(cases e ′)
apply clarsimp
apply(frule delivery-has-a-cause)
apply(frule delivery-has-a-cause, clarsimp)

32

apply(frule allowed-insert)
apply clarsimp
apply(metis Insert-equal delivery-has-a-cause fst-conv hb.intros(2) insert-subset

local-order-carrier-closed insert-msg-id)
done

lemma subset-reorder :
assumes {a, b} ⊆ c
shows {b, a} ⊆ c

using assms by simp

lemma (in rga) Insert-Insert-concurrent :
assumes {Deliver (i , Insert e k), Deliver (i ′, Insert e ′ (Some m))} ⊆ set (history j)

and hb.concurrent (i , Insert e k) (i ′, Insert e ′ (Some m))
shows fst e 6= m

by(metis assms subset-reorder hb.concurrent-comm insert-commute-assms option.simps(3))

lemma (in rga) insert-valid-assms:
assumes Deliver (i , Insert e n) ∈ set (history j)

shows n = None ∨ n 6= Some (fst e)
using assms by(meson allowed-insert-deliver hb.concurrent-def hb.less-asym insert-subset

local-order-carrier-closed rga.insert-commute-assms rga-axioms)

lemma (in rga) Insert-Delete-concurrent :
assumes {Deliver (i , Insert e n), Deliver (i ′, Delete n ′)} ⊆ set (history j)

and hb.concurrent (i , Insert e n) (i ′, Delete n ′)
shows n ′ 6= fst e

by (metis assms Insert-equal allowed-delete delivery-has-a-cause fst-conv hb.concurrent-def
hb.intros(2) insert-subset local-order-carrier-closed rga.insert-msg-id rga-axioms)

lemma (in rga) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)

proof −
have

∧
x y . {x , y} ⊆ set (node-deliver-messages xs) =⇒ hb.concurrent x y =⇒ interp-msg x B

interp-msg y = interp-msg y B interp-msg x
proof

fix x y ii
assume {x , y} ⊆ set (node-deliver-messages xs)

and C : hb.concurrent x y
hence X : x ∈ set (node-deliver-messages xs) and Y : y ∈ set (node-deliver-messages xs)

by auto
obtain x1 x2 y1 y2 where 1 : x = (x1 , x2) and 2 : y = (y1 , y2)

by fastforce
have (interp-msg (x1 , x2) B interp-msg (y1 , y2)) ii = (interp-msg (y1 , y2) B interp-msg (x1 , x2))

ii
proof(cases x2 ; cases y2)

fix ix1 ix2 iy1 iy2
assume X2 : x2 = Insert ix1 ix2 and Y2 : y2 = Insert iy1 iy2
show (interp-msg (x1 , x2) B interp-msg (y1 , y2)) ii = (interp-msg (y1 , y2) B interp-msg (x1 ,

x2)) ii
proof(cases fst ix1 = fst iy1)

assume fst ix1 = fst iy1
hence Insert ix1 ix2 = Insert iy1 iy2

apply(rule same-insert)
using 1 2 X Y X2 Y2 assms apply auto
done

hence ix1 = iy1 and ix2 = iy2

33

by auto
from this and X2 Y2 show (interp-msg (x1 , x2) B interp-msg (y1 , y2)) ii = (interp-msg (y1 ,

y2) B interp-msg (x1 , x2)) ii
by(clarsimp simp add : kleisli-def interp-msg-def)

next
assume NEQ : fst ix1 6= fst iy1
have ix2 = None ∨ ix2 6= Some (fst iy1)

apply(rule insert-commute-assms)
using prefix-msg-in-history [OF assms] X Y X2 Y2 1 2
apply(clarsimp, blast)

using C 1 2 X2 Y2 apply blast
done

also have iy2 = None ∨ iy2 6= Some (fst ix1)
apply(rule insert-commute-assms)
using prefix-msg-in-history [OF assms] X Y X2 Y2 1 2
apply(clarsimp, blast)

using 1 2 C X2 Y2 apply blast
done

ultimately have insert ii ix1 ix2 >>= (λx . insert x iy1 iy2) = insert ii iy1 iy2 >>= (λx . insert x
ix1 ix2)

using NEQ insert-commutes by blast
thus (interp-msg (x1 , x2) B interp-msg (y1 , y2)) ii = (interp-msg (y1 , y2) B interp-msg (x1 ,

x2)) ii
by(clarsimp simp add : interp-msg-def X2 Y2 kleisli-def)

qed
next

fix ix1 ix2 yd
assume X2 : x2 = Insert ix1 ix2 and Y2 : y2 = Delete yd

thm insert-delete-commute
thm Insert-Delete-concurrent

have hb.concurrent (x1 , Insert ix1 ix2) (y1 , Delete yd)
using C X2 Y2 1 2 by simp

also have {Deliver (x1 , Insert ix1 ix2), Deliver (y1 , Delete yd)} ⊆ set (history i)
using prefix-msg-in-history assms X2 Y2 X Y 1 2 by blast

ultimately have yd 6= fst ix1
apply −
apply(rule Insert-Delete-concurrent ; force)
done

hence insert ii ix1 ix2 >>= (λx . delete x yd) = delete ii yd >>= (λx . insert x ix1 ix2)
by(rule insert-delete-commute)

thus (interp-msg (x1 , x2) B interp-msg (y1 , y2)) ii = (interp-msg (y1 , y2) B interp-msg (x1 ,
x2)) ii

by(clarsimp simp add : interp-msg-def kleisli-def X2 Y2)
next

fix xd iy1 iy2
assume X2 : x2 = Delete xd and Y2 : y2 = Insert iy1 iy2
have hb.concurrent (x1 , Delete xd) (y1 , Insert iy1 iy2)

using C X2 Y2 1 2 by simp
also have {Deliver (x1 , Delete xd), Deliver (y1 , Insert iy1 iy2)} ⊆ set (history i)

using prefix-msg-in-history assms X2 Y2 X Y 1 2 by blast
ultimately have xd 6= fst iy1

apply −
apply(rule Insert-Delete-concurrent ; force)
done

hence delete ii xd >>= (λx . insert x iy1 iy2) = insert ii iy1 iy2 >>= (λx . delete x xd)
by(rule insert-delete-commute[symmetric])

thus (interp-msg (x1 , x2) B interp-msg (y1 , y2)) ii = (interp-msg (y1 , y2) B interp-msg (x1 ,
x2)) ii

34

by(clarsimp simp add : interp-msg-def kleisli-def X2 Y2)
next

fix xd yd
assume X2 : x2 = Delete xd and Y2 : y2 = Delete yd
have delete ii xd >>= (λx . delete x yd) = delete ii yd >>= (λx . delete x xd)

by(rule delete-commutes)
thus (interp-msg (x1 , x2) B interp-msg (y1 , y2)) ii = (interp-msg (y1 , y2) B interp-msg (x1 ,

x2)) ii
by(clarsimp simp add : interp-msg-def kleisli-def X2 Y2)

qed
thus (interp-msg x B interp-msg y) ii = (interp-msg y B interp-msg x) ii

using 1 2 by auto
qed
thus hb.concurrent-ops-commute (node-deliver-messages xs)

by(auto simp add : hb.concurrent-ops-commute-def)
qed

corollary (in rga) concurrent-operations-commute ′:
shows hb.concurrent-ops-commute (node-deliver-messages (history i))

by (meson concurrent-operations-commute append .right-neutral prefix-of-node-history-def)

lemma (in rga) apply-operations-never-fails:
assumes xs prefix of i
shows apply-operations xs 6= None

using assms proof(induction xs rule: rev-induct)
show apply-operations [] 6= None

by clarsimp
next

fix x xs
assume 1 : xs prefix of i =⇒ apply-operations xs 6= None

and 2 : xs @ [x] prefix of i
hence 3 : xs prefix of i

by auto
show apply-operations (xs @ [x]) 6= None
proof(cases x)

fix b
assume x = Broadcast b
thus apply-operations (xs @ [x]) 6= None

using 1 3 by clarsimp
next

fix d
assume 4 : x = Deliver d
thus apply-operations (xs @ [x]) 6= None
proof(cases d ; clarify)

fix a b
assume 5 : x = Deliver (a, b)
show ∃ y . apply-operations (xs @ [Deliver (a, b)]) = Some y
proof(cases b; clarify)

fix aa aaa ba x12
assume 6 : b = Insert (aa, aaa, ba) x12
show ∃ y . apply-operations (xs @ [Deliver (a, Insert (aa, aaa, ba) x12)]) = Some y

apply(clarsimp simp add : 1 interp-msg-def split !: bind-splits)
apply(simp add : 1 3)

apply(rule rga.Insert-no-failure, rule rga-axioms)
using 4 5 6 2 apply force+
done

next
fix x2

35

assume 6 : b = Delete x2
show ∃ y . apply-operations (xs @ [Deliver (a, Delete x2)]) = Some y

apply(clarsimp simp add : interp-msg-def split !: bind-splits)
apply(simp add : 1 3)

apply(rule delete-no-failure)
using 4 5 6 2 apply force+
done

qed
qed

qed
qed

lemma (in rga) apply-operations-never-fails ′:
shows apply-operations (history i) 6= None

by(meson apply-operations-never-fails append .right-neutral prefix-of-node-history-def)

corollary (in rga) rga-convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
using assms by(auto simp add : apply-operations-def intro: hb.convergence-ext

concurrent-operations-commute node-deliver-messages-distinct hb-consistent-prefix)

5.7 Strong eventual consistency

context rga begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops.∃ xs i . xs prefix of i ∧ node-deliver-messages xs = ops []

proof(standard ; clarsimp)
fix xsa i
assume xsa prefix of i
thus hb.hb-consistent (node-deliver-messages xsa)

by(auto simp add : hb-consistent-prefix)
next

fix xsa i
assume xsa prefix of i
thus distinct (node-deliver-messages xsa)

by(auto simp add : node-deliver-messages-distinct)
next

fix xsa i
assume xsa prefix of i
thus hb.concurrent-ops-commute (node-deliver-messages xsa)

by(auto simp add : concurrent-operations-commute)
next

fix xs a b state xsa x
assume hb.apply-operations xs [] = Some state

and node-deliver-messages xsa = xs @ [(a, b)]
and xsa prefix of x

thus ∃ y . interp-msg (a, b) state = Some y
by(metis (no-types, lifting) apply-operations-def bind .bind-lunit not-None-eq

hb.apply-operations-Snoc kleisli-def apply-operations-never-fails interp-msg-def)
next

fix xs a b xsa x
assume node-deliver-messages xsa = xs @ [(a, b)]

and xsa prefix of x
thus ∃ xsa. Ex (op prefix of xsa) ∧ node-deliver-messages xsa = xs

36

using drop-last-message by blast
qed

end

interpretation trivial-rga-implementation: rga λx . []
by(standard , auto simp add : trivial-node-histories.history-order-def

trivial-node-histories.prefix-of-node-history-def)

end

6 Increment-Decrement Counter

The Increment-Decrement Counter is perhaps the simplest CRDT, and a paradigmatic example
of a replicated data structure with commutative operations.

theory
Counter

imports
Network

begin

datatype operation = Increment | Decrement

fun counter-op :: operation ⇒ int ⇀ int where
counter-op Increment x = Some (x + 1) |
counter-op Decrement x = Some (x − 1)

locale counter = network-with-ops - counter-op 0

lemma (in counter) counter-op x B counter-op y = counter-op y B counter-op x
by(case-tac x ; case-tac y ; auto simp add : kleisli-def)

lemma (in counter) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
using assms
apply(clarsimp simp: hb.concurrent-ops-commute-def)
apply(rename-tac a b x y)
apply(case-tac b; case-tac y ; force simp add : interp-msg-def kleisli-def)
done

corollary (in counter) counter-convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
using assms by(auto simp add : apply-operations-def intro: hb.convergence-ext

concurrent-operations-commute node-deliver-messages-distinct hb-consistent-prefix)

context counter begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i . xs prefix of i ∧ node-deliver-messages xs = ops 0
apply(standard ; clarsimp simp add : hb-consistent-prefix drop-last-message

node-deliver-messages-distinct concurrent-operations-commute)
apply(metis (full-types) interp-msg-def counter-op.elims)

using drop-last-message apply blast

37

done

end
end

7 Observed-Remove Set

The ORSet is a well-known CRDT for implementing replicated sets, supporting two operations:
the insertion and deletion of an arbitrary element in the shared set.

theory
ORSet

imports
Network

begin

datatype (′id , ′a) operation = Add ′id ′a | Rem ′id set ′a

type-synonym (′id , ′a) state = ′a ⇒ ′id set

definition op-elem :: (′id , ′a) operation ⇒ ′a where
op-elem oper ≡ case oper of Add i e ⇒ e | Rem is e ⇒ e

definition interpret-op :: (′id , ′a) operation ⇒ (′id , ′a) state ⇀ (′id , ′a) state (〈-〉 [0] 1000) where
interpret-op oper state ≡

let before = state (op-elem oper);
after = case oper of Add i e ⇒ before ∪ {i} | Rem is e ⇒ before − is

in Some (state ((op-elem oper) := after))

definition valid-behaviours :: (′id , ′a) state ⇒ ′id × (′id , ′a) operation ⇒ bool where
valid-behaviours state msg ≡

case msg of
(i , Add j e) ⇒ i = j |
(i , Rem is e) ⇒ is = state e

locale orset = network-with-constrained-ops - interpret-op λx . {} valid-behaviours

lemma (in orset) add-add-commute:
shows 〈Add i1 e1 〉 B 〈Add i2 e2 〉 = 〈Add i2 e2 〉 B 〈Add i1 e1 〉
by(auto simp add : interpret-op-def op-elem-def kleisli-def , fastforce)

lemma (in orset) add-rem-commute:
assumes i /∈ is
shows 〈Add i e1 〉 B 〈Rem is e2 〉 = 〈Rem is e2 〉 B 〈Add i e1 〉
using assms by(auto simp add : interpret-op-def kleisli-def op-elem-def , fastforce)

lemma (in orset) apply-operations-never-fails:
assumes xs prefix of i
shows apply-operations xs 6= None

using assms proof(induction xs rule: rev-induct , clarsimp)
case (snoc x xs) thus ?case
proof (cases x)

case (Broadcast e) thus ?thesis
using snoc by force

next
case (Deliver e) thus ?thesis

using snoc by (clarsimp, metis interpret-op-def interp-msg-def bind .bind-lunit prefix-of-appendD)
qed

38

qed

lemma (in orset) add-id-valid :
assumes xs prefix of j

and Deliver (i1 , Add i2 e) ∈ set xs
shows i1 = i2

proof −
have ∃ s. valid-behaviours s (i1 , Add i2 e)

using assms deliver-in-prefix-is-valid by blast
thus ?thesis

by(simp add : valid-behaviours-def)
qed

definition (in orset) added-ids :: (′id × (′id , ′b) operation) event list ⇒ ′b ⇒ ′id list where
added-ids es p ≡ List .map-filter (λx . case x of Deliver (i , Add j e) ⇒ if e = p then Some j else None
| - ⇒ None) es

lemma (in orset) [simp]:
shows added-ids [] e = []
by (auto simp: added-ids-def map-filter-def)

lemma (in orset) [simp]:
shows added-ids (xs @ ys) e = added-ids xs e @ added-ids ys e

by (auto simp: added-ids-def map-filter-append)

lemma (in orset) added-ids-Broadcast-collapse [simp]:
shows added-ids ([Broadcast e]) e ′ = []
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-ids-Deliver-Rem-collapse [simp]:
shows added-ids ([Deliver (i , Rem is e)]) e ′ = []
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-ids-Deliver-Add-diff-collapse [simp]:
shows e 6= e ′ =⇒ added-ids ([Deliver (i , Add j e)]) e ′ = []
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-ids-Deliver-Add-same-collapse [simp]:
shows added-ids ([Deliver (i , Add j e)]) e = [j]
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in orset) added-id-not-in-set :
assumes i1 /∈ set (added-ids [Deliver (i , Add i2 e)] e)
shows i1 6= i2
using assms by simp

lemma (in orset) apply-operations-added-ids:
assumes es prefix of j

and apply-operations es = Some f
shows f x ⊆ set (added-ids es x)

using assms proof (induct es arbitrary : f rule: rev-induct , force)
case (snoc x xs) thus ?case
proof (cases x , force)

case (Deliver e)
moreover obtain a b where e = (a, b) by force
ultimately show ?thesis

using snoc by(case-tac b; clarsimp simp: interp-msg-def split : bind-splits,
force split : if-split-asm simp add : op-elem-def interpret-op-def)

39

qed
qed

lemma (in orset) Deliver-added-ids:
assumes xs prefix of j

and i ∈ set (added-ids xs e)
shows Deliver (i , Add i e) ∈ set xs

using assms proof (induct xs rule: rev-induct , clarsimp)
case (snoc x xs) thus ?case
proof (cases x , force)

case (Deliver e ′)
moreover obtain a b where e ′ = (a, b) by force
ultimately show ?thesis

using snoc apply (case-tac b; clarsimp)
apply (metis added-ids-Deliver-Add-diff-collapse added-ids-Deliver-Add-same-collapse

empty-iff list .set(1) set-ConsD add-id-valid in-set-conv-decomp prefix-of-appendD)
apply force
done

qed
qed

lemma (in orset) Broadcast-Deliver-prefix-closed :
assumes xs @ [Broadcast (r , Rem ix e)] prefix of j

and i ∈ ix
shows Deliver (i , Add i e) ∈ set xs

proof −
obtain y where apply-operations xs = Some y

using assms broadcast-only-valid-msgs by blast
moreover hence ix = y e
by (metis (mono-tags, lifting) assms(1) broadcast-only-valid-msgs operation.case(2) option.simps(1)

valid-behaviours-def case-prodD)
ultimately show ?thesis

using assms Deliver-added-ids apply-operations-added-ids by blast
qed

lemma (in orset) Broadcast-Deliver-prefix-closed2 :
assumes xs prefix of j

and Broadcast (r , Rem ix e) ∈ set xs
and i ∈ ix

shows Deliver (i , Add i e) ∈ set xs
using assms Broadcast-Deliver-prefix-closed by (induction xs rule: rev-induct ; force)

lemma (in orset) concurrent-add-remove-independent-technical :
assumes i ∈ is

and xs prefix of j
and (i , Add i e) ∈ set (node-deliver-messages xs) and (ir , Rem is e) ∈ set (node-deliver-messages

xs)
shows hb (i , Add i e) (ir , Rem is e)

proof −
obtain pre k where pre@[Broadcast (ir , Rem is e)] prefix of k

using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast
moreover hence Deliver (i , Add i e) ∈ set pre

using Broadcast-Deliver-prefix-closed assms(1) by auto
ultimately show ?thesis

using hb.intros(2) events-in-local-order by blast
qed

lemma (in orset) Deliver-Add-same-id-same-message:

40

assumes Deliver (i , Add i e1) ∈ set (history j) and Deliver (i , Add i e2) ∈ set (history j)
shows e1 = e2

proof −
obtain pre1 pre2 k1 k2 where ∗: pre1 @[Broadcast (i , Add i e1)] prefix of k1 pre2 @[Broadcast (i , Add

i e2)] prefix of k2
using assms delivery-has-a-cause events-before-exist by meson

moreover hence Broadcast (i , Add i e1) ∈ set (history k1) Broadcast (i , Add i e2) ∈ set (history
k2)

using node-histories.prefix-to-carriers node-histories-axioms by force+
ultimately show ?thesis

using msg-id-unique by fastforce
qed

lemma (in orset) ids-imply-messages-same:
assumes i ∈ is

and xs prefix of j
and (i , Add i e1) ∈ set (node-deliver-messages xs) and (ir , Rem is e2) ∈ set (node-deliver-messages

xs)
shows e1 = e2

proof −
obtain pre k where pre@[Broadcast (ir , Rem is e2)] prefix of k

using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast
moreover hence Deliver (i , Add i e2) ∈ set pre

using Broadcast-Deliver-prefix-closed assms(1) by blast
moreover have Deliver (i , Add i e1) ∈ set (history j)

using assms(2) assms(3) prefix-msg-in-history by blast
ultimately show ?thesis

by (metis fst-conv msg-id-unique network .delivery-has-a-cause network-axioms operation.inject(1)
prefix-elem-to-carriers prefix-of-appendD prod .inject)

qed

corollary (in orset) concurrent-add-remove-independent :
assumes ¬ hb (i , Add i e1) (ir , Rem is e2) and ¬ hb (ir , Rem is e2) (i , Add i e1)

and xs prefix of j
and (i , Add i e1) ∈ set (node-deliver-messages xs) and (ir , Rem is e2) ∈ set (node-deliver-messages

xs)
shows i /∈ is
using assms ids-imply-messages-same concurrent-add-remove-independent-technical by fastforce

lemma (in orset) rem-rem-commute:
shows 〈Rem i1 e1 〉 B 〈Rem i2 e2 〉 = 〈Rem i2 e2 〉 B 〈Rem i1 e1 〉
by(unfold interpret-op-def op-elem-def kleisli-def , fastforce)

lemma (in orset) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)

proof −
{ fix a b x y

assume (a, b) ∈ set (node-deliver-messages xs)
(x , y) ∈ set (node-deliver-messages xs)
hb.concurrent (a, b) (x , y)

hence interp-msg (a, b) B interp-msg (x , y) = interp-msg (x , y) B interp-msg (a, b)
apply(unfold interp-msg-def , case-tac b; case-tac y ; simp add : add-add-commute rem-rem-commute

hb.concurrent-def)
apply (metis add-id-valid add-rem-commute assms concurrent-add-remove-independent hb.concurrentD1

hb.concurrentD2 prefix-contains-msg)+
done

} thus ?thesis

41

by(fastforce simp: hb.concurrent-ops-commute-def)
qed

theorem (in orset) convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i and ys prefix of j
shows apply-operations xs = apply-operations ys

using assms by(auto simp add : apply-operations-def intro: hb.convergence-ext concurrent-operations-commute
node-deliver-messages-distinct hb-consistent-prefix)

context orset begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops.∃ xs i . xs prefix of i ∧ node-deliver-messages xs = ops λx .{}
apply(standard ; clarsimp simp add : hb-consistent-prefix node-deliver-messages-distinct

concurrent-operations-commute)
apply(metis (no-types, lifting) apply-operations-def bind .bind-lunit not-None-eq

hb.apply-operations-Snoc kleisli-def apply-operations-never-fails interp-msg-def)
using drop-last-message apply blast

done

end
end

References

[1] P. S. Almeida, A. Shoker, and C. Baquero. Efficient state-based CRDTs by delta-mutation.
In International Conference on Networked Systems (NETYS), May 2015.

[2] C. Baquero, P. S. Almeida, and A. Shoker. Making operation-based CRDTs operation-
based. In 14th IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS), pages 126–140, June 2014.

[3] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott. Riak DT map: a composable, con-
vergent replicated dictionary. In 1st Workshop on Principles and Practice of Eventual
Consistency (PaPEC), Apr. 2014.

[4] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed
Programming. Springer, second edition, Feb. 2011.

[5] J. Day-Richter. What’s different about the new Google Docs: Making collaboration fast,
Sept. 2010.

[6] A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving correctness of transformation
functions in real-time groupware. In 8th European Conference on Computer-Supported
Cooperative Work (ECSCW), pages 277–293, Sept. 2003.

[7] A. Imine, M. Rusinowitch, G. Oster, and P. Molli. Formal design and verification of oper-
ational transformation algorithms for copies convergence. Theoretical Computer Science,
351(2):167–183, Feb. 2006.

[8] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558–565, July 1978.

[9] G. Oster, P. Urso, P. Molli, and A. Imine. Proving correctness of transformation functions
in collaborative editing systems. Technical Report RR-5795, Dec. 2005.

42

[10] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract data types: Building blocks
for collaborative applications. Journal of Parallel and Distributed Computing, 71(3):354–
368, 2011.

[11] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of conver-
gent and commutative replicated data types. Technical Report 7506, INRIA, 2011.

[12] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data types.
In 13th International Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS), pages 386–400, Oct. 2011.

[13] M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle framework. In Theorem Proving
in Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada,
August 18-21, 2008. Proceedings, pages 33–38, 2008.

43

	Introduction
	Technical Lemmas
	Kleisli arrow composition
	Lemmas about sets
	Lemmas about list

	Strong Eventual Consistency
	Concurrent operations
	Happens-before consistency
	Apply operations
	Concurrent operations commute
	Abstract convergence theorem
	Convergence and progress

	Axiomatic network models
	Node histories
	Asynchronous broadcast networks
	Causal networks
	Dummy network models

	Replicated Growable Array
	Insert and delete operations
	Well-definedness of insert and delete
	Preservation of element indices
	Commutativity of concurrent operations
	Alternative definition of insert
	Network
	Strong eventual consistency

	Increment-Decrement Counter
	Observed-Remove Set

