A framework for establishing Strong Eventual Consistency for Conflict-free Replicated Data types

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, Alastair R. Beresford

July 7, 2017

Abstract

In this work, we focus on the correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual consistency guarantees for replicated data. We develop a modular and reusable framework for verifying the correctness of CRDT algorithms. We avoid correctness issues that have dogged previous mechanised proofs in this area by including a network model in our formalisation, and proving that our theorems hold in all possible network behaviours. Our axiomatic network model is a standard abstraction that accurately reflects the behaviour of real-world computer networks. Moreover, we identify an abstract convergence theorem, a property of order relations, which provides a formal definition of strong eventual consistency. We then obtain the first machine-checked correctness theorems for three concrete CRDTs: the Replicated Growable Array, the Observed-Remove Set, and an Increment-Decrement Counter.

Contents

1 Introduction 2
2 Technical Lemmas 2
2.1 Kleisli arrow composition 3
2.2 Lemmas about sets 3
2.3 Lemmas about list 3
3 Strong Eventual Consistency 6
3.1 Concurrent operations 6
3.2 Happens-before consistency 7
3.3 Apply operations 9
3.4 Concurrent operations commute 9
3.5 Abstract convergence theorem 10
3.6 Convergence and progress 11
4 Axiomatic network models 12
4.1 Node histories 12
4.2 Asynchronous broadcast networks 15
4.3 Causal networks 16
4.4 Dummy network models 22
5 Replicated Growable Array 22
5.1 Insert and delete operations 22
5.2 Well-definedness of insert and delete 23
5.3 Preservation of element indices 24
5.4 Commutativity of concurrent operations 24
5.5 Alternative definition of insert 25
5.6 Network 27
5.7 Strong eventual consistency 36
6 Increment-Decrement Counter 37
7 Observed-Remove Set 38

1 Introduction

Strong eventual consistency (SEC) is a model that strikes a compromise between strong and eventual consistency [12]. Informally, it guarantees that whenever two nodes have received the same set of messages - possibly in a different order - their view of the shared state is identical, and any conflicting concurrent updates must be merged automatically. Large-scale deployments of SEC algorithms include datacentre-based applications using the Riak distributed database [3], and collaborative editing applications such as Google Docs [5]. Unlike strong consistency models, it is possible to implement SEC in decentralised settings without any central server or leader, and it allows local execution at each node to proceed without waiting for communication with other nodes. However, algorithms for achieving decentralised SEC are currently poorly understood: several such algorithms, published in peer-reviewed venues, were subsequently shown to violate their supposed guarantees $[6,7,9]$. Informal reasoning has repeatedly produced plausible-looking but incorrect algorithms, and there have even been examples of mechanised formal proofs of SEC algorithm correctness later being shown to be flawed. These mechanised proofs failed because, in formalising the algorithm, they made false assumptions about the execution environment.
In this work we use the Isabelle/HOL proof assistant [13] to create a framework for reliably reasoning about the correctness of a particular class of decentralised replication algorithms. We do this by formalising not only the replication algorithms, but also the network in which they execute, allowing us to prove that the algorithm's assumptions hold in all possible network behaviours. We model the network using the axioms of asynchronous unreliable causal broadcast, a well-understood abstraction that is commonly implemented by network protocols, and which can run on almost any computer network, including large-scale networks that delay, reorder, or drop messages, and in which nodes may fail.
We then use this framework to produce machine-checked proofs of correctness for three ConflictFree Replicated Data Types (CRDTs), a class of replication algorithms that ensure strong eventual consistency [11, 12]. To our knowledge, this is the first machine-checked verification of SEC algorithms that explicitly models the network and reasons about all possible network behaviours. The framework is modular and reusable, making it easy to formulate proofs for new algorithms. We provide the first mechanised proofs of the Replicated Growable Array, the operation-based Observed-Remove Set, and the operation-based counter CRDT.

2 Technical Lemmas

This section contains a list of helper definitions and lemmas about sets, lists and the option monad.

```
theory
    Util
imports
    Main
    ~~/src/HOL/Library/Monad-Syntax
```


begin

2.1 Kleisli arrow composition

definition kleisli $::\left({ }^{\prime} b \Rightarrow\right.$ 'b option $) \Rightarrow\left(' b \Rightarrow '^{\prime} b\right.$ option $) \Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} b\right.$ option $)$ (infixr $\left.\triangleright 65\right)$ where $f \triangleright g \equiv \lambda x .(f x \gg=(\lambda y \cdot g y))$
lemma kleisli-comm-cong:
assumes $x \triangleright y=y \triangleright x$
shows $z \triangleright x \triangleright y=z \triangleright y \triangleright x$
using assms by (clarsimp simp add: kleisli-def)
lemma kleisli-assoc:
shows $(z \triangleright x) \triangleright y=z \triangleright(x \triangleright y)$
by (auto simp add: kleisli-def)

2.2 Lemmas about sets

lemma distinct-set-notin [dest]:
assumes distinct ($x \# x s$)
shows $x \notin$ set $x s$
using assms by(induction xs, auto)
lemma set-membership-equality-technicalD [dest]:
assumes $\{x\} \cup($ set $x s)=\{y\} \cup($ set $y s)$
shows $x=y \vee y \in$ set $x s$
using assms by (induction xs, auto)
lemma set-equality-technical:
assumes $\{x\} \cup($ set $x s)=\{y\} \cup($ set $y s)$
and $x \notin$ set $x s$
and $y \notin$ set $y s$
and $y \in$ set $x s$
shows $\{x\} \cup($ set $x s-\{y\})=$ set $y s$
using assms by (induction xs) auto
lemma set-elem-nth:
assumes $x \in$ set $x s$
shows $\exists m . m<$ length $x s \wedge x s!m=x$
using assms by(induction xs, simp) (meson in-set-conv-nth)

2.3 Lemmas about list

lemma list-nil-or-snoc:
shows $x s=[] \vee(\exists y$ ys. $x s=y s @[y])$
by (induction xs, auto)
lemma suffix-eq-distinct-list:
assumes distinct xs
and $y s @ s u f 1=x s$
and $y s @ s u f 2=x s$
shows suf1 $=$ suf2
using assms by (induction xs arbitrary: suf1 suf2 rule: rev-induct, simp) (metis append-eq-append-conv)
lemma pre-suf-eq-distinct-list:
assumes distinct xs
and $y s \neq[]$
and pre1@ys@suf1 = xs

```
        and pre2@ys@suf2 = xs
    shows pre1 = pre2 ^ suf1 = suf2
using assms
    apply(induction xs arbitrary: pre1 pre2 ys, simp)
    apply(case-tac pre1; case-tac pre2; clarify)
    apply(metis suffix-eq-distinct-list append-Nil)
apply(metis Un-iff append-eq-Cons-conv distinct.simps(2) list.set-intros(1) set-append suffix-eq-distinct-list)
apply(metis Un-iff append-eq-Cons-conv distinct.simps(2) list.set-intros(1) set-append suffix-eq-distinct-list)
    apply(metis distinct.simps(2) hd-append2 list.sel(1) list.sel(3) list.simps(3) tl-append2)
    done
lemma list-head-unaffected:
    assumes hd (x@ [y,z])=v
        shows hd (x @ [y ]) =v
    using assms by (metis hd-append list.sel(1))
lemma list-head-butlast:
    assumes hd xs =v
    and length xs > 1
    shows hd (butlast xs)=v
    using assms by (metis hd-conv-nth length-butlast length-greater-0-conv less-trans nth-butlast zero-less-diff
zero-less-one)
lemma list-head-length-one:
    assumes hd xs =x
        and length xs = 1
    shows xs = [x]
    using assms by(metis One-nat-def Suc-length-conv hd-Cons-tl length-0-conv list.sel(3))
lemma list-two-at-end:
    assumes length xs > 1
    shows \existsx\mp@subsup{s}{}{\prime}xy.xs=x\mp@subsup{s}{}{\prime}@[x,y]
    using assms
    apply(induction xs rule: rev-induct, simp)
    apply(case-tac length xs = 1, simp)
    apply (metis append-self-conv2 length-0-conv length-Suc-conv)
    apply(rule-tac x=butlast xs in exI, rule-tac x=last xs in exI, simp)
    done
lemma list-nth-split-technical:
    assumes m< length cs
        and cs \not= []
    shows \existsxs ys.cs = xs@(cs!m)#ys
    using assms
    apply(induction m arbitrary:cs)
    apply(meson in-set-conv-decomp nth-mem)
    apply(metis in-set-conv-decomp length-list-update set-swap set-update-memI)
    done
lemma list-nth-split:
    assumes m<length cs
        and n<m
        and 1 < length cs
    shows \existsxs ys zs.cs = xs@(cs!n)#ys@(cs!m)#zs
using assms proof(induction n arbitrary: cs m)
    case 0 thus ?case
    apply(case-tac cs; clarsimp)
    apply(rule-tac x=[] in exI, clarsimp)
```

```
    apply(rule list-nth-split-technical, simp, force)
    done
next
    case (Suc n)
    thus ?case
    proof (cases cs)
        case Nil
        then show ?thesis
            using Suc.prems by auto
    next
        case (Cons a as)
        hence m-1 < length as n < m-1
        using Suc by force+
        then obtain xs ys zs where as =xs@ as !n# ys @ as! (m-1) # zs
        using Suc by force
    thus ?thesis
        apply(rule-tac x=a#xs in exI)
        using Suc Cons apply force
        done
    qed
qed
lemma list-split-two-elems:
    assumes distinct cs
        and}x\in\mathrm{ set cs
        and}y\in\mathrm{ set cs
        and }x\not=
        shows \exists pre mid suf.cs = pre @ x # mid @ y# suf \vee cs = pre @ y # mid @ x # suf
proof -
    obtain xi yi where *: xi < length cs ^ x = cs!xi yi<length cs }\wedgey=cs!yi xi\not=y
        using set-elem-nth linorder-neqE-nat assms by metis
    thus ?thesis
        by (metis list-nth-split One-nat-def less-Suc-eq linorder-neqE-nat not-less-zero)
qed
lemma split-list-unique-prefix:
    assumes x fet xs
    shows \exists}\mathrm{ pre suf. xs = pre@ @ # suf ^( }\forally\in\mathrm{ set pre. }x\not=y
using assms proof(induction xs)
    case Nil thus ?case by clarsimp
next
    case (Cons y ys)
    then show ?case
        proof (cases y=x)
            case True
            then show ?thesis by force
        next
            case False
            then obtain pre suf where ys=pre @ x # suf ^(\forally\inset pre. }x\not=y
                using assms Cons by auto
            thus ?thesis
                using split-list-first by force
        qed
qed
lemma map-filter-append:
    shows List.map-filter P (xs @ ys) = List.map-filter P xs @ List.map-filter P ys
    by(auto simp add: List.map-filter-def)
```

end

3 Strong Eventual Consistency

In this section we formalise the notion of strong eventual consistency. We do not make any assumptions about networks or data structures; instead, we use an abstract model of operations that may be reordered, and we reason about the properties that those operations must satisfy. We then provide concrete implementations of that abstract model in later sections.

```
theory
    Convergence
imports
    Util
begin
```

The happens-before relation, as introduced by [8], captures causal dependencies between operations. It can be defined in terms of sending and receiving messages on a network. However, for now, we keep it abstract, our only restriction on the happens-before relation is that it must be a strict partial order, that is, it must be irreflexive and transitive, which implies that it is also antisymmetric. We describe the state of a node using an abstract type variable. To model state changes, we assume the existence of an interpretation function interp which lifts an operation into a state transformer - a function that either maps an old state to a new state, or fails.

```
locale happens-before \(=\) preorder \(h b\)-weak \(h b\)
    for \(h b\)-weak :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow\) bool (infix \(\left.\preceq 50\right)\)
    and \(h b::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\) bool \(\quad(\) infix \(\prec 50)+\)
    fixes interp :: ' \(a \Rightarrow\) ' \(b\) - 'b (<-> [0] 1000)
begin
```


3.1 Concurrent operations

We say that two operations x and y are concurrent, written $x \| y$, whenever one does not happen before the other: $\neg(x \prec y)$ and $\neg(y \prec x)$.
definition concurrent :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow$ bool (infix $\| 50$) where
$s 1 \| s 2 \equiv \neg(s 1 \prec s 2) \wedge \neg(s 2 \prec s 1)$
lemma concurrentI [intro!]: $\neg(s 1 \prec s 2) \Longrightarrow \neg(s 2 \prec s 1) \Longrightarrow s 1 \| s 2$
by (auto simp: concurrent-def)
lemma concurrentD1 [dest]: s1 \| s2 $\Longrightarrow \neg(s 1 \prec s 2)$
by (auto simp: concurrent-def)
lemma concurrentD2 [dest]: s1 \| s2 $\Longrightarrow \neg(s 2 \prec s 1)$
by (auto simp: concurrent-def)
lemma concurrent-refl [intro!, simp]: $s \| s$
by (auto simp: concurrent-def)
lemma concurrent-comm: s1 || s2 $\longleftrightarrow s 2|\mid s 1$
by (auto simp: concurrent-def)
definition concurrent-set $::$ ' $a \Rightarrow$ 'a list \Rightarrow bool where
concurrent-set x xs $\equiv \forall y \in$ set $x s . x \| y$
lemma concurrent-set-empty [simp, intro!]:
concurrent-set x []

```
by (auto simp: concurrent-set-def)
lemma concurrent-set-ConsE [elim!]:
    assumes concurrent-set a (x#xs)
        and concurrent-set a xs \Longrightarrow concurrent x a \LongrightarrowG
    shows G
    using assms by (auto simp: concurrent-set-def)
lemma concurrent-set-ConsI [intro!]:
    concurrent-set a xs \Longrightarrow concurrent a x \Longrightarrow concurrent-set a (x#xs)
    by (auto simp: concurrent-set-def)
lemma concurrent-set-appendI [intro!]:
    concurrent-set a xs \Longrightarrow concurrent-set a ys \Longrightarrow concurrent-set a (xs@ys)
    by (auto simp: concurrent-set-def)
lemma concurrent-set-Cons-Snoc [simp]:
    concurrent-set a (xs@[x])= concurrent-set a (x#xs)
    by (auto simp: concurrent-set-def)
```


3.2 Happens-before consistency

The purpose of the happens-before relation is to require that some operations must be applied in a particular order, while allowing concurrent operations to be reordered with respect to each other. We assume that each node applies operations in some sequential order (a standard assumption for distributed algorithms), and so we can model the execution history of a node as a list of operations.
inductive $h b$-consistent $::$ 'a list \Rightarrow bool where
[intro!]: hb-consistent [] |
[intro!]: $\llbracket h b$-consistent $x s ; \forall x \in$ set $x s . \neg y \prec x \rrbracket \Longrightarrow h b$-consistent (xs @ [y])
As a result, whenever two operations x and y appear in a hb-consistent list, and $x \prec y$, then x must appear before y in the list. However, if $x \| y$, the operations can appear in the list in either order.

```
lemma ( }x\precy\vee\mathrm{ concurrent }xy)=(\negy\precx
    using less-asym by blast
lemma consistentI [intro!]:
    assumes hb-consistent (xs @ ys)
    and }\forallx\in\operatorname{set}(xs@ys).\negz\prec
    shows hb-consistent (xs @ ys @ [z])
    using assms hb-consistent.intros append-assoc by metis
inductive-cases hb-consistent-elim [elim]:
    hb-consistent []
    hb-consistent (xs@[y])
    hb-consistent (xs@ys)
    hb-consistent (xs@ys@[z])
inductive-cases hb-consistent-elim-gen:
    hb-consistent zs
lemma hb-consistent-append-D1 [dest]:
    assumes hb-consistent (xs @ ys)
    shows hb-consistent xs
    using assms by(induction ys arbitrary: xs rule: List.rev-induct) auto
```

lemma hb-consistent-append-D2 [dest]:
assumes hb-consistent (xs @ ys)
shows hb-consistent ys
using assms by(induction ys arbitrary: xs rule: List.rev-induct) fastforce +
lemma $h b$-consistent-append-elim-ConsD [elim]:
assumes hb-consistent ($y \# y s$)
shows hb-consistent ys
using assms hb-consistent-append-D2 by (metis append-Cons append-Nil)
lemma hb-consistent-remove1 [intro]:
assumes hb-consistent xs
shows $h b$-consistent (remove1 $x x s$)
using assms by (induction rule: hb-consistent.induct) (auto simp: remove1-append)
lemma hb-consistent-singleton [intro!]:
shows hb-consistent $[x]$
using $h b$-consistent.intros by fastforce
lemma hb-consistent-prefix-suffix-exists:
assumes $h b$-consistent ys

$$
h b \text {-consistent (xs @ }[x])
$$

$\{x\} \cup$ set $x s=$ set $y s$
distinct ($x \# x s$)
distinct ys
shows \exists prefix suffix. ys $=$ prefix @ $x \#$ suffix \wedge concurrent-set x suffix
using assms proof (induction arbitrary: xs rule: hb-consistent.induct, simp)
fix $x s y y s$
assume $I H:(\bigwedge x s . h b$-consistent $(x s @[x]) \Longrightarrow$
$\{x\} \cup$ set $x s=$ set $y s \Longrightarrow$
distinct $(x \# x s) \Longrightarrow$ distinct $y s \Longrightarrow$
\exists prefix suffix. ys $=$ prefix @ $x \#$ suffix \wedge concurrent-set x suffix
assume assms: hb-consistent ys $\forall x \in$ set ys. $\neg h b$ y x
$h b$-consistent (xs @ [x])
$\{x\} \cup$ set $x s=s e t(y s @[y])$
distinct ($x \#$ xs) distinct (ys @ $[y]$)
hence $x=y \vee y \in$ set $x s$
using assms by auto
moreover \{
assume $x=y$
hence \exists prefix suffix. ys @ [y] = prefix @ $x \#$ suffix \wedge concurrent-set x suffix
by force
\}
moreover \{
assume y-in-xs: $y \in$ set $x s$
hence $\{x\} \cup($ set $x s-\{y\})=$ set $y s$ using assms by (auto intro: set-equality-technical)
hence remove- y-in-xs: $\{x\} \cup$ set (remove1 y xs) $=$ set ys
using assms by auto
moreover have hb-consistent ((remove1 y xs) @ $[x]$)
using assms hb-consistent-remove1 by force
moreover have distinct (x \# (remove1 y xs))
using assms by simp
moreover have distinct ys
using assms by simp
ultimately obtain prefix suffix where ys-split: ys = prefix @ $x \#$ suffix \wedge concurrent-set x suffix using $I H$ by force
moreover \{

```
        have concurrent x y
            using assms y-in-xs remove-y-in-xs concurrent-def by blast
            hence concurrent-set x (suffix@[y])
            using ys-split by clarsimp
    }
    ultimately have \exists prefix suffix.ys @ [y]= prefix @ x # suffix ^ concurrent-set x suffix
        by force
    }
    ultimately show \exists prefix suffix. ys @ [y]= prefix @ x # suffix ^ concurrent-set x suffix
        by auto
qed
lemma hb-consistent-append [intro!]:
    assumes hb-consistent suffix
        hb-consistent prefix
        \sp.s\in set suffix \Longrightarrowp\in set prefix \Longrightarrow\negs\precp
    shows hb-consistent (prefix @ suffix)
using assms by (induction rule: hb-consistent.induct) force+
lemma hb-consistent-append-porder:
    assumes hb-consistent (xs @ ys)
        x\in set xs
        y}\in\mathrm{ set ys
    shows \negy\precx
using assms by (induction ys arbitrary: xs rule: rev-induct) force+
```


3.3 Apply operations

We can now define a function apply-operations that composes an arbitrary list of operations into a state transformer. We first map interp across the list to obtain a state transformer for each operation, and then collectively compose them using the Kleisli arrow composition combinator.

```
definition apply-operations :: 'a list 知 'b \rightharpoonup 'b where
    apply-operations es \equiv foldl (op \triangleright) Some (map interp es)
```

lemma apply-operations-empty [simp]: apply-operations [] $s=$ Some s
by (auto simp: apply-operations-def)
lemma apply-operations-Snoc [simp]:
apply-operations $(x s @[x])=($ apply-operations $x s) \triangleright\langle x\rangle$
by (auto simp add: apply-operations-def kleisli-def)

3.4 Concurrent operations commute

We say that two operations x and y commute whenever $\langle x\rangle \triangleright\langle y\rangle=\langle y\rangle \triangleright\langle x\rangle$, i.e. when we can swap the order of the composition of their interpretations without changing the resulting state transformer. For our purposes, requiring that this property holds for all pairs of operations is too strong. Rather, the commutation property is only required to hold for operations that are concurrent.
definition concurrent-ops-commute :: 'a list \Rightarrow bool where concurrent-ops-commute $x s \equiv$
$\forall x y .\{x, y\} \subseteq$ set $x s \longrightarrow$ concurrent $x y \longrightarrow\langle x\rangle \triangleright\langle y\rangle=\langle y\rangle \triangleright\langle x\rangle$
lemma concurrent-ops-commute-empty [intro!]: concurrent-ops-commute []
by (auto simp: concurrent-ops-commute-def)
lemma concurrent-ops-commute-singleton [intro!]: concurrent-ops-commute $[x]$

```
    by(auto simp: concurrent-ops-commute-def)
```

lemma concurrent-ops-commute-appendD [dest]:
assumes concurrent-ops-commute (xs@ys)
shows concurrent-ops-commute xs
using assms by (auto simp: concurrent-ops-commute-def)
lemma concurrent-ops-commute-rearrange:
concurrent-ops-commute (xs@x\#ys) = concurrent-ops-commute (xs@ys@ $x]$)
by (clarsimp simp: concurrent-ops-commute-def)
lemma concurrent-ops-commute-concurrent-set:
assumes concurrent-ops-commute (prefix@suffix@[x])
concurrent-set x suffix
distinct (prefix @ x \# suffix)
shows apply-operations (prefix @ suffix @ $[x]$) = apply-operations (prefix @ $x \#$ suffix)
using assms proof(induction suffix arbitrary: rule: rev-induct, force)
fix $a x s$
assume IH: concurrent-ops-commute (prefix @ xs @ $[x]$) \Longrightarrow
concurrent-set x xs \Longrightarrow distinct (prefix @ $x \# x s$) \Longrightarrow
apply-operations (prefix @ xs @ $[x]$) = apply-operations (prefix @ x \# xs)
assume assms: concurrent-ops-commute (prefix @ (xs @ $[a]$) @ $[x]$)
concurrent-set x (xs @ [a]) distinct (prefix @ $x \#$ xs @ $[a]$)
hence ac-comm: $\langle a\rangle \triangleright\langle x\rangle=\langle x\rangle \triangleright\langle a\rangle$
by (clarsimp simp: concurrent-ops-commute-def) blast
have copc: concurrent-ops-commute (prefix @ xs @ $[x]$)
using assms by (clarsimp simp: concurrent-ops-commute-def) blast
have apply-operations $(($ prefix @ $x \# x s) @[a])=($ apply-operations $($ prefix @ $x \# x s)) \triangleright\langle a\rangle$
by (simp del: append-assoc)
also have $\ldots=($ apply-operations $($ prefix @ xs @ $[x])) \triangleright\langle a\rangle$
using IH assms copc by auto
also have $\ldots=(($ apply-operations $($ prefix @ $x s)) \triangleright\langle x\rangle) \triangleright\langle a\rangle$
by (simp add: append-assoc[symmetric] del: append-assoc)
also have $\ldots=($ apply-operations $($ prefix @ $x s)) \triangleright(\langle a\rangle \triangleright\langle x\rangle)$
using ac-comm kleisli-comm-cong kleisli-assoc by simp
finally show apply-operations (prefix @ (xs @ [a]) @ [x])=apply-operations (prefix @ x \# xs @ [a])
by (metis Cons-eq-appendI append-assoc apply-operations-Snoc kleisli-assoc)
qed

3.5 Abstract convergence theorem

We can now state and prove our main theorem, convergence. This theorem states that two hb-consistent lists of distinct operations, which are permutations of each other and in which concurrent operations commute, have the same interpretation.

```
theorem convergence:
    assumes set xs = set ys
    concurrent-ops-commute xs
    concurrent-ops-commute ys
    distinct xs
    distinct ys
    hb-consistent xs
    hb-consistent ys
    shows apply-operations xs = apply-operations ys
using assms proof(induction xs arbitrary: ys rule: rev-induct, simp)
    case assms: (snoc x xs)
    then obtain prefix suffix where ys-split:ys = prefix @ x # suffix ^ concurrent-set x suffix
    using hb-consistent-prefix-suffix-exists by fastforce
```

```
    moreover hence *: distinct (prefix @ suffix) hb-consistent xs
    using assms by auto
moreover {
    have hb-consistent prefix hb-consistent suffix
        using ys-split assms hb-consistent-append-D2 hb-consistent-append-elim-ConsD by blast+
    hence hb-consistent (prefix @ suffix)
        by (metis assms(8) hb-consistent-append hb-consistent-append-porder list.set-intros(2) ys-split)
    }
    moreover have **: concurrent-ops-commute (prefix @ suffix @ [x])
    using assms ys-split by (clarsimp simp: concurrent-ops-commute-def)
moreover hence concurrent-ops-commute (prefix @ suffix)
    by (force simp del: append-assoc simp add: append-assoc[symmetric])
    ultimately have apply-operations xs = apply-operations (prefix@suffix)
    using assms by simp (metis Diff-insert-absorb Un-iff * concurrent-ops-commute-appendD set-append)
    moreover have apply-operations(prefix@suffix @ [x]) = apply-operations (prefix@x # suffix)
    using ys-split assms ** concurrent-ops-commute-concurrent-set by force
    ultimately show ?case
    using ys-split by (force simp: append-assoc[symmetric] simp del: append-assoc)
qed
corollary convergence-ext:
    assumes set xs = set ys
        concurrent-ops-commute xs
        concurrent-ops-commute ys
        distinct xs
        distinct ys
        hb-consistent xs
        hb-consistent ys
    shows apply-operations xs s=apply-operations ys s
    using convergence assms by metis
end
```


3.6 Convergence and progress

Besides convergence, another required property of SEC is progress: if a valid operation was issued on one node, then applying that operation on other nodes must also succeed-that is, the execution must not become stuck in an error state. Although the type signature of the interpretation function allows operations to fail, we need to prove that in all hb-consistent network behaviours such failure never actually occurs. We capture the combined requirements in the strong-eventual-consistency locale, which extends happens-before.

```
locale strong-eventual-consistency \(=\) happens-before +
    fixes op-history :: 'a list \(\Rightarrow\) bool
        and initial-state \(::\) ' \(b\)
    assumes causality: op-history \(x s \Longrightarrow h b\)-consistent xs
    assumes distinctness: op-history xs \(\Longrightarrow\) distinct \(x s\)
    assumes commutativity: op-history \(x s \Longrightarrow\) concurrent-ops-commute xs
    assumes no-failure: op-history \((x s @[x]) \Longrightarrow\) apply-operations xs initial-state \(=\) Some state \(\Longrightarrow\langle x\rangle\)
state \(\neq\) None
    assumes trunc-history: op-history \((x s @[x]) \Longrightarrow\) op-history xs
begin
```

theorem sec-convergence:
assumes set $x s=$ set $y s$
op-history xs
op-history ys
shows apply-operations xs $=$ apply-operations ys
by (meson assms convergence causality commutativity distinctness)

```
theorem sec-progress:
    assumes op-history xs
    shows apply-operations xs initial-state }\not==\mathrm{ None
using assms proof(induction xs rule: rev-induct, simp)
    case (snoc x xs)
    have apply-operations xs initial-state }\not==Non
        using snoc.IH snoc.prems trunc-history kleisli-def bind-def by blast
    moreover have apply-operations (xs @ [x])= apply-operations xs \triangleright \langlex\rangle
        by simp
    ultimately show ?case
    using no-failure snoc.prems by (clarsimp simp add: kleisli-def split: bind-splits)
qed
end
end
```


4 Axiomatic network models

In this section we develop a formal definition of an asynchronous unreliable causal broadcast network. We choose this model because it satisfies the causal delivery requirements of many operation-based CRDTs [1, 2]. Moreover, it is suitable for use in decentralised settings, as motivated in the introduction, since it does not require waiting for communication with a central server or a quorum of nodes.

```
theory
    Network
imports
    Convergence
begin
```


4.1 Node histories

We model a distributed system as an unbounded number of communicating nodes. We assume nothing about the communication pattern of nodes-we assume only that each node is uniquely identified by a natural number, and that the flow of execution at each node consists of a finite, totally ordered sequence of execution steps (events). We call that sequence of events at node i the history of that node. For convenience, we assume that every event or execution step is unique within a node's history.

```
locale node-histories \(=\)
    fixes history :: nat \(\Rightarrow\) 'evt list
    assumes histories-distinct [intro!, simp]: distinct (history \(i\) )
lemma (in node-histories) history-finite:
    shows finite (set (history i))
by auto
definition (in node-histories) history-order :: 'evt \(\Rightarrow\) nat \(\Rightarrow{ }^{\prime}\) 'evt \(\Rightarrow\) bool (-/ \(\left.\sqsubset^{-} /-[50,1000,50] 50\right)\)
where
    \(x \sqsubset^{i} z \equiv \exists x s\) ys zs. xs@x\#ys@z\#zs = history \(i\)
lemma (in node-histories) node-total-order-trans:
    assumes \(e 1 \sqsubset^{i} e 2\)
            and \(e 2 \sqsubset^{i} e 3\)
            shows e1 \(\sqsubset^{i} e 3\)
```

```
proof -
    obtain xs1 xs2 ys1 ys2 zs1 zs2 where *: xs1 @ e1 # ys1 @ e2 # zs1 = history i
        xs2 @ e2 # ys2 @ e3 # zs2 = history i
        using history-order-def assms by auto
    hence xs1 @ e1 # ys1 = xs2 ^ zs1 = ys2 @ e3 # zs2
    by(rule-tac xs=history i and ys=[e2] in pre-suf-eq-distinct-list) auto
    thus ?thesis
    by(clarsimp simp: history-order-def) (metis *(2) append.assoc append-Cons)
qed
lemma (in node-histories) local-order-carrier-closed:
    assumes e1 ᄃ [i e2
    shows {e1,e2} \subseteq set (history i)
    using assms by (clarsimp simp add: history-order-def)
        (metis in-set-conv-decomp Un-iff Un-subset-iff insert-subset list.simps(15)
            set-append set-subset-Cons)+
lemma (in node-histories) node-total-order-irrefl:
    shows \neg(e \sqsubset
    by(clarsimp simp add: history-order-def)
        (metis Un-iff histories-distinct distinct-append distinct-set-notin
            list.set-intros(1) set-append)
lemma (in node-histories) node-total-order-antisym:
    assumes e1 [i}e
        and e2 \sqsubset}\mp@subsup{}{}{i}e
    shows False
using assms node-total-order-irrefl node-total-order-trans by blast
lemma (in node-histories) node-order-is-total:
    assumes e1 \in set (history i)
        and e2\in set (history i)
        and e1 }\not=e
```



```
using assms unfolding history-order-def by(metis list-split-two-elems histories-distinct)
definition (in node-histories) prefix-of-node-history :: 'evt list \(\Rightarrow\) nat \(\Rightarrow\) bool (infix prefix of 50) where
    xs prefix of i \equiv\existsys.xs@ys= history }
lemma (in node-histories) carriers-head-lt:
    assumes y#ys = history i
    shows }\neg(x\mp@subsup{\sqsubset}{}{i}y
using assms
apply(clarsimp simp add: history-order-def)
apply(rename-tac xs1 ys1 zs1)
    apply (subgoal-tac xs1 @ x # ys1 = [] ^zs1 = ys)
    apply clarsimp
    apply (rule-tac xs=history i and ys=[y] in pre-suf-eq-distinct-list)
    apply auto
    done
lemma (in node-histories) prefix-of-ConsD [dest]:
    assumes x # xs prefix of i
    shows [x] prefix of i
using assms by(auto simp: prefix-of-node-history-def)
lemma (in node-histories) prefix-of-appendD [dest]:
    assumes xs @ ys prefix of i
```

```
        shows xs prefix of i
    using assms by(auto simp: prefix-of-node-history-def)
lemma (in node-histories) prefix-distinct:
    assumes xs prefix of i
        shows distinct xs
    using assms by(clarsimp simp: prefix-of-node-history-def) (metis histories-distinct distinct-append)
lemma (in node-histories) prefix-to-carriers [intro]:
    assumes xs prefix of i
        shows set xs \subseteq set (history i)
    using assms by(clarsimp simp: prefix-of-node-history-def) (metis Un-iff set-append)
lemma (in node-histories) prefix-elem-to-carriers:
    assumes xs prefix of i
        and x\in set xs
    shows }x\in\mathrm{ set (history i)
    using assms by(clarsimp simp: prefix-of-node-history-def) (metis Un-iff set-append)
lemma (in node-histories) local-order-prefix-closed:
    assumes x}\mp@subsup{\sqsubset}{}{i}
        and xs prefix of i
        and y\in set xs
        shows }x\in\mathrm{ set xs
proof -
    obtain ys where xs @ ys = history i
        using assms prefix-of-node-history-def by blast
    moreover obtain as bs cs where as @ x # bs @ y # cs= history i
        using assms history-order-def by blast
    moreover obtain pre suf where *: xs = pre @ y # suf
        using assms split-list by fastforce
    ultimately have pre =as @ x # bs ^ suf @ ys = cs
        by (rule-tac xs=history i and ys=[y] in pre-suf-eq-distinct-list) auto
    thus ?thesis
        using assms * by clarsimp
qed
lemma (in node-histories) local-order-prefix-closed-last:
    assumes }x\mp@subsup{\sqsubset}{}{i}
        and xs@[y] prefix of i
        shows }x\in\mathrm{ set xs
proof -
    have x\in set (xs @ [y])
        using assms by (force dest: local-order-prefix-closed)
    thus ?thesis
        using assms by(force simp add: node-total-order-irrefl prefix-to-carriers)
qed
lemma (in node-histories) events-before-exist:
    assumes x set (history i)
    shows \exists pre.pre @ [x] prefix of i
proof -
    have \existsidx. idx < length (history i) ^(history i)!idx = x
        using assms by(simp add: set-elem-nth)
    thus ?thesis
        by(metis append-take-drop-id take-Suc-conv-app-nth prefix-of-node-history-def)
qed
```

```
lemma (in node-histories) events-in-local-order:
    assumes pre @ [e2] prefix of \(i\)
    and \(e 1 \in\) set pre
    shows e1 \(\sqsubset^{i} e 2\)
    using assms split-list unfolding history-order-def prefix-of-node-history-def by fastforce
```


4.2 Asynchronous broadcast networks

We define a new locale network containing three axioms that define how broadcast and deliver events may interact, with these axioms defining the properties of our network model.

```
datatype 'msg event
    = Broadcast 'msg
    | Deliver 'msg
locale network = node-histories history for history :: nat }=>\mathrm{ 'msg event list +
    fixes msg-id :: 'msg = 'msgid
    assumes delivery-has-a-cause: \llbracket Deliver m set (history i)\rrbracket\Longrightarrow
                            \existsj. Broadcast m \in set (history j)
        and deliver-locally:\llbracket Broadcast m set (history i)\rrbracket\Longrightarrow
                            Broadcast m}\mp@subsup{\sqsubset}{}{i}\mathrm{ Deliver m
        and msg-id-unique: \llbracket Broadcast m1 \in set (history i);
            Broadcast m2 \in set (history j);
            msg-id m1 = msg-id m2 \rrbracket\Longrightarrowi=j^m1=m2
```

The axioms can be understood as follows:
delivery-has-a-cause: If some message m was delivered at some node, then there exists some node on which m was broadcast. With this axiom, we assert that messages are not created "out of thin air" by the network itself, and that the only source of messages are the nodes.
deliver-locally: If a node broadcasts some message m, then the same node must subsequently also deliver m to itself. Since m does not actually travel over the network, this local delivery is always possible, even if the network is interrupted. Local delivery may seem redundant, since the effect of the delivery could also be implemented by the broadcast event itself; however, it is standard practice in the description of broadcast protocols that the sender of a message also sends it to itself, since this property simplifies the definition of algorithms built on top of the broadcast abstraction [4].
msg-id-unique: We do not assume that the message type 'msg has any particular structure; we only assume the existence of a function $m s g-i d:: ' m s g \Rightarrow$ 'msgid that maps every message to some globally unique identifier of type 'msgid. We assert this uniqueness by stating that if $m 1$ and $m 2$ are any two messages broadcast by any two nodes, and their $m s g$ - $i d s$ are the same, then they were in fact broadcast by the same node and the two messages are identical. In practice, these globally unique IDs can by implemented using unique node identifiers, sequence numbers or timestamps.

```
lemma (in network) broadcast-before-delivery:
    assumes Deliver m set (history i)
    shows }\existsj\mathrm{ . Broadcast m}\mp@subsup{\sqsubset}{}{j}\mathrm{ Deliver m
    using assms deliver-locally delivery-has-a-cause by blast
lemma (in network) broadcasts-unique:
    assumes i\not=j
        and Broadcast m set (history i)
    shows Broadcast m & set (history j)
```

using assms msg－id－unique by blast
Based on the well－known definition by［8］，we say that $m 1 \prec m 2$ if any of the following is true：
1．$m 1$ and $m 2$ were broadcast by the same node，and $m 1$ was broadcast before $m 2$ ．
2．The node that broadcast m2 had delivered $m 1$ before it broadcast m2．
3．There exists some operation $m 3$ such that $m 1 \prec m 3$ and $m 3 \prec m 2$ ．
inductive（in network）$h b::$＇$m s g \Rightarrow$＇$m s g \Rightarrow$ bool where
hb－broadcast：【 Broadcast m1 \sqsubset^{i} Broadcast m2 】 $\Longrightarrow h b m 1 \mathrm{mQ} \mid$
hb－deliver：【Deliver m1 \sqsubset^{i} Broadcast m2 】 $\Longrightarrow h b m 1 \mathrm{m2} \mid$
hb－trans：$\quad \llbracket h b m 1 \mathrm{m2} ; \mathrm{hb} \mathrm{m2} \mathrm{~m} 3 \rrbracket \Longrightarrow h b \mathrm{~m} 1 \mathrm{~m} 3$
inductive－cases（in network）hb－elim：hb xy
definition（in network）weak－$h b::$＇$m s g \Rightarrow$＇$m s g \Rightarrow$ bool where
weak－hb $m 1 m 2 \equiv h b m 1 m 2 \vee m 1=m 2$
locale causal－network $=$ network +
assumes causal－delivery：Deliver m2 \in set（history $j) \Longrightarrow h b m 1 m 2 \Longrightarrow$ Deliver m1 \sqsubset^{j} Deliver m2
lemma（in causal－network）causal－broadcast：
assumes Deliver m2 \in set（history j ）
and Deliver m1 \sqsubset^{i} Broadcast m2
shows Deliver m1 \sqsubset^{j} Deliver m2
using assms causal－delivery hb．intros（2）by blast
lemma（in network）hb－broadcast－exists1：
assumes hb m1 m2
shows $\exists i$ ．Broadcast $m 1 \in$ set（history i ）
using assms
apply（induction rule：hb．induct）
apply（meson insert－subset node－histories．local－order－carrier－closed node－histories－axioms）
apply（meson delivery－has－a－cause insert－subset local－order－carrier－closed）
apply simp
done
lemma（in network）hb－broadcast－exists2：
assumes hb m1 m2
shows $\exists i$ ．Broadcast m2 \in set（history i ）
using assms
apply（induction rule：hb．induct）
apply（meson insert－subset node－histories．local－order－carrier－closed node－histories－axioms）
apply（meson delivery－has－a－cause insert－subset local－order－carrier－closed）
apply simp
done

4．3 Causal networks

lemma（in causal－network）hb－has－a－reason：
assumes hb m1 m2
and Broadcast m2 \in set（history i）
shows Deliver m1 $\in \operatorname{set}($ history $i) \vee$ Broadcast m1 $\in \operatorname{set}$（history i ）
using assms apply（induction rule：hb．induct）
apply（metis insert－subset local－order－carrier－closed network．broadcasts－unique network－axioms） apply（metis insert－subset local－order－carrier－closed network．broadcasts－unique network－axioms）
using hb－trans causal－delivery local－order－carrier－closed apply blast

done

```
lemma (in causal-network) hb-cross-node-delivery:
    assumes hb m1 m2
    and Broadcast m1 \in set (history i)
    and Broadcast m2 \in set (history j)
    and i\not=j
    shows Deliver m1 \in set (history j)
    using assms
    apply(induction rule: hb.induct)
    apply(metis broadcasts-unique insert-subset local-order-carrier-closed)
    apply(metis insert-subset local-order-carrier-closed network.broadcasts-unique network-axioms)
    using broadcasts-unique hb.intros(3) hb-has-a-reason apply blast
    done
```

lemma (in causal-network) hb-irrefl:
assumes $h b m 1 m 2$
shows $m 1 \neq m 2$
using assms proof (induction rule: hb.induct)
case (hb-broadcast m1 i m2) thus ?case
using node-total-order-antisym by blast
next
case (hb-deliver m1 i m2) thus ?case
by (meson causal-broadcast insert-subset local-order-carrier-closed node-total-order-irrefl)
next
case (hb-trans m1 m2 m3)
then obtain $i j$ where Broadcast m3 $\in \operatorname{set}($ history $i)$ Broadcast m2 $\in \operatorname{set}$ (history j)
using hb-broadcast-exists2 by blast
then show? case
using assms hb-trans by (meson causal-network.causal-delivery causal-network-axioms
deliver-locally insert-subset network.hb.intros(3) network-axioms
node-histories.local-order-carrier-closed assms hb-trans
node-histories-axioms node-total-order-irrefl)
qed
lemma (in causal-network) hb-broadcast-broadcast-order:
assumes hb m1 m2
and Broadcast m1 \in set (history i)
and Broadcast m2 \in set (history i)
shows Broadcast $m 1 \sqsubset^{i}$ Broadcast m2
using assms proof (induction rule: hb.induct)
case (hb-broadcast m1 i m2) thus ?case
by (metis insertI1 local-order-carrier-closed network.broadcasts-unique network-axioms subsetCE)
next
case (hb-deliver m1 i m2) thus ?case
by (metis broadcasts-unique insert-subset local-order-carrier-closed
network.broadcast-before-delivery network-axioms node-total-order-trans)
next
case (hb-trans m1 m2 m3)
then show? case
proof (cases Broadcast m2 \in set (history i))
case True thus ?thesis
using hb-trans node-total-order-trans by blast
next
case False hence Deliver m2 \in set (history i) $m 1 \neq m 2$ m2 $\neq m 3$
using hb-has-a-reason hb-trans by auto
thus ?thesis
by (metis hb-trans event.inject(1) hb.intros(1) hb-irrefl network.hb.intros(3) network-axioms

```
node-order-is-total hb-irrefl)
    qed
qed
lemma (in causal-network) hb-antisym:
    assumes hb x y
        and hb y x
    shows False
using assms proof(induction rule: hb.induct)
    fix m1 i m2
    assume hb m2 m1 and Broadcast m1 }\mp@subsup{\sqsubset}{}{i}\mathrm{ Broadcast m2
    thus False
        apply - proof(erule hb-elim)
        show \ia. Broadcast m1 ᄃi Broadcast m2 \Longrightarrow Broadcast m2 }\mp@subsup{\sqsubset}{}{i}a\mp@code{Broadcast m1 \Longrightarrow False
        by(metis broadcasts-unique insert-subset local-order-carrier-closed node-total-order-irrefl node-total-order-trans)
    next
        show \ia. Broadcast m1 \sqsubset}\mp@subsup{\sqsubset}{}{i}\mathrm{ Broadcast m2 C Deliver m2 }\mp@subsup{\sqsubset}{}{i}a\mathrm{ Broadcast m1 }\Longrightarrow\mathrm{ False
        by(metis broadcast-before-delivery broadcasts-unique insert-subset local-order-carrier-closed node-total-order-irrefl
node-total-order-trans)
    next
        show \m2a. Broadcast m1 ᄃi Broadcast m2 \Longrightarrowhb m2 m2a \Longrightarrowhb m2a m1 \Longrightarrow False
            using assms(1) assms(2) hb.intros(3) hb-irrefl by blast
    qed
next
    fix m1 i m2
    assume hb m2 m1
        and Deliver m1 \sqsubset}\mp@subsup{\sqsubset}{}{i}\mathrm{ Broadcast m2
    thus False
        apply - proof(erule hb-elim)
        show \ia. Deliver m1 ᄃ Broadcast m2 \Longrightarrow Broadcast m2 }\mp@subsup{\sqsubset}{}{i}a\mathrm{ Broadcast m1 ב False
        by (metis broadcast-before-delivery broadcasts-unique insert-subset local-order-carrier-closed node-total-order-irrefl
node-total-order-trans)
    next
            show \ia. Deliver m1 ᄃi Broadcast m2 \Longrightarrow Deliver m2 \sqsubset}\mp@subsup{}{}{i}a\mathrm{ Broadcast m1 }\Longrightarrow\mathrm{ False
            by (meson causal-network.causal-delivery causal-network-axioms hb.intros(2) hb.intros(3) insert-subset
local-order-carrier-closed node-total-order-irrefl)
    next
            show \m2a. Deliver m1 ᄃi Broadcast m2 \Longrightarrow hb m2 m2a \Longrightarrowhb m2a m1 \Longrightarrow False
            by (meson causal-delivery hb.intros(2) insert-subset local-order-carrier-closed network.hb.intros(3)
network-axioms node-total-order-irrefl)
    qed
next
    fix m1 m2 m3
    assume hb m1 m2 hb m2 m3 hb m3 m1
        and (hb m2 m1 \Longrightarrow False)(hb m3 m2 \Longrightarrow False)
    thus False
        using hb.intros(3) by blast
qed
definition (in network) node-deliver-messages :: 'msg event list }=>\mathrm{ 'msg list where
    node-deliver-messages cs \equivList.map-filter (\lambdae.case e of Deliver m = Some m|-=>None)cs
lemma (in network) node-deliver-messages-empty [simp]:
    shows node-deliver-messages [] = []
    by(auto simp add: node-deliver-messages-def List.map-filter-simps)
lemma (in network) node-deliver-messages-Cons:
    shows node-deliver-messages (x#xs) = (node-deliver-messages [x])@(node-deliver-messages xs)
```

by (auto simp add: node-deliver-messages-def map-filter-def)
lemma (in network) node-deliver-messages-append:
shows node-deliver-messages $(x s @ y s)=($ node-deliver-messages $x s) @(n o d e-d e l i v e r-m e s s a g e s ~ y s) ~$
by (auto simp add: node-deliver-messages-def map-filter-def)
lemma (in network) node-deliver-messages-Broadcast [simp]:
shows node-deliver-messages $[$ Broadcast $m]=[]$
by (clarsimp simp: node-deliver-messages-def map-filter-def)
lemma (in network) node-deliver-messages-Deliver [simp]:
shows node-deliver-messages $[$ Deliver $m]=[m]$
by (clarsimp simp: node-deliver-messages-def map-filter-def)
lemma (in network) prefix-msg-in-history:
assumes es prefix of i and $m \in$ set (node-deliver-messages es)
shows Deliver $m \in$ set (history i)
using assms prefix-to-carriers by(fastforce simp: node-deliver-messages-def map-filter-def split: event.split-asm)
lemma (in network) prefix-contains-msg:
assumes es prefix of i
and $m \in$ set (node-deliver-messages es)
shows Deliver $m \in$ set es
using assms by (auto simp: node-deliver-messages-def map-filter-def split: event.split-asm)
lemma (in network) node-deliver-messages-distinct:
assumes xs prefix of i
shows distinct (node-deliver-messages xs)
using assms proof(induction xs rule: rev-induct)
case Nil thus?case by simp
next
case (snoc $x x s$)
\{ fix y assume $*: y \in \operatorname{set}$ (node-deliver-messages $x s) y \in$ set (node-deliver-messages $[x]$) moreover have distinct (xs @ $[x]$)
using assms snoc prefix-distinct by blast
ultimately have False
using assms apply (case-tac x; clarsimp simp add: map-filter-def node-deliver-messages-def)
using $*$ prefix-contains-msg snoc.prems by blast
\} thus ?case
using snoc by (fastforce simp add: node-deliver-messages-append node-deliver-messages-def map-filter-def)
qed
lemma (in network) drop-last-message:
assumes evts prefix of i
and node-deliver-messages evts $=$ msgs @ [last-msg]
shows \exists pre. pre prefix of $i \wedge$ node-deliver-messages pre $=$ msgs
proof -
have Deliver last-msg \in set evts
using assms network.prefix-contains-msg network-axioms by force
then obtain $i d x$ where $*: i d x<$ length evts evts $!i d x=$ Deliver last-msg
by (meson set-elem-nth)
then obtain pre suf where evts = pre @ (evts!idx) \# suf
using id-take-nth-drop by blast
hence $* *$: evts = pre @ (Deliver last-msg) \# suf
using assms $*$ by auto
moreover hence distinct (node-deliver-messages ([Deliver last-msg] @ suf))
by (metis assms(1) assms(2) distinct-singleton node-deliver-messages-Cons node-deliver-messages-Deliver
node-deliver-messages-append node-deliver-messages-distinct not-Cons-self2 pre-suf-eq-distinct-list)
ultimately have node-deliver-messages ([Deliver last-msg] @ suf) = [last-msg] @ []
by (metis append-self-conv assms (1) assms(2) node-deliver-messages-Cons node-deliver-messages-Deliver node-deliver-messages-append node-deliver-messages-distinct not-Cons-self2 pre-suf-eq-distinct-list)
thus ?thesis
using assms * ** by (metis append1-eq-conv append-Cons append-Nil node-deliver-messages-append prefix-of-appendD)
qed
locale network-with-ops $=$ causal-network history fst
for history :: nat $\Rightarrow\left({ }^{\prime}\right.$ msgid $\times{ }^{\prime}$ op $)$ event list +
fixes interp :: 'op \Rightarrow 'state \rightharpoonup 'state
and initial-state :: 'state

context network-with-ops begin

definition interp-msg :: 'msgid \times 'op \Rightarrow 'state - 'state where
interp-msg msg state \equiv interp (snd msg) state
sublocale hb: happens-before weak-hb hb interp-msg

proof

fix $x y$:: 'msgid \times 'op
show $h b x y=($ weak-hb $x y \wedge \neg$ weak-hb $y x)$
unfolding weak-hb-def using hb-antisym by blast
next
fix x
show weak-hb $x x$
using weak-hb-def by blast
next
fix $x y z$
assume weak-hb x y weak-hb y z
thus weak-hb $x z$
using weak-hb-def by (metis network.hb.intros(3) network-axioms)
qed
end
definition (in network-with-ops) apply-operations :: ('msgid \times 'op) event list \rightharpoonup 'state where apply-operations es \equiv hb.apply-operations (node-deliver-messages es) initial-state
definition (in network-with-ops) node-deliver-ops :: ('msgid \times 'op) event list \Rightarrow 'op list where node-deliver-ops cs \equiv map snd (node-deliver-messages cs)
lemma (in network-with-ops) apply-operations-empty [simp]:
shows apply-operations [] = Some initial-state
by (auto simp add: apply-operations-def)
lemma (in network-with-ops) apply-operations-Broadcast [simp]:
shows apply-operations (xs @ [Broadcast m]) = apply-operations xs by (auto simp add: apply-operations-def node-deliver-messages-def map-filter-def)
lemma (in network-with-ops) apply-operations-Deliver [simp]:
shows apply-operations (xs @ [Deliver m]) = (apply-operations xs > interp-msg m)
by (auto simp add: apply-operations-def node-deliver-messages-def map-filter-def kleisli-def)
lemma (in network-with-ops) hb-consistent-technical:
assumes $\bigwedge m n . m<$ length $c s \Longrightarrow n<m \Longrightarrow c s!n \sqsubset^{i} c s!m$


```
using assms proof (induction cs rule: rev-induct)
    case Nil thus ?case
    by(simp add: node-deliver-messages-def hb.hb-consistent.intros(1) map-filter-simps(2))
next
    case (snoc x xs)
    hence *: (\bigwedgem n. m < length xs \Longrightarrown<m\Longrightarrowxs!n ■ ' xs !m)
    by(-, erule-tac x=m in meta-allE, erule-tac x=n in meta-allE, clarsimp simp add: nth-append)
    then show ?case
    proof (cases x)
    case (Broadcast x1) thus ?thesis
        using snoc * by (simp add: node-deliver-messages-append)
    next
        case (Deliver x2) thus ?thesis
        using snoc * apply(clarsimp simp add: node-deliver-messages-def map-filter-def map-filter-append)
        apply (rename-tac m m1 m2)
        apply (case-tac m; clarsimp)
        apply(drule set-elem-nth, erule exE, erule conjE)
        apply(erule-tac x=length xs in meta-allE)
        apply(clarsimp simp add: nth-append)
        by (metis causal-delivery insert-subset node-histories.local-order-carrier-closed
            node-histories-axioms node-total-order-antisym)
    qed
qed
corollary (in network-with-ops)
    shows hb.hb-consistent (node-deliver-messages (history i))
    by (metis hb-consistent-technical history-order-def less-one linorder-neqE-nat list-nth-split zero-order(3))
lemma (in network-with-ops) hb-consistent-prefix:
    assumes xs prefix of i
    shows hb.hb-consistent (node-deliver-messages xs)
using assms proof (clarsimp simp: prefix-of-node-history-def,rule-tac i=i in hb-consistent-technical)
    fix mnys assume *:xs @ ys = history i m < length xs n<m
    consider (a) xs = []|(b) \existsc.xs=[c]| (c)Suc 0 < length (xs)
        by (metis Suc-pred length-Suc-conv length-greater-0-conv zero-less-diff)
    thus xs! n ■ i}xs!
    proof (cases)
        case a thus ?thesis
        using * by clarsimp
    next
        case b thus ?thesis
            using assms * by clarsimp
    next
        case c thus ?thesis
            using assms * apply clarsimp
            apply(drule list-nth-split, assumption, clarsimp simp: c)
            apply (metis append.assoc append.simps(2) history-order-def)
            done
    qed
qed
locale network-with-constrained-ops = network-with-ops +
    fixes valid-msg :: 'c = ('a\times'b) => bool
    assumes broadcast-only-valid-msgs: pre @ [Broadcast m] prefix of i\Longrightarrow
                                    \existsstate. apply-operations pre =Some state ^ valid-msg state m
lemma (in network-with-constrained-ops) broadcast-is-valid:
    assumes Broadcast m set (history i)
```

```
    shows \exists}\mathrm{ state. valid-msg state m
    using assms broadcast-only-valid-msgs events-before-exist by blast
lemma (in network-with-constrained-ops) deliver-is-valid:
    assumes Deliver m}\in\mathrm{ set (history i)
    shows \existsj pre state.pre @ [Broadcast m] prefix of j ^ apply-operations pre = Some state }\wedge\mathrm{ valid-msg
state m
    using assms apply (clarsimp dest!: delivery-has-a-cause)
    using broadcast-only-valid-msgs events-before-exist apply blast
    done
```

lemma (in network-with-constrained-ops) deliver-in-prefix-is-valid:
assumes xs prefix of i
and Deliver $m \in$ set $x s$
shows \exists state. valid-msg state m
by (meson assms network-with-constrained-ops.deliver-is-valid network-with-constrained-ops-axioms
prefix-elem-to-carriers)

4.4 Dummy network models

interpretation trivial-node-histories: node-histories λm. []
by standard auto
interpretation trivial-network: network λm. [] id
by standard auto
interpretation trivial-causal-network: causal-network λm. [] id
by standard auto
interpretation trivial-network-with-ops: network-with-ops λm. [] (λx y. Some y) 0
by standard auto
interpretation trivial-network-with-constrained-ops: network-with-constrained-ops λm. [] (λx y. Some y) $0 \lambda x y$. True
by standard (simp add: trivial-node-histories.prefix-of-node-history-def)
end

5 Replicated Growable Array

The RGA, introduced by [10], is a replicated ordered list (sequence) datatype that supports insert and delete operations.

```
theory
    Ordered-List
imports
    Util
begin
type-synonym('id,'v) elt = 'id \times 'v }\times\mathrm{ bool
```


5.1 Insert and delete operations

Insertion operations place the new element after an existing list element with a given ID, or at the head of the list if no ID is given. Deletion operations refer to the ID of the list element that is to be deleted. However, it is not safe for a deletion operation to completely remove a list element, because then a concurrent insertion after the deleted element would not be able to
locate the insertion position. Instead, the list retains so-called tombstones: a deletion operation merely sets a flag on a list element to mark it as deleted, but the element actually remains in the list. A separate garbage collection process can be used to eventually purge tombstones [10], but we do not consider tombstone removal here.

hide-const insert

```
fun insert-body :: ('id:::\{linorder\}, 'v) elt list \(\Rightarrow\left({ }^{\prime} i d, ' v\right)\) elt \(\Rightarrow\left({ }^{\prime} i d, ' v\right)\) elt list where
    insert-body [] \(\quad e=[e] \mid\)
    insert-body (x\#xs) e=
        (if fst \(x<\) fst \(e\) then
            \(e \# x \# x s\)
        else \(x \#\) insert-body xs e)
```

fun insert :: ('id::\{linorder\}, 'v) elt list $\Rightarrow\left(' i d,{ }^{\prime} v\right)$ elt $\Rightarrow{ }^{\prime}$ id option $\Rightarrow\left(' i d,{ }^{\prime} v\right)$ elt list option where
insert xs e None = Some (insert-body xs e) |
insert [] $\quad e($ Some $i)=$ None |
insert $(x \# x s)$ e (Some $i)=$
(if fst $x=i$ then
Some ($x \#$ insert-body xs e)
else
insert xs e $($ Some $i) \gg(\lambda t$. Some $(x \# t)))$
fun delete :: ('id::\{linorder\}, 'v) elt list $\Rightarrow{ }^{\prime} i d \Rightarrow\left({ }^{\prime} i d,{ }^{\prime} v\right)$ elt list option where
delete [] $\quad i=$ None \mid
delete $\left(\left(i^{\prime}, v, f l a g\right) \# x s\right) i=$
(if $i^{\prime}=i$ then
Some ((i^{\prime}, v, True) $\left.\# x s\right)$
else
delete xs $i \gg\left(\lambda t\right.$. Some $\left(\left(i^{\prime}, v\right.\right.$, flag $\left.\left.\left.) \# t\right)\right)\right)$

5.2 Well-definedness of insert and delete

```
lemma insert-no-failure:
    assumes i=None \vee (\existsi'.i=Some i'^ 汭 fst'set xs )
    shows }\existsx\mp@subsup{s}{}{\prime}.\mathrm{ . insert xs e i}=\mathrm{ Some xs'
using assms by(induction rule: insert.induct; force)
lemma insert-None-index-neq-None [dest]:
    assumes insert xs e i=None
    shows i\not= None
using assms by(cases i, auto)
lemma insert-Some-None-index-not-in [dest]:
    assumes insert xs e (Some i)= None
    shows i}\not\infst'set x
using assms by(induction xs, auto split: if-split-asm bind-splits)
lemma index-not-in-insert-Some-None [simp]:
    assumes i\not\infst ' set xs
    shows insert xs e (Some i)= None
using assms by(induction xs, auto)
lemma delete-no-failure:
    assumes i\infst' set xs
    shows \existsxs'. delete xs i=Some xs'
using assms by(induction xs; force)
```

```
lemma delete-None-index-not-in [dest]:
    assumes delete xs i=None
    shows i\not\infst'set xs
using assms by(induction xs, auto split: if-split-asm bind-splits simp add: fst-eq-Domain)
lemma index-not-in-delete-None [simp]:
    assumes i\not\infst ' set xs
    shows delete xs i=None
using assms by(induction xs, auto)
```


5.3 Preservation of element indices

lemma insert-body-preserve-indices [simp]:
shows fst'set (insert-body xs e) $=$ fst' set $x s \cup\{f s t e\}$
by (induction xs, auto simp add: insert-commute)
lemma insert-preserve-indices:
assumes \exists ys. insert xs e $i=$ Some ys
shows fst' set (the (insert xs e i)) = fst' set xs $\cup\{f s t e\}$
using assms by (induction xs; cases i; auto simp add: insert-commute split: bind-splits)
corollary insert-preserve-indices':
assumes insert xs e $i=$ Some ys
shows $f s t$ 'set (the (insert xs e i)) $=$ fst 'set $x s \cup\{f s t e\}$
using assms insert-preserve-indices by blast
lemma delete-preserve-indices:
assumes delete xs $i=$ Some ys
shows fst' set $x s=f s t$ ' set ys
using assms by(induction xs arbitrary: ys, simp) (case-tac a; auto split: if-split-asm bind-splits)

5.4 Commutativity of concurrent operations

```
lemma insert-body-commutes:
    assumes fst e1 \(\neq f\) ft e2
    shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1
using assms by (induction xs, auto)
lemma insert-insert-body:
    assumes fst e1 \(\neq f s t\) e2
        and \(i 2 \neq\) Some (fst e1)
    shows insert (insert-body xs e1) e2 i2 = insert xs e2 i2 >
using assms by (induction xs; cases i2) (auto split: if-split-asm simp add: insert-body-commutes)
lemma insert-Nil-None:
    assumes fst e1 \(\neq f\) fst e2
        and \(i \neq f s t e 2\)
        and \(i 2 \neq\) Some (fst e1)
    shows insert [] e2 i2 > ( \(\lambda\) ys. insert ys e1 \((\) Some \(i))=\) None
using assms by (cases i2) clarsimp +
lemma insert-insert-body-commute:
    assumes \(i \neq f\) ft e1
        and fst e1 \(\neq\) fst e2
    shows insert (insert-body xs e1) e2 (Some i) \(=\)
        insert xs e2 (Some i) > ( \(\lambda\) y. Some (insert-body y e1))
using assms by(induction xs, auto simp add: insert-body-commutes)
```

lemma insert-commutes:
assumes fst e1 \neq fst $e 2$

$$
i 1=\text { None } \vee i 1 \neq \text { Some }(\text { fst e2 })
$$

$i 2=$ None $\vee i 2 \neq$ Some (fst e1)
shows insert xs e1 i1 \gg (λ ys. insert ys e2 i2) $=$ insert xs e2 $i 2 \gg=(\lambda y s$. insert ys e1 i1)
using assms proof(induction rule: insert.induct)
fix $x s$ and $e::\left({ }^{\prime} a,{ }^{\prime} b\right)$ elt
assume $i 2=$ None $\vee i 2 \neq$ Some (fst e) and fst $e \neq f s t e 2$
thus insert xs e None > (λ ys. insert ys e2 i2) $=$ insert xs e2 i2 \gg (λ ys. insert ys e None)
by (auto simp add: insert-body-commutes intro: insert-insert-body)
next
fix i and $e::\left({ }^{\prime} a,{ }^{\prime} b\right)$ elt
assume fst $e \neq f s t e 2$ and $i 2=$ None $\vee i 2 \neq$ Some $(f s t e)$ and Some $i=$ None \vee Some $i \neq$ Some
(fst e2)
thus insert []e (Some i) > (λ ys. insert ys e2 i2 $)=$ insert [] e2 i2 $\gg=(\lambda y s$. insert ys e (Some i) $)$ by (auto intro: insert-Nil-None[symmetric])
next
fix $x s i$ and $x e::\left({ }^{\prime} a,{ }^{\prime} b\right)$ elt
assume $I H:($ fst $x \neq i \Longrightarrow$

$$
\text { fst } e \neq f s t e 2 \Longrightarrow
$$

Some $i=$ None \vee Some $i \neq$ Some $($ fst e2 $) \Longrightarrow$
$i 2=$ None $\vee i 2 \neq$ Some $(f$ st e $) \Longrightarrow$
insert xs e (Some i) > (λ ys. insert ys e2 $i 2)=$ insert xs e2 $i 2 \geqslant$ (λ ys. insert ys e (Some
i)))
and fst $e \neq f s t e 2$
and Some $i=$ None \vee Some $i \neq$ Some (fst e2)
and $i 2=$ None $\vee i 2 \neq$ Some (fst e)
thus insert $(x \# x s)$ e (Some $i) \gg(\lambda y s$. insert ys e2 i2 $)=\operatorname{insert}(x \# x s)$ e2 i2 $\gg=(\lambda y s$. insert ys e (Some i))
apply -
apply (erule disjE, clarsimp, simp, rule conjI)
apply (case-tac i2; force simp add: insert-body-commutes insert-insert-body-commute)
apply (case-tac i2; clarsimp cong: Option.bind-cong simp add: insert-insert-body split: bind-splits)
apply force done
qed
lemma delete-commutes:
shows delete xs i1 $\gg=(\lambda y s$. delete ys i2 $)=$ delete xs i2 $\gg(\lambda y s$. delete ys i1)
by (induction xs, auto split: bind-splits if-split-asm)
lemma insert-body-delete-commute:
assumes $i 2 \neq f s t e$
shows delete (insert-body xs e) i2 >> $(\lambda t$. Some $(x \# t))=$
delete xs i2 > (λy. Some ($x \#$ insert-body y e))
using assms by (induction xs arbitrary: x; cases e, auto split: bind-splits if-split-asm)
lemma insert-delete-commute:
assumes $i 2 \neq f$ ft e
shows insert xs e i1 > (λ ys. delete ys i2) $=$ delete xs $i 2 \gg(\lambda y s$. insert ys e i1)
using assms by (induction xs; cases e; cases i1, auto split: bind-splits if-split-asm simp add: insert-body-delete-commute)

5.5 Alternative definition of insert

fun insert' $::(' i d::\{$ linorder $\}, ~ ' v)$ elt list $\Rightarrow(' i d, ' v)$ elt \Rightarrow 'id option $\rightarrow\left(' i d::\{\right.$ linorder $\left.\},{ }^{\prime} v\right)$ elt list where
insert $^{\prime}[] e \quad$ None $=$ Some $[e] \mid$

```
    insert' [] e (Some i)= None |
    insert' (x#xs) e None =
        (if fst x < fst e then
            Some (e#x#xs)
        else
            case insert' xs e None of
                    None }=>\mathrm{ None
            Some t }=>\mathrm{ Some (x#t)) |
insert' (x#xs) e (Some i) =
    (if fst x = i then
            case insert' xs e None of
                    None }=>\mathrm{ None
            | Some t }=>\mathrm{ Some (x#t)
        else
            case insert' xs e (Some i) of
                None }=>\mathrm{ None
            |ome t A Some (x#t))
lemma [elim!, dest]:
    assumes insert' xs e None = None
    shows False
using assms by(induction xs, auto split: if-split-asm option.split-asm)
lemma insert-body-insert':
    shows insert' xs e None = Some (insert-body xs e)
by(induction xs, auto)
lemma insert-insert':
    shows insert xs e i= insert' xs e i
by(induction xs; cases e; cases i, auto split: option.split simp add: insert-body-insert')
lemma insert-body-stop-iteration:
    assumes fst e>fst x
    shows insert-body (x#xs)e=e#x#xs
using assms by simp
lemma insert-body-contains-new-elem:
    shows \existsp s.xs=p@s^ insert-body xs e=p@e#s
proof (induction xs)
    case Nil thus ?case by force
next
    case (Cons a xs)
    then obtain ps where xs=p@ @ ^ insert-body xs e=p@e#s by force
    thus ?case
        apply clarsimp
        apply (rule conjI; clarsimp)
            apply force
        apply (rule-tac x=a # p in exI, force)
        done
qed
lemma insert-between-elements:
    assumes xs = pre@ref#suf
    and distinct (map fst xs)
    and }\bigwedge\mp@subsup{i}{}{\prime}.\mp@subsup{i}{}{\prime}\infst' set xs \Longrightarrow 说< fst 
    shows insert xs e (Some (fst ref)) = Some (pre @ ref # e # suf)
using assms by(induction xs arbitrary: pre ref suf, force) (case-tac pre; case-tac suf; force)
```

lemma insert-position-element-technical:
assumes $\forall x \in$ set as. $a \neq f$ st x and insert-body (cs @ ds) $e=c s @ e \# d s$
shows insert ($a s$ @ $(a, a a, b) \# c s @ d s) e($ Some $a)=\operatorname{Some}(a s @(a, a a, b) \# c s @ e \# d s)$
using assms by (induction as arbitrary: cs ds; clarsimp)
lemma split-tuple-list-by-id:
assumes $(a, b, c) \in$ set $x s$ and distinct (map fst xs)
shows \exists pre suf. xs $=$ pre @ $(a, b, c) \#$ suf $\wedge(\forall y \in$ set pre. fst $y \neq a)$
using assms proof(induction xs, clarsimp)
case (Cons x xs)
\{ assume $x \neq(a, b, c)$
hence $(a, b, c) \in$ set $x s$ distinct (map fst xs)
using Cons.prems by force+
then obtain pre suf where $x s=$ pre @ $(a, b, c) \#$ suf $\wedge(\forall y \in$ set pre. fst $y \neq a)$
using Cons.IH by force
hence ?case
apply (rule-tac $x=x \#$ pre in exI)
using Cons.prems(2) by auto
\} thus ?case
by force
qed
lemma insert-preserves-order:
assumes $i=$ None $\vee\left(\exists i^{\prime} . i=\right.$ Some $i^{\prime} \wedge i^{\prime} \in f s t$ 'set $\left.x s\right)$
and distinct (map fst xs)
shows \exists pre suf.xs $=$ pre@suf \wedge insert xs e $i=\operatorname{Some}($ pre @ e\#suf)
using assms proof -
\{ assume $i=$ None
hence ?thesis
by clarsimp (metis insert-body-contains-new-elem)
\} moreover \{
assume $\exists i^{\prime}$. $i=$ Some $i^{\prime} \wedge i^{\prime} \in f s t$ ' set xs
then obtain $j v b$ where $i=\operatorname{Some} j(j, v, b) \in$ set $x s$ by force
moreover then obtain as bs where $x s=a s @(j, v, b) \# b s \forall x \in$ set as. fst $x \neq j$
using assms by (metis split-tuple-list-by-id)
moreover then obtain $c s d s$ where insert-body bs $e=c s @ e \# d s c s @ d s=b s$
by (metis insert-body-contains-new-elem)
ultimately have ?thesis
by $($ rule-tac $x=a s @(j, v, b) \# c s$ in exI; clarsimp $)($ metis insert-position-element-technical)
\} ultimately show ?thesis
using assms by force
qed
end

5.6 Network

theory
$R G A$
imports
Network
Ordered-List
begin
datatype ($' i d$, ' v) operation $=$
Insert ('id, 'v) elt 'id option |
Delete 'id

```
fun interpret-opers :: ('id::linorder, 'v) operation }=>('id,'v) elt list \rightharpoonup('id, 'v) elt list (\langle-\rangle [0] 1000)
where
```

```
interpret-opers (Insert e n) xs = insert xs e n |
```

interpret-opers (Insert e n) xs = insert xs e n |
interpret-opers (Delete n) xs = delete xs n
interpret-opers (Delete n) xs = delete xs n
definition element-ids :: ('id, 'v) elt list }=>\mathrm{ 'id set where
element-ids list \equiv set (map fst list)
definition valid-rga-msg :: ('id, 'v) elt list }=>\mp@subsup{'}{}{\prime}id\times('id::linorder, 'v) operation = bool wher
valid-rga-msg list msg \equiv case msg of

```
```

(i, Insert e None) \Rightarrow fst $e=i$

```
( \(i\), Insert e None ) \(\Rightarrow\) fst \(e=i\)
( \(i\), Insert \(e(\) Some pos \()) \Rightarrow\) fst \(e=i \wedge\) pos \(\in\) element-ids list \(\mid\)
( \(i\), Insert \(e(\) Some pos \()) \Rightarrow\) fst \(e=i \wedge\) pos \(\in\) element-ids list \(\mid\)
( \(i\), Delete \(\quad\) pos \() \Rightarrow\) pos \(\in\) element-ids list
( \(i\), Delete \(\quad\) pos \() \Rightarrow\) pos \(\in\) element-ids list
locale rga = network-with-constrained-ops - interpret-opers [] valid-rga-msg
definition indices :: ('id \times ('id, 'v) operation) event list }=>\mathrm{ ' 'id list where
    indices xs \equiv
        List.map-filter ( }\lambdax\mathrm{ . case x of Deliver (i, Insert e n) = Some (fst e)|- = None) xs
lemma indices-Nil [simp]:
    shows indices [] = []
by(auto simp: indices-def map-filter-def)
lemma indices-append [simp]:
    shows indices(xs@ys)= indices xs @ indices ys
by(auto simp: indices-def map-filter-def)
lemma indices-Broadcast-singleton [simp]:
    shows indices [Broadcast b] = []
by(auto simp: indices-def map-filter-def)
lemma indices-Deliver-Insert [simp]:
    shows indices [Deliver (i,Insert e n)] = [fst e]
by(auto simp: indices-def map-filter-def)
lemma indices-Deliver-Delete [simp]:
    shows indices [Deliver (i, Delete n)]=[]
by(auto simp: indices-def map-filter-def)
lemma (in rga) idx-in-elem-inserted [intro]:
    assumes Deliver (i, Insert e n) \in set xs
    shows fst e fet (indices xs)
using assms by(induction xs, auto simp add: indices-def map-filter-def)
lemma (in rga) apply-opers-idx-elems:
    assumes es prefix of i
            and apply-operations es =Some xs
        shows element-ids xs = set (indices es)
using assms unfolding element-ids-def
proof(induction es arbitrary: xs rule: rev-induct, clarsimp)
    case (snoc x xs) thus ?case
    proof (cases x, clarsimp, blast)
        case (Deliver e)
        moreover obtain a b where e=(a,b) by force
        ultimately show ?thesis
```

using snoc assms apply (cases b; clarsimp split: bind-splits simp add: interp-msg-def) apply (metis Un-insert-right append.right-neutral insert-preserve-indices' list.set(1) option.sel prefix-of-appendD prod.sel(1) set-append)
by (metis delete-preserve-indices prefix-of-appendD)
qed
qed
lemma (in rga) delete-does-not-change-element-ids:
assumes es @ [Deliver (i,Delete n)] prefix of j
and apply-operations es $=$ Some xs1
and apply-operations (es @ [Deliver (i, Delete n)] $=$ Some xs2
shows element-ids xs $1=$ element-ids xs2
proof -
have indices es $=$ indices $($ es @ $[$ Deliver $(i$, Delete $n)])$
by simp
then show? ?thesis
by (metis (no-types) assms prefix-of-appendD rga.apply-opers-idx-elems rga-axioms)
qed
lemma (in rga) someone-inserted-id:
assumes es @ [Deliver ($i, \operatorname{Insert}(k, v, f) n)]$ prefix of j
and apply-operations es $=$ Some xs1
and apply-operations (es @ $[\operatorname{Deliver}(i, \operatorname{Insert}(k, v, f) n)])=$ Some xs2
and $a \in$ element-ids xs2
and $a \neq k$
shows $a \in$ element-ids xs 1
using assms apply-opers-idx-elems by auto
lemma (in rga) deliver-insert-exists:
assumes es prefix of j
and apply-operations es $=$ Some xs
and $a \in$ element-ids xs
shows $\exists i v f n$. Deliver $(i, \operatorname{Insert}(a, v, f) n) \in$ set es
using assms unfolding element-ids-def
proof(induction es arbitrary: xs rule: rev-induct, clarsimp)
case (snoc x xs ys) thus ?case
proof (cases x)
case (Broadcast e) thus ?thesis
using snoc by(clarsimp, metis image-eqI prefix-of-appendD prod.sel(1))
next
case (Deliver e)
moreover then obtain $x s^{\prime}$ where $*$: apply-operations $x s=$ Some $x s^{\prime}$
using snoc by fastforce
moreover obtain $k v$ where $* *: e=(k, v)$ by force
ultimately show ?thesis
using assms snoc proof (cases v)
case (Insert el -) thus ?thesis
using snoc Deliver ***
apply (cases el; cases fst el $=a$; clarsimp)
apply (blast, metis (no-types, lifting) element-ids-def prefix-of-appendD set-map snoc.prems(2) snoc.prems(3) someone-inserted-id)
done
next
case (Delete -) thus ?thesis
using snoc Deliver ** apply clarsimp
apply (drule prefix-of-appendD, clarsimp simp add: bind-eq-Some-conv interp-msg-def)
apply (metis delete-preserve-indices image-eqI prod.sel(1))
done

qed

qed
qed
lemma (in rga) insert-in-apply-set:
assumes es @ [Deliver (i, Insert e (Some a))] prefix of j
and Deliver $\left(i^{\prime}\right.$, Insert $\left.e^{\prime} n\right) \in$ set es
and apply-operations es $=$ Some s
shows $f s t e^{\prime} \in$ element-ids s
using assms apply-opers-idx-elems idx-in-elem-inserted prefix-of-appendD by blast
lemma (in rga) insert-msg-id:
assumes Broadcast (i, Insert e n) \in set (history j)
shows fst $e=i$
proof -
obtain state where 1: valid-rga-msg state (i, Insert e n)
using assms broadcast-is-valid by blast
thus fst $e=i$
by (clarsimp simp add: valid-rga-msg-def split: option.split-asm)
qed
lemma (in rga) allowed-insert:
assumes Broadcast (i, Insert e n) \in set (history j)
shows $n=$ None $\vee\left(\exists i^{\prime} e^{\prime} n^{\prime} . n=\right.$ Some $\left(f s t e^{\prime}\right) \wedge \operatorname{Deliver~(~} i^{\prime}$, Insert $\left.e^{\prime} n^{\prime}\right) \sqsubset^{j}$ Broadcast (i, Insert e n))
proof -
obtain pre where 1: pre @ [Broadcast (i,Insert e n)] prefix of j
using assms events-before-exist by blast
from this obtain state where 2: apply-operations pre $=$ Some state and 3: valid-rga-msg state (i, Insert e n)
using broadcast-only-valid-msgs by blast
show $n=$ None $\vee\left(\exists i^{\prime} e^{\prime} n^{\prime} . n=\right.$ Some $\left(f s t e^{\prime}\right) \wedge \operatorname{Deliver}\left(i^{\prime}\right.$, Insert $\left.e^{\prime} n^{\prime}\right) \sqsubset^{j}$ Broadcast (i, Insert e n))
proof (cases n)
fix a
assume 4: $n=$ Some a
hence $a \in$ element-ids state and 5: fst $e=i$
using 3 by (clarsimp simp add: valid-rga-msg-def)+
from this have $\exists i^{\prime} v^{\prime} f^{\prime} n^{\prime}$. Deliver $\left(i^{\prime}\right.$, Insert $\left.\left(a, v^{\prime}, f^{\prime}\right) n^{\prime}\right) \in$ set pre
using deliver-insert-exists 21 by blast
thus $n=$ None $\vee\left(\exists i^{\prime} e^{\prime} n^{\prime} . n=\right.$ Some $\left(f s t e^{\prime}\right) \wedge \operatorname{Deliver}\left(i^{\prime}\right.$, Insert $\left.e^{\prime} n^{\prime}\right) \sqsubset^{j}$ Broadcast (i, Insert e n))
using events-in-local-order 145 by (metis fst-conv)
qed simp
qed
lemma (in rga) allowed-delete:
assumes Broadcast $(i$, Delete $x) \in \operatorname{set}$ (history j)
shows $\exists i^{\prime} n^{\prime} v b$. Deliver (i^{\prime}, Insert $\left.(x, v, b) n^{\prime}\right) \sqsubset^{j}$ Broadcast (i, Delete x)
proof -
obtain pre where 1: pre @ [Broadcast (i,Delete x)] prefix of j
using assms events-before-exist by blast
from this obtain state where 2: apply-operations pre $=$ Some state
and valid-rga-msg state (i, Delete x)
using broadcast-only-valid-msgs by blast
hence $x \in$ element-ids state
using apply-opers-idx-elems by (simp add: valid-rga-msg-def)
hence $\exists i^{\prime} v^{\prime} f^{\prime} n^{\prime}$. Deliver $\left(i^{\prime}\right.$, Insert $\left.\left(x, v^{\prime}, f^{\prime}\right) n^{\prime}\right) \in$ set pre
using deliver-insert-exists 12 by blast
thus $\exists i^{\prime} n^{\prime} v b$. Deliver (i^{\prime}, Insert $\left.(x, v, b) n^{\prime}\right) \sqsubset^{j}$ Broadcast (i, Delete $\left.x\right)$
using events-in-local-order 1 by blast
qed
lemma (in rga) insert-id-unique:
assumes fst e1 $=f s t$ e2
and Broadcast (i1, Insert e1 n1) \in set (history i)
and Broadcast (i2, Insert e2 n2) \in set (history j)
shows Insert e1 n1 = Insert e2 n2
using assms insert-msg-id msg-id-unique Pair-inject fst-conv by metis
lemma (in rga) allowed-delete-deliver:
assumes Deliver $(i$, Delete $x) \in \operatorname{set}($ history $j)$
shows $\exists i^{\prime} n^{\prime} v b$. Deliver $\left(i^{\prime}\right.$, Insert $\left.(x, v, b) n^{\prime}\right) \sqsubset^{j} \operatorname{Deliver}(i$, Delete $x)$
using assms by (meson allowed-delete bot-least causal-broadcast delivery-has-a-cause insert-subset)
lemma (in rga) allowed-delete-deliver-in-set:
assumes (es@[Deliver (i, Delete m)]) prefix of j
shows $\exists i^{\prime} n v b$. Deliver $\left(i^{\prime}\right.$, Insert $\left.(m, v, b) n\right) \in$ set es
by (metis (no-types, lifting) Un-insert-right insert-iff list.simps(15) assms
local-order-prefix-closed-last rga.allowed-delete-deliver rga-axioms set-append subsetCE prefix-to-carriers)
lemma (in rga) allowed-insert-deliver:
assumes Deliver (i, Insert e n) \in set (history j)
shows $n=$ None $\vee\left(\exists i^{\prime} n^{\prime} n^{\prime \prime} v b\right.$. $n=$ Some $n^{\prime} \wedge \operatorname{Deliver}\left(i^{\prime}, \operatorname{Insert}\left(n^{\prime}, v, b\right) n^{\prime \prime}\right) \sqsubset^{j} \operatorname{Deliver}(i$,
Insert e n))
proof -
obtain ja where 1: Broadcast (i, Insert e n) $\in \operatorname{set}$ (history ja)
using assms delivery-has-a-cause by blast
show $n=$ None $\vee\left(\exists i^{\prime} n^{\prime} n^{\prime \prime} v b . n=\right.$ Some $n^{\prime} \wedge \operatorname{Deliver}\left(i^{\prime}, \operatorname{Insert}\left(n^{\prime}, v, b\right) n^{\prime \prime}\right) \sqsubset^{j} \operatorname{Deliver}(i$,
Insert e n))
proof(cases n)
fix a
assume 3: $n=$ Some a
from this obtain $i^{\prime} e^{\prime} n^{\prime}$ where 4: Some $a=$ Some (fst $\left.e^{\prime}\right)$ and
2: Deliver (i^{\prime}, Insert $e^{\prime} n^{\prime}$) \sqsubset^{j} a Broadcast (i, Insert e (Some a))
using allowed-insert 1 by blast
hence Deliver $\left(i^{\prime}\right.$, Insert $\left.e^{\prime} n^{\prime}\right) \in \operatorname{set}($ history ja) and Broadcast (i, Insert $e($ Some a)) \in set (history ja)
using local-order-carrier-closed by simp+
from this obtain jaa where Broadcast (i, Insert e (Some a)) \in set (history jaa)
using delivery-has-a-cause by simp
have $\exists i^{\prime} n^{\prime} n^{\prime \prime}$ vb. $n=$ Some $n^{\prime} \wedge \operatorname{Deliver}\left(i^{\prime}, \operatorname{Insert}\left(n^{\prime}, v, b\right) n^{\prime \prime}\right) \sqsubset^{j} \operatorname{Deliver}(i$, Insert e $n)$ using 234 by (metis assms causal-broadcast prod.collapse)
thus $n=$ None $\vee\left(\exists i^{\prime} n^{\prime} n^{\prime \prime} v b . n=\right.$ Some $n^{\prime} \wedge \operatorname{Deliver}\left(i^{\prime}, \operatorname{Insert}\left(n^{\prime}, v, b\right) n^{\prime \prime}\right) \sqsubset^{j} \operatorname{Deliver}(i$,
Insert e n)) by auto
qed simp
qed
lemma (in rga) allowed-insert-deliver-in-set:
assumes (es@[Deliver (i, Insert e m) $]$) prefix of j
shows $\quad m=$ None $\vee\left(\exists i^{\prime} m^{\prime} n v b . m=\right.$ Some $m^{\prime} \wedge \operatorname{Deliver}\left(i^{\prime}\right.$, Insert $\left.\left(m^{\prime}, v, b\right) n\right) \in$ set es $)$
by (metis assms Un-insert-right insert-subset list.simps(15) set-append prefix-to-carriers allowed-insert-deliver local-order-prefix-closed-last)
lemma (in rga) Insert-no-failure:
assumes es @ [Deliver (i, Insert e n)] prefix of j
and apply-operations es $=$ Some s
shows \exists ys. insert s e $n=$ Some ys
by (metis (no-types, lifting) element-ids-def allowed-insert-deliver-in-set assms fst-conv
insert-in-apply-set insert-no-failure set-map)
lemma (in rga) delete-no-failure:
assumes es @ [Deliver (i,Delete n)] prefix of j and apply-operations es $=$ Some s
shows \exists ys. delete s $n=$ Some ys
proof -
obtain $i^{\prime} n a v b$ where 1: Deliver $\left(i^{\prime}\right.$, Insert $\left.(n, v, b) n a\right) \in$ set es
using assms allowed-delete-deliver-in-set by blast
also have $f s t(n, v, b) \in \operatorname{set}$ (indices es)
using assms idx-in-elem-inserted calculation by blast
from this assms and 1 show \exists ys. delete $s n=$ Some $y s$ apply -
apply(rule delete-no-failure)
apply (metis apply-opers-idx-elems element-ids-def prefix-of-appendD prod.sel(1) set-map) done
qed
lemma (in rga) Insert-equal:
assumes fst e1 $=$ fst e2
and Broadcast (i1, Insert e1 n1) \in set (history i)
and Broadcast (i2, Insert e2 n2) \in set (history j)
shows Insert e1 $n 1=$ Insert e2 $n 2$
using insert-id-unique assms by simp
lemma (in rga) same-insert:
assumes fst e1 = fst e2
and xs prefix of i
and (i1, Insert e1 n1) \in set (node-deliver-messages xs)
and (i2, Insert e2 n2) \in set (node-deliver-messages xs)
shows Insert e1 n1 = Insert e2 n2
proof -
have Deliver (i1, Insert e1 n1) \in set (history i)
using assms by (auto simp add: node-deliver-messages-def prefix-msg-in-history)
from this obtain j where 1: Broadcast (i1, Insert e1 n1) \in set (history j)
using delivery-has-a-cause by blast
have Deliver (i , Insert e2 n2) \in set (history i)
using assms by (auto simp add: node-deliver-messages-def prefix-msg-in-history)
from this obtain k where 2: Broadcast (i2, Insert e2 n2) \in set (history k)
using delivery-has-a-cause by blast
show Insert e1 n1 = Insert e2 n2
by(rule Insert-equal; force simp add: assms intro: 1 2)
qed
lemma (in rga) insert-commute-assms:
assumes $\left\{\right.$ Deliver $(i$, Insert e $n)$, Deliver $\left(i^{\prime}\right.$, Insert $\left.\left.e^{\prime} n^{\prime}\right)\right\} \subseteq$ set (history j)
and hb.concurrent (i, Insert e n) (i^{\prime}, Insert $\left.e^{\prime} n^{\prime}\right)$
shows $n=$ None $\vee n \neq$ Some (fst e^{\prime})
using assms
apply (clarsimp simp: hb.concurrent-def)
apply (cases e')
apply clarsimp
apply (frule delivery-has-a-cause)
apply (frule delivery-has-a-cause, clarsimp)

```
apply(frule allowed-insert)
apply clarsimp
apply(metis Insert-equal delivery-has-a-cause fst-conv hb.intros(2) insert-subset
    local-order-carrier-closed insert-msg-id)
done
```

lemma subset-reorder:
assumes $\{a, b\} \subseteq c$
shows $\{b, a\} \subseteq c$
using assms by simp
lemma (in rga) Insert-Insert-concurrent:
assumes $\left\{\right.$ Deliver (i, Insert e k), Deliver $\left(i^{\prime}\right.$, Insert $e^{\prime}($ Some $\left.\left.m)\right)\right\} \subseteq$ set (history j) and $h b$. concurrent (i, Insert e $k)\left(i^{\prime}\right.$, Insert $e^{\prime}($ Some $\left.m)\right)$ shows f st $e \neq m$
by (metis assms subset-reorder hb.concurrent-comm insert-commute-assms option.simps(3))

lemma (in rga) insert-valid-assms:

assumes Deliver (i, Insert e n) \in set (history j) shows $n=$ None $\vee n \neq$ Some (fst e)
using assms by (meson allowed-insert-deliver hb.concurrent-def hb.less-asym insert-subset local-order-carrier-closed rga.insert-commute-assms rga-axioms)
lemma (in rga) Insert-Delete-concurrent:
assumes $\left\{\right.$ Deliver $(i$, Insert e $n)$, Deliver $\left(i^{\prime}\right.$, Delete $\left.\left.n^{\prime}\right)\right\} \subseteq$ set (history $\left.j\right)$ and $h b$. concurrent (i, Insert e n) (i^{\prime}, Delete n^{\prime})
shows $n^{\prime} \neq f$ ft e
by (metis assms Insert-equal allowed-delete delivery-has-a-cause fst-conv hb.concurrent-def
hb.intros(2) insert-subset local-order-carrier-closed rga.insert-msg-id rga-axioms)
lemma (in rga) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
proof -
have $\bigwedge x y .\{x, y\} \subseteq$ set (node-deliver-messages $x s) \Longrightarrow h b$.concurrent $x y \Longrightarrow$ interp-msg $x \triangleright$
interp-msg $y=$ interp-msg $y \triangleright$ interp-msg x
proof
fix $x y$ ii
assume $\{x, y\} \subseteq$ set (node-deliver-messages $x s$)
and C : hb.concurrent $x y$
hence $X: x \in$ set (node-deliver-messages $x s$) and $Y: y \in$ set (node-deliver-messages $x s$) by auto
obtain $x 1$ x2 y1 y2 where 1: $x=(x 1, x 2)$ and 2: $y=(y 1, y 2)$
by fastforce
have $($ interp-msg $(x 1, x 2) \triangleright \operatorname{interp-msg}(y 1, y 2)) i i=(\operatorname{interp-msg}(y 1, y 2) \triangleright \operatorname{interp-msg}(x 1, x 2))$
ii
proof(cases x2; cases y2)
fix $i x 1$ ix2 $i y 1 i y 2$
assume $X 2: x 2=$ Insert $i x 1 i x 2$ and Y2: y2 $=$ Insert iy1 $i y 2$
show $($ inter $p-m s g(x 1, x 2) \triangleright \operatorname{interp-msg}(y 1, y 2)) i i=($ interp-msg $(y 1, y 2) \triangleright$ interp-msg $(x 1$,
x2)) ii
$\operatorname{proof}($ cases fst $i x 1=$ fst iy1)
assume fst ix1 $=$ fst iy 1
hence Insert ix1 ix2 = Insert iy1 iy2
apply(rule same-insert)
using $12 X Y$ X2 Y2 assms apply auto done
hence $i x 1=i y 1$ and $i x 2=i y 2$
by auto
from this and X2 Y2 show (interp-msg $(x 1, x 2) \triangleright \operatorname{interp-msg}(y 1, y 2)) i i=($ interp-msg $(y 1$, $y 2) \triangleright \operatorname{interp}-m s g(x 1, x 2))$ ii
by (clarsimp simp add: kleisli-def interp-msg-def)
next
assume $N E Q:$ fst $i x 1 \neq$ fst iy1
have $i x 2=$ None $\vee i x 2 \neq$ Some (fst iy1)
apply (rule insert-commute-assms)
using prefix-msg-in-history[OF assms] X Y X2 Y2 12
apply (clarsimp, blast)
using $C 12$ X2 Y2 apply blast
done
also have $i y 2=$ None $\vee i y 2 \neq$ Some $($ fst ix1)
apply (rule insert-commute-assms)
using prefix-msg-in-history[OF assms] X Y X2 Y2 12
apply (clarsimp, blast)
using 12 C X2 Y2 apply blast
done
ultimately have insert ii ix1 ix2 $\gg(\lambda x$. insert x iy1 iy2 $)=$ insert ii iy1 iy2 $\gg(\lambda x$. insert x ix1 ix2)
using $N E Q$ insert-commutes by blast
thus $($ interp-msg $(x 1, x 2) \triangleright$ interp-msg $(y 1, y 2)) i i=($ interp-msg $(y 1, y 2) \triangleright$ interp-msg $(x 1$, x2)) $i i$
by (clarsimp simp add: interp-msg-def X2 Y2 kleisli-def)
qed
next
fix $i x 1 i x 2 y d$
assume $X 2: x 2=$ Insert $i x 1 i x 2$ and Y2: y2 $=$ Delete $y d$
thm insert-delete-commute
thm Insert-Delete-concurrent
have hb.concurrent (x1, Insert ix1 ix2) (y1, Delete yd)
using C X2 Y2 12 by simp
also have $\{$ Deliver ($x 1$, Insert ix1 ix2), Deliver ($y 1$, Delete $y d)\} \subseteq$ set (history i) using prefix-msg-in-history assms X2 Y2 X Y 12 by blast
ultimately have $y d \neq f_{s t} i x 1$
apply -
apply (rule Insert-Delete-concurrent; force)
done
hence insert ii ix1 ix2 $\gg=(\lambda x$. delete $x y d)=$ delete ii $y d \gg=(\lambda x$. insert x ix1 ix2 $)$ by (rule insert-delete-commute)
thus $($ interp-msg $(x 1, x 2) \triangleright$ interp-msg $(y 1, y 2))$ ii $=($ interp-msg $(y 1, y 2) \triangleright$ interp-msg $(x 1$, x2)) $i i$
by (clarsimp simp add: interp-msg-def kleisli-def X2 Y2)
next
fix $x d$ iy1 iy2
assume $X 2: x 2=$ Delete $x d$ and $Y 2: y 2=$ Insert iy1 iy2
have hb.concurrent ($x 1$, Delete xd) (y1, Insert iy1 iy2) using C X2 Y2 12 by simp
also have $\{$ Deliver ($x 1$, Delete $x d$), Deliver (y1, Insert iy1 iy2) $\} \subseteq$ set (history i) using prefix-msg-in-history assms X2 Y2 X Y 12 by blast
ultimately have $x d \neq f s t$ iy 1 apply apply (rule Insert-Delete-concurrent; force) done
hence delete ii $x d \gg(\lambda x$. insert x iy1 iy2 $)=$ insert ii iy1 iy2 $\gg(\lambda x$. delete $x x d)$ by(rule insert-delete-commute[symmetric])
thus $($ interp-msg $(x 1, x \mathcal{L}) \triangleright$ interp-msg $(y 1, y \mathcal{L}))$ ii $=($ interp-msg $(y 1, y \mathcal{Z}) \triangleright \operatorname{interp-msg}(x 1$, x2)) $i i$

```
            by(clarsimp simp add: interp-msg-def kleisli-def X2 Y2)
    next
            fix }xdy
            assume X2: x2 = Delete xd and Y2: y2 = Delete yd
            have delete ii xd >> ( }\lambdax\mathrm{ . delete x yd) = delete ii yd>> ( }\lambdax\mathrm{ . delete x xd )
            by(rule delete-commutes)
            thus (interp-msg (x1, x2) \triangleright interp-msg (y1,y2)) ii = (interp-msg (y1, y2) \triangleright interp-msg (x1,
x2)) ii
            by(clarsimp simp add: interp-msg-def kleisli-def X2 Y2)
    qed
    thus(interp-msg x \ interp-msg y) ii = (interp-msg y \ interp-msg x) ii
        using 1 2 by auto
    qed
    thus hb.concurrent-ops-commute (node-deliver-messages xs)
    by(auto simp add: hb.concurrent-ops-commute-def)
qed
corollary (in rga) concurrent-operations-commute':
    shows hb.concurrent-ops-commute (node-deliver-messages (history i))
by (meson concurrent-operations-commute append.right-neutral prefix-of-node-history-def)
lemma (in rga) apply-operations-never-fails:
    assumes xs prefix of i
    shows apply-operations xs }\not=\mathrm{ None
using assms proof(induction xs rule: rev-induct)
    show apply-operations [] # None
        by clarsimp
next
    fix x xs
    assume 1:xs prefix of i\Longrightarrow apply-operations xs }\not=\mathrm{ None
        and 2:xs @ [x] prefix of i
hence 3: xs prefix of i
    by auto
show apply-operations (xs @ [x]) = None
proof(cases x)
    fix b
    assume x = Broadcast b
    thus apply-operations (xs @ [x])\not= None
        using 13 by clarsimp
next
        fix }
        assume 4:x= Deliver d
        thus apply-operations (xs @ [x]) = None
        proof(cases d; clarify)
            fix ab
            assume 5: x = Deliver ( }a,b
            show \existsy. apply-operations (xs @ [Deliver (a,b)])=Some y
            proof(cases b; clarify)
                    fix aa aaa ba x12
                    assume 6:b = Insert (aa, aaa, ba) x12
                    show \existsy.apply-operations (xs @ [Deliver (a,Insert (aa,aaa,ba) x12)]) = Some y
                        apply(clarsimp simp add: 1 interp-msg-def split!: bind-splits)
                        apply(simp add: 1 3)
                    apply(rule rga.Insert-no-failure, rule rga-axioms)
                    using 4 5 6 2 apply force+
                    done
        next
                fix x2
```

```
            assume 6: b= Delete x2
            show \existsy.apply-operations (xs @ [Deliver (a,Delete x2)])= Some y
                apply(clarsimp simp add: interp-msg-def split!: bind-splits)
                apply(simp add: 1 3)
                apply(rule delete-no-failure)
                using 4 5 6 2 apply force+
                done
            qed
        qed
    qed
qed
lemma (in rga) apply-operations-never-fails':
    shows apply-operations (history i) }=\mathrm{ None
by(meson apply-operations-never-fails append.right-neutral prefix-of-node-history-def)
corollary (in rga) rga-convergence:
    assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
        and xs prefix of i
        and ys prefix of j
    shows apply-operations xs = apply-operations ys
    using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext
        concurrent-operations-commute node-deliver-messages-distinct hb-consistent-prefix)
```


5.7 Strong eventual consistency

context rga begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
入ops. \exists xs i. xs prefix of $i \wedge$ node-deliver-messages $x s=o p s[]$
proof (standard; clarsimp)
fix $x s a i$
assume xsa prefix of i
thus hb.hb-consistent (node-deliver-messages xsa)
by (auto simp add: hb-consistent-prefix)
next
fix $x s a i$
assume xsa prefix of i
thus distinct (node-deliver-messages xsa)
by (auto simp add: node-deliver-messages-distinct)
next
fix $x s a i$
assume xsa prefix of i
thus hb.concurrent-ops-commute (node-deliver-messages xsa)
by (auto simp add: concurrent-operations-commute)
next
fix xs a b state xsa x
assume hb.apply-operations xs []$=$ Some state
and node-deliver-messages xsa $=x s @[(a, b)]$
and xsa prefix of x
thus $\exists y$. interp-msg (a, b) state $=$ Some y
by (metis (no-types, lifting) apply-operations-def bind.bind-lunit not-None-eq hb.apply-operations-Snoc kleisli-def apply-operations-never-fails interp-msg-def)
next
fix $x s$ a b xsa x
assume node-deliver-messages xsa $=x s$ @ $[(a, b)]$
and xsa prefix of x
thus \exists xsa. Ex (op prefix of xsa) \wedge node-deliver-messages $x s a=x s$
using drop-last-message by blast
qed
end
interpretation trivial-rga-implementation: rga λx. []
by (standard, auto simp add: trivial-node-histories.history-order-def trivial-node-histories.prefix-of-node-history-def)
end

6 Increment-Decrement Counter

The Increment-Decrement Counter is perhaps the simplest CRDT, and a paradigmatic example of a replicated data structure with commutative operations.

```
theory
    Counter
imports
    Network
begin
datatype operation = Increment | Decrement
fun counter-op :: operation }=>\mathrm{ int }\rightharpoonup\mathrm{ int where
    counter-op Increment x = Some (x+1)|
    counter-op Decrement x = Some (x-1)
locale counter = network-with-ops - counter-op 0
lemma (in counter) counter-op x \triangleright counter-op y = counter-op y }\triangleright\mathrm{ counter-op x
    by(case-tac x; case-tac y; auto simp add: kleisli-def)
lemma (in counter) concurrent-operations-commute:
    assumes xs prefix of i
    shows hb.concurrent-ops-commute (node-deliver-messages xs)
    using assms
    apply(clarsimp simp: hb.concurrent-ops-commute-def)
    apply(rename-tac a b x y)
    apply(case-tac b; case-tac y; force simp add: interp-msg-def kleisli-def)
    done
corollary (in counter) counter-convergence:
    assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
        and xs prefix of i
        and ys prefix of j
    shows apply-operations xs = apply-operations ys
    using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext
        concurrent-operations-commute node-deliver-messages-distinct hb-consistent-prefix)
context counter begin
sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
    \lambdaops. \existsxs i. xs prefix of i}\wedge node-deliver-messages xs =ops 0
    apply(standard; clarsimp simp add: hb-consistent-prefix drop-last-message
        node-deliver-messages-distinct concurrent-operations-commute)
    apply(metis (full-types) interp-msg-def counter-op.elims)
    using drop-last-message apply blast
```

done
end
end

7 Observed-Remove Set

The ORSet is a well-known CRDT for implementing replicated sets, supporting two operations: the insertion and deletion of an arbitrary element in the shared set.

```
theory
    ORSet
imports
    Network
begin
datatype ( \(\left.{ }^{\prime} i d,{ }^{\prime} a\right)\) operation \(=\operatorname{Add}{ }^{\prime} i d{ }^{\prime} a \mid \operatorname{Rem}\) 'id set \({ }^{\prime} a\)
type-synonym ('id, 'a) state \(={ }^{\prime} a \Rightarrow\) 'id set
definition op-elem :: ('id, 'a) operation \(\Rightarrow{ }^{\prime} a\) where
    op-elem oper \(\equiv\) case oper of Add i \(e \Rightarrow e \mid\) Rem is \(e \Rightarrow e\)
definition interpret-op :: ('id, 'a) operation \(\Rightarrow\left({ }^{\prime} i d,{ }^{\prime} a\right)\) state \(\rightharpoonup(' i d, ' a)\) state ( \(\langle-\rangle[0]\) 1000) where
    interpret-op oper state \(\equiv\)
        let before \(=\) state (op-elem oper);
            after \(=\) case oper of Add i \(e \Rightarrow\) before \(\cup\{i\} \mid\) Rem is \(e \Rightarrow\) before - is
            in Some (state ((op-elem oper) \(:=\) after \()\) )
definition valid-behaviours :: ('id, 'a) state \(\Rightarrow{ }^{\prime} i d \times\left({ }^{\prime} i d,{ }^{\prime} a\right)\) operation \(\Rightarrow\) bool where
    valid-behaviours state msg \(\equiv\)
        case msg of
            \((i, \operatorname{Add} j \quad e) \Rightarrow i=j \mid\)
            ( \(i\), Rem is e) \(\Rightarrow\) is \(=\) state \(e\)
locale orset \(=\) network-with-constrained-ops - interpret-op \(\lambda x .\{ \}\) valid-behaviours
lemma (in orset) add-add-commute:
shows \(\langle\) Add i1 e1 \(\rangle \triangleright\langle\) Add i2 e2 \(\rangle=\langle\) Add i2 e2 \(\rangle \triangleright\langle\) Add i1 e1 \(\rangle\)
by (auto simp add: interpret-op-def op-elem-def kleisli-def, fastforce)
lemma (in orset) add-rem-commute:
assumes \(i \notin\) is
shows \(\langle\) Add i e1 \(\rangle \triangleright\langle\operatorname{Rem}\) is e2 \(\rangle=\langle\) Rem is e2 \(\rangle \triangleright\langle\) Add i e1 \(\rangle\)
using assms by (auto simp add: interpret-op-def kleisli-def op-elem-def, fastforce)
lemma (in orset) apply-operations-never-fails:
assumes xs prefix of \(i\)
shows apply-operations xs \(\neq\) None
using assms proof(induction xs rule: rev-induct, clarsimp)
case (snoc \(x\) xs) thus ?case
proof (cases \(x\) )
case (Broadcast e) thus ?thesis
using snoc by force
next
case (Deliver e) thus ?thesis
using snoc by (clarsimp, metis interpret-op-def interp-msg-def bind.bind-lunit prefix-of-appendD)
qed
```


qed

```
lemma (in orset) add-id-valid:
    assumes xs prefix of j
    and Deliver (i1, Add i2 e) \in set xs
    shows i1 = i2
proof -
    have }\exists\textrm{s}\mathrm{ . valid-behaviours s (i1, Add i2 e)
        using assms deliver-in-prefix-is-valid by blast
    thus ?thesis
        by(simp add: valid-behaviours-def)
qed
```

definition (in orset) added-ids :: ('id $\times\left({ }^{\prime} i d\right.$, 'b) operation) event list \Rightarrow ' $b \Rightarrow$ 'id list where
added-ids es $p \equiv$ List.map-filter (λx. case x of Deliver $(i, \operatorname{Add} j e) \Rightarrow$ if $e=p$ then Some j else None
| - \Rightarrow None) es
lemma (in orset) [simp]:
shows added-ids [] e = []
by (auto simp: added-ids-def map-filter-def)
lemma (in orset) [simp]:
shows added-ids (xs @ ys) e=added-ids xs e @ added-ids ys e
by (auto simp: added-ids-def map-filter-append)
lemma (in orset) added-ids-Broadcast-collapse [simp]:
shows added-ids $\left(\left[\right.\right.$ Broadcast e]) $e^{\prime}=[]$
by (auto simp: added-ids-def map-filter-append map-filter-def)
lemma (in orset) added-ids-Deliver-Rem-collapse [simp]:
shows added-ids ([Deliver (i, Rem is e)]) $e^{\prime}=[]$
by (auto simp: added-ids-def map-filter-append map-filter-def)
lemma (in orset) added-ids-Deliver-Add-diff-collapse [simp]:
shows $e \neq e^{\prime} \Longrightarrow$ added-ids $([D e l i v e r ~(i, \operatorname{Add} j e)]) e^{\prime}=[]$
by (auto simp: added-ids-def map-filter-append map-filter-def)
lemma (in orset) added-ids-Deliver-Add-same-collapse [simp]:
shows added-ids ([Deliver (i, Add je)]) e= [j]
by (auto simp: added-ids-def map-filter-append map-filter-def)
lemma (in orset) added-id-not-in-set:
assumes i1 \notin set (added-ids $[\operatorname{Deliver}(i, \operatorname{Add}$ i2 e)] e)
shows i1 $\neq i 2$
using assms by simp
lemma (in orset) apply-operations-added-ids:
assumes es prefix of j
and apply-operations es $=$ Some f
shows $f x \subseteq$ set (added-ids es x)
using assms proof (induct es arbitrary: f rule: rev-induct, force)
case (snoc x xs) thus ?case
proof (cases x, force)
case (Deliver e)
moreover obtain $a b$ where $e=(a, b)$ by force
ultimately show ?thesis
using snoc by (case-tac b; clarsimp simp: interp-msg-def split: bind-splits,
force split: if-split-asm simp add: op-elem-def interpret-op-def)

```
    qed
qed
lemma (in orset) Deliver-added-ids:
    assumes xs prefix of j
    and i\in set (added-ids xs e)
    shows Deliver (i, Add i e) \in set xs
using assms proof (induct xs rule: rev-induct, clarsimp)
    case (snoc x xs) thus ?case
    proof (cases x, force)
        case (Deliver e')
        moreover obtain a b where }\mp@subsup{e}{}{\prime}=(a,b) by forc
        ultimately show ?thesis
            using snoc apply (case-tac b; clarsimp)
            apply (metis added-ids-Deliver-Add-diff-collapse added-ids-Deliver-Add-same-collapse
                empty-iff list.set(1) set-ConsD add-id-valid in-set-conv-decomp prefix-of-appendD)
            apply force
            done
    qed
qed
lemma (in orset) Broadcast-Deliver-prefix-closed:
    assumes xs @ [Broadcast (r,Rem ix e)] prefix of j
        and i\inix
    shows Deliver (i, Add i e) \in set xs
proof -
    obtain y where apply-operations xs = Some y
        using assms broadcast-only-valid-msgs by blast
    moreover hence ix = y e
    by (metis (mono-tags, lifting) assms(1) broadcast-only-valid-msgs operation.case(2) option.simps(1)
            valid-behaviours-def case-prodD)
    ultimately show ?thesis
        using assms Deliver-added-ids apply-operations-added-ids by blast
qed
lemma (in orset) Broadcast-Deliver-prefix-closed2:
    assumes xs prefix of j
        and Broadcast (r, Rem ix e) \in set xs
    and}i\ini
    shows Deliver (i, Add i e) \in set xs
using assms Broadcast-Deliver-prefix-closed by (induction xs rule: rev-induct; force)
lemma (in orset) concurrent-add-remove-independent-technical:
    assumes i\inis
        and xs prefix of j
        and (i, Add i e) \in set (node-deliver-messages xs) and (ir, Rem is e) \in set (node-deliver-messages
xs)
    shows hb (i, Add i e) (ir, Rem is e)
proof -
    obtain pre k where pre@[Broadcast (ir, Rem is e)] prefix of k
            using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast
    moreover hence Deliver (i, Add i e) \in set pre
        using Broadcast-Deliver-prefix-closed assms(1) by auto
    ultimately show ?thesis
        using hb.intros(2) events-in-local-order by blast
qed
lemma (in orset) Deliver-Add-same-id-same-message:
```

assumes Deliver $(i, \operatorname{Add}$ i e1) $\in \operatorname{set}($ history $j)$ and Deliver $(i, \operatorname{Add}$ i eZ $) \in \operatorname{set}($ history $j)$
shows $e 1=e 2$
proof -
obtain pre1 pre2 k1 k2 where *: pre1@[Broadcast (i, Add i e1)] prefix of k1 pre2@[Broadcast (i, Add i e2)] prefix of k 2
using assms delivery-has-a-cause events-before-exist by meson
moreover hence Broadcast (i, Add i e1) \in set (history k1) Broadcast (i, Add i eZ $) \in$ set (history k2)
using node-histories.prefix-to-carriers node-histories-axioms by force+
ultimately show ?thesis
using msg-id-unique by fastforce
qed
lemma (in orset) ids-imply-messages-same:
assumes $i \in i s$
and xs prefix of j
and $(i, A d d$ i e1 $) \in \operatorname{set}($ node-deliver-messages xs) and (ir, Rem is e2) \in set (node-deliver-messages xs)
shows $e 1=e 2$
proof -
obtain pre k where pre@[Broadcast (ir, Rem is e2)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast
moreover hence Deliver (i, Add i e2) \in set pre
using Broadcast-Deliver-prefix-closed assms(1) by blast
moreover have Deliver (i, Add i e1) $\in \operatorname{set}$ (history j)
using assms(2) assms(3) prefix-msg-in-history by blast
ultimately show ?thesis
by (metis fst-conv msg-id-unique network.delivery-has-a-cause network-axioms operation.inject(1) prefix-elem-to-carriers prefix-of-appendD prod.inject)
qed
corollary (in orset) concurrent-add-remove-independent:
assumes $\neg h b(i$, Add i e1) $($ ir, Rem is e2) and $\neg h b(i r$, Rem is e2) $(i, \operatorname{Add}$ i e1)
and $x s$ prefix of j
and $(i, A d d i e 1) \in \operatorname{set}($ node-deliver-messages $x s)$ and (ir, Rem is e2) $\in \operatorname{set}($ node-deliver-messages xs)
shows $i \notin i s$
using assms ids-imply-messages-same concurrent-add-remove-independent-technical by fastforce
lemma (in orset) rem-rem-commute:
shows \langle Rem i1 e1 $\rangle \triangleright\langle$ Rem i2 e2 $\rangle=\langle$ Rem i2 e2 $\rangle \triangleright\langle$ Rem i1 e1 \rangle
by (unfold interpret-op-def op-elem-def kleisli-def, fastforce)
lemma (in orset) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
proof -
$\{\mathrm{fix} a b x y$
assume $(a, b) \in$ set (node-deliver-messages $x s$)
$(x, y) \in \operatorname{set}($ node-deliver-messages $x s)$
$h b$.concurrent $(a, b)(x, y)$
hence interp-msg $(a, b) \triangleright \operatorname{interp-msg}(x, y)=\operatorname{interp-msg}(x, y) \triangleright \operatorname{interp-msg}(a, b)$
apply (unfold interp-msg-def, case-tac b; case-tac y; simp add: add-add-commute rem-rem-commute
hb.concurrent-def)
apply (metis add-id-valid add-rem-commute assms concurrent-add-remove-independent hb.concurrentD1
hb.concurrentD2 prefix-contains-msg)+
done
\} thus ?thesis

```
    by(fastforce simp: hb.concurrent-ops-commute-def)
qed
theorem (in orset) convergence:
    assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
        and xs prefix of }i\mathrm{ and ys prefix of }
    shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext concurrent-operations-commute
                node-deliver-messages-distinct hb-consistent-prefix)
context orset begin
sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
    \lambdaops.\existsxs i. xs prefx of i}\wedge\mathrm{ node-deliver-messages xs =ops }\lambdax.{
    apply(standard; clarsimp simp add: hb-consistent-prefix node-deliver-messages-distinct
        concurrent-operations-commute)
    apply(metis (no-types, lifting) apply-operations-def bind.bind-lunit not-None-eq
        hb.apply-operations-Snoc kleisli-def apply-operations-never-fails interp-msg-def)
    using drop-last-message apply blast
done
end
end
```


References

[1] P. S. Almeida, A. Shoker, and C. Baquero. Efficient state-based CRDTs by delta-mutation. In International Conference on Networked Systems (NETYS), May 2015.
[2] C. Baquero, P. S. Almeida, and A. Shoker. Making operation-based CRDTs operationbased. In 14th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS), pages 126-140, June 2014.
[3] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott. Riak DT map: a composable, convergent replicated dictionary. In 1st Workshop on Principles and Practice of Eventual Consistency (PaPEC), Apr. 2014.
[4] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed Programming. Springer, second edition, Feb. 2011.
[5] J. Day-Richter. What's different about the new Google Docs: Making collaboration fast, Sept. 2010.
[6] A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving correctness of transformation functions in real-time groupware. In 8th European Conference on Computer-Supported Cooperative Work (ECSCW), pages 277-293, Sept. 2003.
[7] A. Imine, M. Rusinowitch, G. Oster, and P. Molli. Formal design and verification of operational transformation algorithms for copies convergence. Theoretical Computer Science, 351(2):167-183, Feb. 2006.
[8] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558-565, July 1978.
[9] G. Oster, P. Urso, P. Molli, and A. Imine. Proving correctness of transformation functions in collaborative editing systems. Technical Report RR-5795, Dec. 2005.
[10] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract data types: Building blocks for collaborative applications. Journal of Parallel and Distributed Computing, 71(3):354368, 2011.
[11] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of convergent and commutative replicated data types. Technical Report 7506, INRIA, 2011.
[12] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data types. In 13th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pages 386-400, Oct. 2011.
[13] M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle framework. In Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings, pages 33-38, 2008.

