OpSets: Sequential Specifications for Replicated Datatypes Proof Document

Martin Kleppmann ${ }^{1}$, Victor B. F. Gomes ${ }^{1}$, Dominic P. Mulligan ${ }^{2}$, and Alastair R. Beresford ${ }^{1}$
${ }^{1}$ Department of Computer Science and Technology, University of Cambridge, UK
${ }^{2}$ Security Research Group, Arm Research, Cambridge, UK

Abstract

We introduce OpSets, an executable framework for specifying and reasoning about the semantics of replicated datatypes that provide eventual consistency in a distributed system, and for mechanically verifying algorithms that implement these datatypes. Our approach is simple but expressive, allowing us to succinctly specify a variety of abstract datatypes, including maps, sets, lists, text, graphs, trees, and registers. Our datatypes are also composable, enabling the construction of complex data structures. To demonstrate the utility of OpSets for analysing replication algorithms, we highlight an important correctness property for collaborative text editing that has traditionally been overlooked; algorithms that do not satisfy this property can exhibit awkward interleaving of text. We use OpSets to specify this correctness property and prove that although one existing replication algorithm satisfies this property, several other published algorithms do not.

Contents

1 Abstract OpSet 2
1.1 OpSet definition 2
1.2 Helper lemmas about lists 3
1.3 The spec-ops predicate 5
1.4 The crdt-ops predicate 12
2 Specifying list insertion 18
2.1 The insert-ops predicate 19
2.2 Properties of the insert-spec function 20
2.3 Properties of the interp-ins function 25
2.4 Equivalence of the two definitions of insertion 26
2.5 The list-order predicate 32
3 Relationship to Strong List Specification 40
3.1 Lemmas about insertion and deletion 42
3.2 Lemmas about interpreting operations 48
3.3 Satisfying all conditions of $\mathcal{A}_{\text {strong }}$ 52
4 Interleaving of concurrent insertions 54
4.1 Lemmas about insert-ops 54
4.2 Lemmas about interp-ins 58
4.3 Lemmas about list-order 62
4.4 The insert-seq predicate 64
4.5 The proof of no interleaving 69
5 The Replicated Growable Array (RGA) 76
5.1 Commutativity of insert-rga 77
5.2 Lemmas about the rga-ops predicate 80
5.3 Lemmas about the interp-rga function 81
5.4 Proof that RGA satisfies the list specification 82

1 Abstract OpSet

In this section, we define a general-purpose OpSet abstraction that is not specific to any one particular datatype. We develop a library of useful lemmas that we can build upon later when reasoning about a specific datatype.

```
theory OpSet
    imports Main
begin
```


1.1 OpSet definition

An OpSet is a set of (ID, operation) pairs with an associated total order on IDs (represented here with the linorder typeclass), and satisfying the following properties:

1. The ID is unique (that is, if any two pairs in the set have the same ID, then their operation is also the same).
2. If the operation references the IDs of any other operations, those referenced IDs are less than that of the operation itself, according to the total order on IDs. To avoid assuming anything about the structure of operations here, we use a function deps that returns the set of dependent IDs for a given operation. This requirement is a weak expression of causality: an operation can only depend on causally prior operations, and by making the total order on IDs a linear extension of the causal order, we can easily ensure that any referenced IDs are less than that of the operation itself.
3. The OpSet is finite (but we do not assume any particular maximum size).
```
locale opset =
    fixes opset :: ('oid::{linorder} > 'oper) set
        and deps :: 'oper }=>\mathrm{ 'oid set
```

```
assumes unique-oid: \((\) oid, op1 \() \in\) opset \(\Longrightarrow(\) oid, op2 \() \in\) opset \(\Longrightarrow o p 1=o p 2\)
    and ref-older: \((\) oid, oper \() \in\) opset \(\Longrightarrow\) ref \(\in\) deps oper \(\Longrightarrow\) ref \(<\) oid
    and finite-opset: finite opset
```

We prove that any subset of an OpSet is also a valid OpSet. This is the case because, although an operation can depend on causally prior operations, the OpSet does not require those prior operations to actually exist. This weak assumption makes the OpSet model more general and simplifies reasoning about OpSets.
lemma opset-subset:
assumes opset Y deps and $X \subseteq Y$
shows opset X deps
proof
fix oid op1 op2
assume $(o i d, o p 1) \in X$ and $(o i d, o p 2) \in X$
thus op1 $=o p 2$
using assms by (meson opset.unique-oid set-mp)
next
fix oid oper ref
assume (oid, oper) $\in X$ and ref \in deps oper
thus ref < oid using assms by (meson opset.ref-older set-rev-mp)
next
show finite X
using assms opset.finite-opset finite-subset by blast
qed
lemma opset-insert:
assumes opset (insert x ops) deps
shows opset ops deps
using assms opset-subset by blast
lemma opset-sublist:
assumes opset (set (xs @ ys @ zs)) deps
shows opset (set (xs@zs)) deps
proof -
have set $(x s$ @ zs) $\subseteq \operatorname{set}(x s$ @ ys @ zs) by auto
thus opset (set (xs @ zs)) deps
using assms opset-subset by blast
qed

1.2 Helper lemmas about lists

Some general-purpose lemas about lists and sets that are helpful for subsequent proofs.
lemma distinct-rem-mid:

```
    assumes distinct (xs @ \([x]\) @ \(y s\) )
    shows distinct (xs @ys)
    using assms by (induction ys rule: rev-induct, simp-all)
lemma distinct-fst-append:
    assumes \(x \in\) set (map fst xs)
    and distinct (map fst (xs @ ys))
    shows \(x \notin\) set (map fst ys)
    using assms by (induction ys, force + )
lemma distinct-set-remove-last:
    assumes distinct (xs @ [x])
    shows set \(x s=\) set \((x s @[x])-\{x\}\)
    using assms by force
lemma distinct-set-remove-mid:
    assumes distinct (xs @ \([x]\) @ ys)
    shows set \((x s @ y s)=\operatorname{set}(x s @[x] @ y s)-\{x\}\)
    using assms by force
lemma distinct-list-split:
    assumes distinct xs
        and \(x s=x a @ x \# y a\)
        and \(x s=x b @ x \# y b\)
    shows \(x a=x b \wedge y a=y b\)
    using assms proof(induction xs arbitrary: xa xb x)
    fix \(x a x b x\)
    assume [] = \(x a @ x \# y a\)
    thus \(x a=x b \wedge y a=y b\)
        by auto
next
    fix \(a x s x a x b x\)
    assume \(I H: \bigwedge x a x b x\). distinct \(x s \Longrightarrow x s=x a @ x \# y a \Longrightarrow x s=x b @ x \# y b\)
\(\Longrightarrow x a=x b \wedge y a=y b\)
    and distinct \((a \# x s)\) and \(a \# x s=x a @ x \# y a\) and \(a \# x s=x b @ x \# y b\)
    thus \(x a=x b \wedge y a=y b\)
        by (case-tac xa; case-tac xb) auto
qed
lemma distinct-append-swap:
    assumes distinct (xs @ys)
    shows distinct (ys @ xs)
    using assms by (induction ys, auto)
lemma append-subset:
assumes set \(x s=\operatorname{set}(y s @ z s)\)
shows set \(y s \subseteq\) set \(x s\) and set \(z s \subseteq\) set xs
by (metis Un-iff assms set-append subsetI)+
```

```
lemma append-set-rem-last:
    assumes set (xs @ [x])=set (ys @ [x] @ zs)
        and distinct (xs@ @ [x]) and distinct (ys @ [x]@ zs)
    shows set xs = set (ys @ zs)
proof -
    have distinct xs
        using assms distinct-append by blast
    moreover from this have set xs = set (xs@ @x]) - {x}
        by (meson assms distinct-set-remove-last)
    moreover have distinct (ys @ zs)
        using assms distinct-rem-mid by simp
    ultimately show set xs = set (ys@zs)
        using assms distinct-set-remove-mid by metis
qed
lemma distinct-map-fst-remove1:
    assumes distinct (map fst xs)
    shows distinct (map fst (remove1 x xs))
    using assms proof(induction xs)
    case Nil
    then show distinct (map fst (remove1 x []))
        by simp
next
    case (Cons a xs)
    hence IH: distinct (map fst (remove1 x xs))
        by simp
    then show distinct (map fst (remove1 x (a # xs)))
    proof(cases a = x)
        case True
        then show ?thesis
            using Cons.prems by auto
    next
        case False
        moreover have fst a &fst'set (remove1 x xs)
            by (metis (no-types, lifting) Cons.prems distinct.simps(2) image-iff
            list.simps(9) notin-set-remove1 set-map)
        ultimately show ?thesis
            using IH by auto
    qed
qed
```


1.3 The spec-ops predicate

The spec-ops predicate describes a list of (ID, operation) pairs that corresponds to the linearisation of an OpSet, and which we use for sequentially interpreting the OpSet. A list satisfies spec-ops iff it is sorted in ascending order of IDs, if the IDs are unique, and if every operation's dependencies have lower IDs than the operation itself. A list is implicitly finite in Isabelle/HOL.

These requirements correspond to the OpSet definition above, and indeed we prove later that every OpSet has a linearisation that satisfies spec-ops.

```
definition spec-ops :: ('oid::\{linorder \(\} \times{ }^{\prime}\) oper) list \(\Rightarrow\left({ }^{\prime}\right.\) oper \(\Rightarrow{ }^{\prime}\) 'oid set \() \Rightarrow\) bool
where
    spec-ops ops deps \(\equiv(\) sorted (map fst ops) \() \wedge\) distinct (map fst ops) \(\wedge\)
    \((\forall\) oid oper ref. (oid, oper \() \in\) set ops \(\wedge\) ref \(\in\) deps oper \(\longrightarrow\) ref \(<\) oid \()\) )
lemma spec-ops-empty:
    shows spec-ops [] deps
    by (simp add: spec-ops-def)
lemma spec-ops-distinct:
    assumes spec-ops ops deps
    shows distinct ops
    using assms distinct-map spec-ops-def by blast
lemma spec-ops-distinct-fst:
    assumes spec-ops ops deps
    shows distinct (map fst ops)
    using assms by (simp add: spec-ops-def)
lemma spec-ops-sorted:
    assumes spec-ops ops deps
    shows sorted (map fst ops)
    using assms by (simp add: spec-ops-def)
lemma spec-ops-rem-cons:
    assumes spec-ops ( \(x \#\) xs) deps
    shows spec-ops xs deps
proof -
    have sorted (map fst \((x \# x s))\) and distinct (map fst \((x \# x s))\)
        using assms spec-ops-def by blast+
    moreover from this have sorted (map fst xs)
        by (simp add: sorted-Cons)
    moreover have \(\forall\) oid oper ref. (oid, oper \() \in\) set \(x s \wedge\) ref \(\in\) deps oper \(\longrightarrow r e f<\)
oid
        by (meson assms set-subset-Cons spec-ops-def subsetCE)
    ultimately show spec-ops xs deps
        by (simp add: spec-ops-def)
qed
lemma spec-ops-rem-last:
    assumes spec-ops (xs @ [x]) deps
    shows spec-ops xs deps
proof -
    have sorted (map fst (xs @ [x])) and distinct (map fst (xs @ \([x]\) ))
        using assms spec-ops-def by blast+
    moreover from this have sorted (map fst xs) and distinct xs
```

by (auto simp add: sorted-append distinct-butlast distinct-map)
moreover have \forall oid oper ref. (oid, oper $) \in$ set $x s \wedge$ ref \in deps oper \longrightarrow ref $<$ oid
by (metis assms butlast-snoc in-set-butlastD spec-ops-def)
ultimately show spec-ops xs deps
by (simp add: spec-ops-def)
qed
lemma spec-ops-remove1:
assumes spec-ops xs deps
shows spec-ops (remove1 x xs) deps
using assms distinct-map-fst-remove1 spec-ops-def
by (metis notin-set-remove1 sorted-map-remove1 spec-ops-def)
lemma spec-ops-ref-less:
assumes spec-ops xs deps and $($ oid, oper $) \in$ set $x s$
and $r \in$ deps oper
shows $r<$ oid
using assms spec-ops-def by force
lemma spec-ops-ref-less-last:
assumes spec-ops (xs @ [(oid, oper)]) deps and $r \in$ deps oper
shows $r<$ oid
using assms spec-ops-ref-less by fastforce
lemma spec-ops-id-inc:
assumes spec-ops (xs @ [(oid, oper)]) deps and $x \in \operatorname{set}$ (map fst xs)
shows $x<$ oid
proof -
have sorted ((map fst xs) @ (map fst [(oid, oper $)])$) using assms(1) by (simp add: spec-ops-def)
hence $\forall i \in$ set (map fst xs). $i \leq$ oid by (simp add: sorted-append)
moreover have distinct ((map fst xs) @ (map fst [(oid, oper)])) using assms(1) by (simp add: spec-ops-def)
hence $\forall i \in \operatorname{set}($ map fst xs). $i \neq$ oid by auto
ultimately show $x<$ oid using assms(2) le-neq-trans by auto
qed
lemma spec-ops-add-last:
assumes spec-ops xs deps
and $\forall i \in$ set (map fst $x s$). $i<$ oid
and $\forall r e f \in$ deps oper. ref $<$ oid
shows spec-ops (xs @ [(oid, oper)]) deps

```
proof -
    have sorted ((map fst xs) @ [oid])
        using assms sorted-append spec-ops-sorted by fastforce
    moreover have distinct ((map fst xs) @ [oid])
        using assms spec-ops-distinct-fst by fastforce
    moreover have }\forall\mathrm{ oid oper ref. (oid, oper ) & set xs ^ ref }\in\mathrm{ deps oper }\longrightarrowref
oid
        using assms(1) spec-ops-def by fastforce
    hence }\foralli\mathrm{ opr r. (i,opr) Eset (xs @ [(oid,oper)]) ^r dedepsopr }\longrightarrowr<
        using assms(3) by auto
    ultimately show spec-ops (xs @ [(oid,oper)]) deps
        by (simp add: spec-ops-def)
qed
lemma spec-ops-add-any:
    assumes spec-ops (xs @ ys) deps
        and }\foralli\in\operatorname{set (map fst xs). i< oid
        and }\foralli\in\mathrm{ set (map fst ys). oid < i
        and}\forallref\indeps oper. ref < oid
    shows spec-ops (xs @ [(oid,oper)] @ ys) deps
    using assms proof(induction ys rule: rev-induct)
    case Nil
    then show spec-ops (xs @ [(oid, oper)] @ []) deps
        by (simp add: spec-ops-add-last)
next
    case (snoc y ys)
    have IH:spec-ops (xs @ [(oid,oper)] @ ys) deps
    proof -
        from snoc have spec-ops (xs @ ys) deps
            by (metis append-assoc spec-ops-rem-last)
        thus spec-ops (xs @ [(oid,oper)] @ ys) deps
            using assms(2) snoc by auto
    qed
    obtain yi yo where y-pair: y = (yi, yo)
        by force
    have oid-yi: oid < yi
        by (simp add: snoc.prems(3) y-pair)
    have yi-biggest: }\foralli\in\operatorname{set}(map fst (xs @ [(oid,oper)] @ ys)). i< y
    proof -
        have \foralli\in set (map fst xs). i < yi
            using oid-yi assms(2) less-trans by blast
        moreover have }\foralli\in\operatorname{set (map fst ys). i< yi
        by (metis UnCI append-assoc map-append set-append snoc.prems(1) spec-ops-id-inc
y-pair)
            ultimately show ?thesis
            using oid-yi by auto
    qed
    have sorted (map fst (xs @ [(oid,oper)] @ ys @ [y]))
    proof -
```

```
    from IH have sorted (map fst (xs @ [(oid,oper)] @ ys))
        using spec-ops-def by blast
    hence sorted (map fst (xs @ [(oid,oper)] @ ys)@ [yi])
    using yi-biggest sorted-append
    by (metis (no-types, lifting) append-Nil2 order-less-imp-le set-ConsD sorted-single)
    thus sorted (map fst (xs @ [(oid,oper)] @ ys @ [y]))
    by (simp add: y-pair)
    qed
    moreover have distinct (map fst (xs @ [(oid,oper)] @ ys @ [y]))
    proof -
    have distinct (map fst (xs @ [(oid,oper)] @ ys)@ [yi])
        using IH yi-biggest spec-ops-def
        by (metis distinct.simps(2) distinct1-rotate order-less-irrefl rotate1.simps(2))
    thus distinct (map fst (xs @ [(oid,oper)] @ ys @ [y]))
        by (simp add: y-pair)
    qed
    moreover have \foralli opr r. (i,opr) \in set (xs @ [(oid,oper)] @ ys @ [y])
                        \wedger\indeps opr\longrightarrowr<i
    proof -
    have \foralli oprr. (i,opr ) \in set (xs @ [(oid,oper)] @ ys)^r\indepsopr }\longrightarrow
< i
            by (meson IH spec-ops-def)
    moreover have }\forall\mathrm{ ref. ref }\in\mathrm{ deps yo }\longrightarrowref < yi
        by (metis spec-ops-ref-less append-is-Nil-conv last-appendR last-in-set last-snoc
            list.simps(3) snoc.prems(1) y-pair)
    ultimately show ?thesis
        using y-pair by auto
    qed
    ultimately show spec-ops(xs @ [(oid,oper)] @ ys @ [y]) deps
    using spec-ops-def by blast
qed
lemma spec-ops-split:
    assumes spec-ops xs deps
    and oid & set (map fst xs)
    shows \exists pre suf.xs=pre @ suf ^
        (\foralli\in\operatorname{set (map fst pre).i< oid) ^}
        (\foralli\in set (map fst suf). oid < i)
    using assms proof(induction xs rule: rev-induct)
    case Nil
    then show ?case by force
next
    case (snoc x xs)
    obtain xi xr where y-pair: x = (xi,xr)
    by force
    obtain pre suf where IH:xs = pre @ suf ^
                                    ( }\forall\mathrm{ a set (map fst pre). a<oid)^
                ( }\foralla\inset (map fst suf). oid < a)
    by (metis UnCI map-append set-append snoc spec-ops-rem-last)
```

```
    then show ?case
    proof(cases xi < oid)
    case xi-less: True
    have }\forallx\in\operatorname{set (map fst (pre @ suf)). x < xi
        using IH spec-ops-id-inc snoc.prems(1) y-pair by metis
    hence }\forallx\in\mathrm{ set suf.fst x < xi
        by simp
    hence }\forallx\in\mathrm{ set suf. fst x< oid
            using xi-less by auto
    hence suf = []
            using IH last-in-set by fastforce
    hence xs @ [x]=(pre @ [(xi,xr)])@ [] ^
                    (\foralla\inset (map fst ((pre @ [(xi,xr)]))).a<oid)}
                    (\foralla\inset (map fst []). oid <a)
            by (simp add: IH xi-less y-pair)
    then show ?thesis by force
    next
    case False
    hence oid < xi using snoc.prems(2) y-pair by auto
    hence xs @ [x]= pre @ (suf @ [(xi,xr)])^
                (\foralli\in set (map fst pre). i< oid)^
                    (\foralli\in set (map fst (suf @ [(xi,xr)])). oid < i)
            by (simp add: IH y-pair)
    then show ?thesis by blast
    qed
qed
lemma spec-ops-exists-base:
    assumes finite ops
        and \oid op1 op2. (oid,op1) \inops \Longrightarrow(oid,op2) \inops \Longrightarrowop1=op2
    and \oid oper ref. (oid,oper) \in ops \Longrightarrow ref \in deps oper }\Longrightarrow\mathrm{ ref < oid
    shows \existsop-list. set op-list = ops ^ spec-ops op-list deps
    using assms proof(induct ops rule: Finite-Set.finite-induct-select)
    case empty
    then show \existsop-list. set op-list }={}\wedge\mathrm{ spec-ops op-list deps
        by (simp add: spec-ops-empty)
next
    case (select subset)
    from this obtain op-list where set op-list = subset and spec-ops op-list deps
        using assms by blast
    moreover obtain oid oper where select: (oid,oper) \in ops - subset
        using select.hyps(1) by auto
    moreover from this have \op2. (oid,op2) }\inops \Longrightarrowop2 = ope
        using assms(2) by auto
    hence oid & fst ' subset
        by (metis (no-types, lifting) DiffD2 select image-iff prod.collapse psubsetD se-
lect.hyps(1))
    from this obtain pre suf
    where op-list=pre @ suf
```

and $\forall i \in$ set (map fst pre). $i<$ oid and $\forall i \in$ set (map fst suf). oid $<i$
using spec-ops-split calculation by (metis (no-types, lifting) set-map)
moreover have set (pre @ [(oid, oper)] @ suf) = insert (oid, oper) subset
using calculation by auto
moreover have spec-ops (pre @ [(oid, oper)] @ suf) deps
using calculation spec-ops-add-any assms(3) by (metis DiffD1)
ultimately show ?case by blast
qed
We prove that for any given OpSet, a spec-ops linearisation exists:
lemma spec-ops-exists:
assumes opset ops deps
shows \exists op-list. set op-list $=$ ops \wedge spec-ops op-list deps
proof -
have finite ops
using assms opset.finite-opset by force
moreover have \bigwedge oid op1 op2. (oid, op1) \in ops $\Longrightarrow(o i d, o p 2) \in o p s \Longrightarrow o p 1$ $=o p 2$
using assms opset.unique-oid by force
moreover have \bigwedge oid oper ref. (oid, oper $) \in$ ops \Longrightarrow ref \in deps oper $\Longrightarrow r e f<$ oid
using assms opset.ref-older by force
ultimately show \exists op-list. set op-list $=$ ops \wedge spec-ops op-list deps by (simp add: spec-ops-exists-base)
qed
lemma spec-ops-oid-unique:
assumes spec-ops op-list deps
and (oid, op1) \in set op-list
and $(o i d$, op2) \in set op-list
shows op1 = op2
using assms proof (induction op-list, simp)
case (Cons x op-list)
have distinct (map fst (x \# op-list)) using Cons.prems(1) spec-ops-def by blast
hence notin: fst $x \notin$ set (map fst op-list)
by simp
then show op1 = op2
$\operatorname{proof}($ cases fst $x=$ oid $)$
case True
then show op1 = op2
using Cons.prems notin by (metis Pair-inject in-set-zipE set-ConsD zip-map-fst-snd)

next

case False
then have $(o i d, o p 1) \in$ set op-list and $(o i d, o p 2) \in$ set op-list
using Cons.prems by auto
then show op1 = op2
using Cons.IH Cons.prems(1) spec-ops-rem-cons by blast

qed
 qed

Conversely, for any given spec-ops list, the set of pairs in the list is an OpSet:

```
lemma spec-ops-is-opset:
    assumes spec-ops op-list deps
    shows opset (set op-list) deps
proof -
    have \(\bigwedge\) oid op1 op2. (oid, op1) \()\) set op-list \(\Longrightarrow(\) oid, op2 \() \in\) set op-list \(\Longrightarrow o p 1\)
= op2
        using assms spec-ops-oid-unique by fastforce
    moreover have \(\bigwedge\) oid oper ref. (oid, oper \() \in\) set op-list \(\Longrightarrow\) ref \(\in\) deps oper \(\Longrightarrow\)
ref \(<\) oid
        by (meson assms spec-ops-ref-less)
    moreover have finite (set op-list)
        by \(\operatorname{simp}\)
    ultimately show opset (set op-list) deps
        by ( simp add: opset-def)
qed
```


1.4 The crdt-ops predicate

Like spec-ops, the crdt-ops predicate describes the linearisation of an OpSet into a list. Like spec-ops, it requires IDs to be unique. However, its other properties are different: crdt-ops does not require operations to appear in sorted order, but instead, whenever any operation references the ID of a prior operation, that prior operation must appear previously in the crdt-ops list. Thus, the order of operations is partially constrained: operations must appear in causal order, but concurrent operations can be ordered arbitrarily. This list describes the operation sequence in the order it is typically applied to an operation-based CRDT. Applying operations in the order they appear in crdt-ops requires that concurrent operations commute. For any crdt-ops operation sequence, there is a permutation that satisfies the spec-ops predicate. Thus, to check whether a CRDT satisfies its sequential specification, we can prove that interpreting any crdt-ops operation sequence with the commutative operation interpretation results in the same end result as interpreting the spec-ops permutation of that operation sequence with the sequential operation interpretation.

```
inductive crdt-ops :: ('oid \(::\{\) linorder \(\} \times{ }^{\prime}\) oper) list \(\Rightarrow\) ('oper \(\Rightarrow\) 'oid set \() \Rightarrow\) bool
where
    crdt-ops [] deps |
    【crdt-ops xs deps;
        oid \(\notin\) set (map fst xs);
        \(\forall r e f \in\) deps oper. ref \(\in \operatorname{set}(\) map fst xs \() \wedge\) ref \(<\) oid
        \(\rrbracket \Longrightarrow c r d t-o p s(x s\) @ \([(\) oid, oper \()])\) deps
```

```
lemma crdt-ops-intro:
    assumes \(\bigwedge r . r \in\) deps oper \(\Longrightarrow r \in f s t '\) set \(x s \wedge r<\) oid
        and oid \(\notin f s t\) ' set \(x s\)
        and crdt-ops xs deps
    shows crdt-ops (xs @ [(oid, oper)]) deps
    using assms crdt-ops.simps by force
lemma crdt-ops-rem-last:
    assumes crdt-ops (xs @ [x]) deps
    shows crdt-ops xs deps
    using assms crdt-ops.cases snoc-eq-iff-butlast by blast
lemma crdt-ops-ref-less:
    assumes crdt-ops xs deps
        and \((\) oid, oper \() \in\) set \(x s\)
        and \(r \in\) deps oper
    shows \(r<\) oid
    using assms by (induction rule: crdt-ops.induct, auto)
lemma crdt-ops-ref-less-last:
    assumes crdt-ops (xs @ [(oid, oper)])deps
        and \(r \in\) deps oper
    shows \(r<\) oid
    using assms crdt-ops-ref-less by fastforce
lemma crdt-ops-distinct-fst:
    assumes crdt-ops xs deps
    shows distinct (map fst xs)
    using assms proof (induction xs rule: List.rev-induct, simp)
    case (snoc x xs)
    hence distinct (map fst xs)
        using crdt-ops-last by blast
    moreover have fst \(x \notin\) set (map fst xs)
        using snoc by (metis crdt-ops-last fstI image-set)
    ultimately show distinct (map fst (xs @ [x]))
        by \(\operatorname{simp}\)
qed
lemma crdt-ops-distinct:
    assumes crdt-ops xs deps
    shows distinct xs
    using assms crdt-ops-distinct-fst distinct-map by blast
lemma crdt-ops-unique-last:
    assumes crdt-ops (xs @ [(oid, oper)]) deps
    shows oid \(\notin\) set (map fst xs)
    using assms crdt-ops.cases by blast
```

```
lemma crdt-ops-unique-mid:
    assumes crdt-ops (xs @ [(oid,oper)] @ ys) deps
    shows oid & set (map fst xs) ^ oid & set (map fst ys)
    using assms proof(induction ys rule: rev-induct)
    case Nil
    then show oid # set (map fst xs)^ oid # set (map fst [])
        by (metis crdt-ops-unique-last Nil-is-map-conv append-Nil2 empty-iff empty-set)
next
    case (snoc y ys)
    obtain yi yr where y-pair: y = (yi,yr)
        by fastforce
    have IH: oid # set (map fst xs) ^ oid # set (map fst ys)
            using crdt-ops-rem-last snoc by (metis append-assoc)
    have (xs @ (oid,oper) # ys)@ [(yi,yr)]=xs @ (oid,oper) # ys @ [(yi,yr)]
        by simp
    hence yi & set (map fst (xs @ (oid,oper) # ys))
        using crdt-ops-unique-last by (metis append-Cons append-self-conv2 snoc.prems
y-pair)
    thus oid & set (map fst xs) ^ oid & set (map fst (ys @ [y]))
        using IH y-pair by auto
qed
lemma crdt-ops-ref-exists:
    assumes crdt-ops (pre @ (oid,oper) # suf) deps
        and ref \in deps oper
    shows ref }\infst'set pr
    using assms proof(induction suf rule: List.rev-induct)
    case Nil thus ?case
        by (metis crdt-ops-last prod.sel(2))
next
    case (snoc x xs) thus ?case
        using crdt-ops.cases by force
qed
lemma crdt-ops-no-future-ref:
    assumes crdt-ops(xs @ [(oid,oper)] @ ys) deps
    shows \ref.ref \indeps oper \Longrightarrow ref }\not\infst'set y
proof -
    from assms(1) have \ref.ref \indeps oper \Longrightarrow ref \in set (map fst xs)
        by (simp add: crdt-ops-ref-exists)
    moreover have distinct (map fst (xs @ [(oid,oper)] @ ys))
        using assms crdt-ops-distinct-fst by blast
    ultimately have \ref.ref \in deps oper \Longrightarrowref & set (map fst ([(oid,oper)] @
ys))
        using distinct-fst-append by metis
    thus \ref.ref \in deps oper \Longrightarrow ref }\not\infst'set y
        by simp
qed
```

```
lemma crdt-ops-reorder:
    assumes crdt-ops (xs @ [(oid,oper)] @ ys) deps
        and \(\bigwedge\) op2 r. op2 \(\in\) snd' set ys \(\Longrightarrow r \in\) deps op2 \(\Longrightarrow r \neq\) oid
    shows crdt-ops (xs @ ys @ [(oid, oper)]) deps
    using assms proof(induction ys rule: rev-induct)
    case Nil
    then show crdt-ops (xs @ [] @ [(oid,oper)]) deps
        using crdt-ops-rem-last by auto
next
    case (snoc y ys)
    then obtain yi yo where \(y\)-pair: \(y=(y i, y o)\)
        by fastforce
    have \(I H\) : crdt-ops (xs @ys @ [(oid,oper \()]\) ) deps
    proof -
        have crdt-ops (xs @ [(oid, oper)] @ ys) deps
            by (metis snoc(2) append.assoc crdt-ops-rem-last)
    thus crdt-ops (xs @ ys @ [(oid, oper)]) deps
        using snoc.IH snoc.prems(2) by auto
    qed
    have crdt-ops (xs @ ys @ [y]) deps
    proof -
        have \(y i \notin f s t\) 'set (xs @ [(oid, oper)] @ ys)
        by (metis \(y\)-pair append-assoc crdt-ops-unique-last set-map snoc.prems(1))
    hence \(y i \notin f s t\) 'set (xs @ys)
    by auto
    moreover have \(\wedge r . r \in\) deps yo \(\Longrightarrow r \in f s t\) 'set (xs @ys) \(\wedge r<y i\)
    proof -
    have \(\bigwedge r . r \in\) deps yo \(\Longrightarrow r \neq\) oid
                using snoc.prems(2) y-pair by fastforce
    moreover have \(\bigwedge r . r \in\) deps yo \(\Longrightarrow r \in f s t ' s e t(x s\) @ [(oid, oper)] @ ys)
                by (metis y-pair append-assoc snoc.prems(1) crdt-ops-ref-exists)
            moreover have \(\bigwedge r . r \in\) deps yo \(\Longrightarrow r<y i\)
                using crdt-ops-ref-less snoc.prems(1) y-pair by fastforce
            ultimately show \(\wedge r . r \in\) deps yo \(\Longrightarrow r \in f s t\) 'set \((x s @ y s) \wedge r<y i\)
                by \(\operatorname{simp}\)
    qed
    moreover from \(I H\) have crdt-ops (xs @ ys) deps
        using crdt-ops-rem-last by force
    ultimately show crdt-ops (xs @ ys @ [y]) deps
        using \(y\)-pair crdt-ops-intro by (metis append.assoc)
    qed
    moreover have oid \(\notin f s t\) 'set (xs @ ys @ [y])
        using crdt-ops-unique-mid by (metis (no-types, lifting) UnE image-Un
            image-set set-append snoc.prems(1))
    moreover have \(\bigwedge r . r \in\) deps oper \(\Longrightarrow r \in f s t\) 'set (xs @ ys @ [y])
        using crdt-ops-ref-exists
        by (metis UnCI append-Cons image-Un set-append snoc.prems(1))
    moreover have \(\bigwedge r . r \in\) deps oper \(\Longrightarrow r<\) oid
```

using IH crdt-ops-ref-less by fastforce
ultimately show crdt-ops (xs @ (ys @ [y]) @ [(oid, oper)]) deps using crdt-ops-intro by (metis append-assoc)
qed
lemma crdt-ops-rem-middle:
assumes crdt-ops (xs @ [(oid, ref)] @ ys) deps
and \bigwedge op2 r. op2 \in snd' set ys $\Longrightarrow r \in$ deps op2 $\Longrightarrow r \neq$ oid
shows crdt-ops (xs @ ys) deps
using assms crdt-ops-rem-last crdt-ops-reorder append-assoc by metis
lemma crdt-ops-independent-suf:
assumes spec-ops (xs @ [(oid, oper)]) deps
and crdt-ops (ys @ [(oid, oper)] @ zs) deps
and $\operatorname{set}(x s @[($ oid, oper $)])=\operatorname{set}(y s @[($ oid, oper $)] @ z s)$
shows \bigwedge op2 r. op2 \in snd' set $z s \Longrightarrow r \in$ deps op2 $\Longrightarrow r \neq$ oid
proof -
have \bigwedge op2 r. op2 \in snd'set $x s \Longrightarrow r \in$ deps op2 $\Longrightarrow r<$ oid
proof -
from $\operatorname{assms}(1)$ have $\bigwedge i . i \in f s t '$ set $x s \Longrightarrow i<$ oid
using spec-ops-id-inc by fastforce
moreover have $\bigwedge i 2$ op2 r. $(i 2$, op2 $) \in$ set $x s \Longrightarrow r \in$ deps op2 $\Longrightarrow r<i 2$
using assms(1) spec-ops-ref-less spec-ops-rem-last by fastforce
ultimately show \bigwedge op2 r. op $\mathcal{Z} \in$ snd' set $x s \Longrightarrow r \in$ deps op2 $\Longrightarrow r<$ oid
by fastforce
qed
moreover have set $z s \subseteq$ set xs
proof -
have distinct (xs @ [(oid,oper)]) and distinct (ys @ [(oid,oper)] @ zs)
using assms spec-ops-distinct crdt-ops-distinct by blast+
hence set $x s=\operatorname{set}(y s @ z s)$
by (meson append-set-rem-last assms(3))
then show set $z s \subseteq$ set $x s$
using append-subset(2) by simp
qed
ultimately show \bigwedge op2 r. op2 \in snd'set $z s \Longrightarrow r \in$ deps op2 $\Longrightarrow r \neq$ oid by fastforce
qed
lemma crdt-ops-reorder-spec:
assumes spec-ops (xs @ [x]) deps
and crdt-ops (ys @ [x]@zs) deps
and set (xs @ $[x]$) = set (ys @ $[x]$ @ zs)
shows crdt-ops (ys @zs @ [x]) deps
using assms proof -
obtain oid oper where x-pair: $x=$ (oid, oper) by force
hence \bigwedge op2 r. op2 \in snd'set $z s \Longrightarrow r \in$ deps op2 $\Longrightarrow r \neq$ oid
using assms crdt-ops-independent-suf by fastforce
thus crdt-ops (ys @zs @ [x]) deps
using assms(2) crdt-ops-reorder x-pair by metis
qed
lemma crdt-ops-rem-spec:
assumes spec-ops (xs @ [x]) deps and crdt-ops (ys @ [x] @ zs) deps and $\operatorname{set}(x s @[x])=\operatorname{set}(y s @[x] @ z s)$
shows crdt-ops (ys @ zs) deps
using assms crdt-ops-rem-last crdt-ops-reorder-spec append-assoc by metis
lemma crdt-ops-rem-penultimate:
assumes crdt-ops (xs @ [(i1, r1)] @ [(i2, r2)])deps and $\bigwedge r . r \in$ deps $r 2 \Longrightarrow r \neq i 1$
shows crdt-ops (xs @ $[(i 2$, r2)]) deps
proof -
have crdt-ops (xs @ [(i1, r1)]) deps using assms(1) crdt-ops-rem-last by force
hence crdt-ops xs deps using crdt-ops-rem-last by force
moreover have distinct (map fst (xs @ [(i1, r1)] @ [(i2, r2)])) using assms(1) crdt-ops-distinct-fst by blast
hence $i 2 \notin$ set (map fst xs) by auto
moreover have crdt-ops ((xs @ [(i1, r1)]) @ [(i2, r2)]) deps using assms(1) by auto
hence $\bigwedge r . r \in$ deps $r 2 \Longrightarrow r \in f s t$ 'set $(x s @[(i 1, r 1)])$ using crdt-ops-ref-exists by metis
hence $\bigwedge r . r \in$ deps $r 2 \Longrightarrow r \in \operatorname{set}($ map fst $x s)$ using assms(2) by auto
moreover have $\bigwedge r . r \in$ deps $r 2 \Longrightarrow r<i 2$ using assms(1) crdt-ops-ref-less by fastforce
ultimately show crdt-ops (xs @ [(i2, r2)]) deps by (simp add: crdt-ops-intro)
qed
lemma crdt-ops-spec-ops-exist:
assumes crdt-ops xs deps
shows \exists ys. set $x s=$ set ys \wedge spec-ops ys deps
using assms proof(induction xs rule: List.rev-induct)
case Nil
then show \exists ys. set []$=$ set ys \wedge spec-ops ys deps by (simp add: spec-ops-empty)
next
case (snoc $x x s$)
hence $I H: \exists y s$. set $x s=$ set ys \wedge spec-ops ys deps using crdt-ops-rem-last by blast
then obtain ys oid ref where set $x s=$ set $y s$ and spec-ops ys deps and $x=$ (oid, ref) by force

```
moreover have \(\exists\) pre suf. ys \(=\) pre@suf \(\wedge\)
                                    ( \(\forall i \in \operatorname{set}(\) map fst pre). \(i<\) oid \() \wedge\)
                                    ( \(\forall i \in \operatorname{set}(\) map fst suf). oid \(<i)\)
proof -
    have oid \(\notin\) set ( map fst xs)
        using calculation(3) crdt-ops-unique-last snoc.prems by force
    hence oid \(\notin\) set (map fst ys)
        by (simp add: calculation(1))
    thus ?thesis
        using spec-ops-split 〈spec-ops ys deps〉 by blast
    qed
    from this obtain pre suf where ys = pre @ suf and
        \(\forall i \in \operatorname{set}\) (map fst pre). \(i<\) oid and
        \(\forall i \in \operatorname{set}\) (map fst suf). oid \(<i\) by force
    moreover have set (xs @ [(oid, ref)]) = set (pre @ [(oid, ref)] @ suf)
    using crdt-ops-distinct calculation snoc.prems by simp
    moreover have spec-ops (pre @ [(oid, ref)] @ suf) deps
    proof -
        have \(\forall r \in\) deps ref. \(r<\) oid
            using calculation(3) crdt-ops-ref-less-last snoc.prems by fastforce
    hence spec-ops (pre @ [(oid, ref)] @ suf) deps
        using spec-ops-add-any calculation by metis
    thus ?thesis by simp
    qed
    ultimately show \(\exists y s\). set \((x s @[x])=\) set \(y s \wedge\) spec-ops ys deps
    by blast
qed
end
```


2 Specifying list insertion

```
theory Insert-Spec
    imports OpSet
begin
```

In this section we consider only list insertion. We model an insertion operation as a pair (ID, ref), where ref is either None (signifying an insertion at the head of the list) or Some r (an insertion immediately after a reference element with ID r). If the reference element does not exist, the operation does nothing.
We provide two different definitions of the interpretation function for list insertion: insert-spec and insert-alt. The insert-alt definition matches the paper, while insert-spec uses the Isabelle/HOL list datatype, making it more suitable for formal reasoning. In a later subsection we prove that the two definitions are in fact equivalent.
fun insert-spec :: 'oid list \Rightarrow ('oid \times 'oid option $) \Rightarrow$ 'oid list where

```
insert-spec xs (oid, None) \(=\) oid\#xs
insert-spec [] (oid, -) \(=[] \mid\)
insert-spec \((x \# x s)(\) oid, Some ref \()=\)
    (if \(x=\) ref then \(x \#\) oid \(\#\) xs
        else \(x\) \# (insert-spec xs (oid, Some ref)))
fun insert-alt \(::(\) 'oid \(\times\) 'oid option \()\) set \(\Rightarrow(\) 'oid \(\times\) 'oid \() \Rightarrow\) ('oid \(\times\) 'oid option \()\)
set where
    insert-alt list-rel (oid, ref) \(=(\)
    if \(\exists n .(r e f, n) \in\) list-rel
    then \(\{(p, n) \in\) list-rel. \(p \neq r e f\} \cup\{(r e f\), Some oid \()\} \cup\)
            \(\{(i, n) . i=\) oid \(\wedge(r e f, n) \in\) list-rel \(\}\)
    else list-rel)
```

interp-ins is the sequential interpretation of a set of insertion operations. It starts with an empty list as initial state, and then applies the operations from left to right.
definition interp-ins :: ('oid \times 'oid option) list \Rightarrow 'oid list where
interp-ins ops \equiv foldl insert-spec [] ops

2.1 The insert-ops predicate

We now specialise the definitions from the abstract OpSet section for list insertion. insert-opset is an opset consisting only of insertion operations, and insert-ops is the specialisation of the spec-ops predicate for insertion operations. We prove several useful lemmas about insert-ops.
locale insert-opset $=$ opset opset set-option
for opset :: ('oid::\{linorder\} $\times{ }^{\prime}$ oid option) set
definition insert-ops :: ('oid::\{linorder\} \times 'oid option) list \Rightarrow bool where
insert-ops list \equiv spec-ops list set-option
lemma insert-ops-NilI [intro!]:
shows insert-ops []
by (auto simp add: insert-ops-def spec-ops-def)
lemma insert-ops-rem-last [dest]:
assumes insert-ops (xs @ $[x]$)
shows insert-ops xs
using assms insert-ops-def spec-ops-rem-last by blast
lemma insert-ops-rem-cons:
assumes insert-ops ($x \# x s$)
shows insert-ops xs
using assms insert-ops-def spec-ops-rem-cons by blast
lemma insert-ops-append D :
assumes insert-ops (xs @ ys)
shows insert-ops xs
using assms by (induction ys rule: List.rev-induct, auto, metis insert-ops-rem-last append-assoc)
lemma insert-ops-rem-prefix:
assumes insert-ops (pre @ suf)
shows insert-ops suf
using assms proof (induction pre)
case Nil
then show insert-ops ([] @ suf) \Longrightarrow insert-ops suf
by auto
next
case (Cons a pre)
have sorted (map fst suf)
using assms by (simp add: insert-ops-def sorted-append spec-ops-def)
moreover have distinct (map fst suf)
using assms by (simp add: insert-ops-def spec-ops-def)
ultimately show insert-ops $((a \#$ pre $) @$ suf $) \Longrightarrow$ insert-ops suf
by (simp add: insert-ops-def spec-ops-def)
qed
lemma insert-ops-remove1:
assumes insert-ops xs
shows insert-ops (remove1 x xs)
using assms insert-ops-def spec-ops-remove1 by blast
lemma last-op-greatest:
assumes insert-ops (op-list @ [(oid,oper)])
and $x \in$ set (map fst op-list)
shows $x<$ oid
using assms spec-ops-id-inc insert-ops-def by metis
lemma insert-ops-ref-older:
assumes insert-ops (pre @ [(oid, Some ref)] @ suf)
shows ref < oid
using assms by (auto simp add: insert-ops-def spec-ops-def)
lemma insert-ops-memb-ref-older:
assumes insert-ops op-list
and (oid, Some ref) \in set op-list
shows ref $<$ oid
using assms insert-ops-ref-older split-list-first by fastforce

2.2 Properties of the insert-spec function

lemma insert-spec-none [simp]:
shows set (insert-spec xs (oid, None)) $=$ set $x s \cup\{$ oid $\}$
by (induction xs, auto simp add: insert-commute sup-commute)

```
lemma insert-spec-set [simp]:
    assumes ref \(\in\) set xs
    shows set (insert-spec xs (oid, Some ref)) = set \(x s \cup\{\) oid \(\}\)
    using assms proof (induction xs)
    assume ref \(\in\) set []
    thus set (insert-spec [] (oid, Some ref)) \(=\) set [] \(\cup\{\) oid \(\}\)
        by auto
next
    fix \(a x s\)
    assume ref \(\in\) set \(x s \Longrightarrow\) set (insert-spec xs (oid, Some ref)) \(=\) set \(x s \cup\{\) oid \(\}\)
        and ref \(\in \operatorname{set}(a \# x s)\)
    thus set (insert-spec \((a \# x s)(\) oid, Some ref \())=\operatorname{set}(a \# x s) \cup\{\) oid \(\}\)
        by (cases \(a=\) ref, auto simp add: insert-commute sup-commute)
qed
lemma insert-spec-nonex [simp]:
    assumes ref \(\notin\) set \(x s\)
    shows insert-spec xs (oid, Some ref) \(=x s\)
    using assms proof (induction xs)
    show insert-spec [] (oid, Some ref) \(=[]\)
        by \(\operatorname{simp}\)
next
    fix \(a x s\)
    assume ref \(\notin\) set \(x s \Longrightarrow\) insert-spec \(x s\) (oid, Some ref) \(=x s\)
        and ref \(\notin \operatorname{set}(a \# x s)\)
    thus insert-spec (a\#xs) (oid, Some ref) \(=a \# x s\)
        by (cases \(a=\) ref, auto simp add: insert-commute sup-commute)
qed
lemma list-greater-non-memb:
    fixes oid :: 'oid::\{linorder\}
    assumes \(\bigwedge x . x \in\) set \(x s \Longrightarrow x<\) oid
        and oid \(\in\) set \(x s\)
    shows False
    using assms by blast
lemma inserted-item-ident:
    assumes \(a \in \operatorname{set}(\) insert-spec xs \((e, i))\)
        and \(a \notin\) set \(x s\)
    shows \(a=e\)
    using assms proof(induction xs)
    case Nil
    then show \(a=e\) by (cases \(i\), auto)
next
    case (Cons x xs)
    then show \(a=e\)
    proof(cases i)
        case None
        then show \(a=e\) using assms by auto
```

```
    next
    case (Some ref)
    then show }a=e\mathrm{ using Cons by (case-tac x = ref,auto)
    qed
qed
lemma insert-spec-distinct [intro]:
    fixes oid :: 'oid::{linorder}
    assumes distinct xs
        and }\x.x\in\mathrm{ set xs בx< oid
        and ref = Some r \longrightarrowr<oid
    shows distinct (insert-spec xs (oid, ref))
    using assms(1) assms(2) proof(induction xs)
    show distinct (insert-spec [] (oid, ref))
        by(cases ref, auto)
next
    fix a xs
    assume IH: distinct xs \Longrightarrow(\bigwedgex. x set xs \Longrightarrowx< oid) \Longrightarrowdistinct (insert-spec
xs (oid,ref))
    and D: distinct (a#xs)
    and L: \x. x 童 (a#xs)\Longrightarrowx< oid
    show distinct (insert-spec (a#xs) (oid, ref))
    proof(cases ref)
        assume ref = None
        thus distinct (insert-spec (a#xs) (oid, ref))
            using D L by auto
    next
    fix id
    assume S:ref = Some id
    {
        assume EQ:a=id
        hence id }\not=\mathrm{ oid
            using DL by auto
            moreover have id & set xs
                using DEQ by auto
            moreover have oid & set xs
            using L by auto
            ultimately have id }\not=\mathrm{ oid }\wedgeid & set xs ^ oid # set xs ^ distinct xs
            using D by auto
    }
    note T= this
    {
        assume NEQ: a\not= id
        have 0: a & set (insert-spec xs (oid, Some id))
            using D L by(metis distinct.simps(2) insert-spec.simps(1) insert-spec-none
insert-spec-nonex
            insert-spec-set insert-iff list.set(2) not-less-iff-gr-or-eq)
            have 1: distinct xs
            using D by auto
```

```
    have \(\bigwedge x . x \in\) set \(x s \Longrightarrow x<\) oid
    using \(L\) by auto
    hence distinct (insert-spec xs (oid, Some id))
            using \(S I H[O F 1]\) by blast
    hence \(a \notin\) set (insert-spec xs (oid, Some id)) \(\wedge\) distinct (insert-spec xs (oid,
Some id))
            using 0 by auto
    \}
    from this \(S T\) show distinct (insert-spec ( \(a \#\) xs) (oid, ref))
        by clarsimp
    qed
qed
lemma insert-after-ref:
    assumes distinct (xs @ ref \# ys)
    shows insert-spec (xs @ ref \# ys) (oid, Some ref) = xs @ ref \# oid \# ys
    using assms by (induction xs, auto)
lemma insert-somewhere:
    assumes ref \(=\) None \(\vee(r e f=\) Some \(r \wedge r \in\) set list \()\)
    shows \(\exists\) xs ys. list \(=x s\) @ ys \(\wedge\) insert-spec list (oid, ref) \(=x s\) @ oid \# ys
    using assms proof (induction list)
    assume ref \(=\) None \(\vee\) ref \(=\) Some \(r \wedge r \in\) set []
    thus \(\exists\) xs ys. [] =xs @ys \(\wedge\) insert-spec [] (oid, ref) \(=x s @\) oid \(\# y s\)
    proof
        assume \(r e f=\) None
        thus \(\exists\) xs ys. [] =xs @ ys \(\wedge\) insert-spec [] (oid, ref) \(=x s\) @ oid \# ys
            by auto
    next
        assume ref \(=\) Some \(r \wedge r \in\) set []
        thus \(\exists\) xs ys. [] =xs @ ys \(\wedge\) insert-spec [] (oid, ref) \(=x s\) @ oid \(\# y s\)
            by auto
    qed
next
    fix a list
    assume 1: ref \(=\) None \(\vee\) ref \(=\) Some \(r \wedge r \in\) set (a\#list)
        and \(I H:\) ref \(=\) None \(\vee\) ref \(=\) Some \(r \wedge r \in\) set list \(\Longrightarrow\)
            \(\exists\) xs ys. list \(=x s\) @ ys \(\wedge\) insert-spec list \((\) oid, ref \()=x s\) @ oid \(\#\) ys
    show \(\exists x s\) ys. \(a \#\) list \(=x s @ y s \wedge \operatorname{insert-spec}(a \#\) list \()(\) oid, ref \()=x s @\) oid
\# ys
    proof(rule disjE[OF 1])
        assume ref \(=\) None
        thus \(\exists\) xs ys. \(a \#\) list \(=x s\) @ ys \(\wedge\) insert-spec \((a \#\) list \()(o i d, r e f)=x s\) @ oid
\# ys
            by force
    next
            assume ref \(=\) Some \(r \wedge r \in \operatorname{set}(a \#\) list \()\)
            hence 2: \(r=a \vee r \in\) set list and 3: ref \(=\) Some \(r\)
            by auto
```

show $\exists x s$ ys. $a \#$ list $=x s @ y s \wedge$ insert-spec $(a \#$ list $)($ oid, ref $)=x s @$ oid \# ys
proof(rule disjE[OF 2])
assume $r=a$
thus $\exists x s$ ys. $a \#$ list $=x s @ y s \wedge$ insert-spec $(a \#$ list $)(o i d, r e f)=x s @$
oid \# ys
using 3 by (metis append-Cons append-Nil insert-spec.simps(3))
next
assume $r \in$ set list
from this obtain xs ys
where list $=x s$ @ ys \wedge insert-spec list $($ oid, ref $)=x s @$ oid $\# y s$
using $I H 3$ by auto
thus $\exists x s$ ys. $a \#$ list $=x s @ y s \wedge$ insert-spec $(a \#$ list $)($ oid, ref $)=x s$ @
oid \# ys
using 3 by clarsimp (metis append-Cons append-Nil)
qed
qed
qed
lemma insert-first-part:
assumes ref $=$ None $\vee($ ref $=$ Some $r \wedge r \in$ set $x s)$
shows insert-spec (xs @ ys) (oid, ref) = (insert-spec xs (oid, ref)) @ ys
using assms proof(induction ys rule: rev-induct)
assume $r e f=$ None $\vee r e f=$ Some $r \wedge r \in$ set $x s$
thus insert-spec (xs @ []) (oid, ref) = insert-spec xs (oid, ref) @ []
by auto
next
fix x xsa
assume $I H: r e f=$ None $\vee r e f=$ Some $r \wedge r \in$ set $x s \Longrightarrow$ insert-spec (xs @ xsa)
(oid, ref) $=$ insert-spec $x s$ (oid, ref) @ xsa
and ref $=$ None \vee ref $=$ Some $r \wedge r \in$ set $x s$
thus insert-spec (xs @ xsa @ [x]) (oid, ref) = insert-spec xs (oid, ref) @ xsa @
[x]
proof(induction xs)
assume ref $=$ None \vee ref $=$ Some $r \wedge r \in$ set []
thus insert-spec ([] @ xsa @ [x]) (oid, ref) = insert-spec [] (oid, ref) @ xsa @
[x]
by auto
next
fix $a x s$
assume 1: ref $=$ None $\vee r e f=$ Some $r \wedge r \in \operatorname{set}(a \# x s)$
and 2: $((r e f=$ None $\vee r e f=$ Some $r \wedge r \in$ set $x s \Longrightarrow$ insert-spec (xs @ xsa)
(oid, ref) $=$ insert-spec xs (oid, ref) @ xsa) \Longrightarrow
ref $=$ None \vee ref $=$ Some $r \wedge r \in$ set $x s \Longrightarrow$ insert-spec (xs @ xsa @
$[x])($ oid, ref $)=$ insert-spec xs (oid, ref) @ xsa @ $[x])$
and 3: $($ ref $=$ None \vee ref $=$ Some $r \wedge r \in \operatorname{set}(a \# x s) \Longrightarrow i n s e r t-s p e c ~(~(a ~$
$\# x s) @ x s a)($ oid, ref $)=$ insert-spec $(a \# x s)($ oid, ref) @ xsa)
show insert-spec $((a \# x s) @ x s a @[x])($ oid, ref $)=$ insert-spec $(a \# x s)(o i d$,
ref) @ xsa @ $[x]$

```
    proof(rule disjE[OF 1])
            assume ref = None
            thus insert-spec ((a#xs)@ xsa @ [x]) (oid,ref) = insert-spec (a# xs) (oid,
ref) @ xsa @ [x]
            by auto
    next
            assume ref = Some r ^r\in set (a#xs)
            thus insert-spec ((a#xs)@ xsa @ [x]) (oid,ref)= insert-spec (a# xs) (oid,
ref) @ xsa @ [x]
                using 2 3 by auto
        qed
    qed
qed
lemma insert-second-part:
    assumes ref = Some r
        and r}\not\in\mathrm{ set xs
        and}r\in\mathrm{ set ys
    shows insert-spec (xs @ ys) (oid,ref) = xs @ (insert-spec ys (oid,ref))
    using assms proof(induction xs)
    assume ref = Some r
    thus insert-spec ([] @ ys) (oid,ref)=[]@ insert-spec ys (oid,ref)
        by auto
next
    fix a xs
    assume ref = Some r and r & set ( a#xs) and r\in set ys
        and ref = Some r\Longrightarrowr\not= set xs \Longrightarrowr\in set ys \Longrightarrow insert-spec (xs @ ys) (oid,
ref)=xs@ insert-spec ys (oid,ref)
    thus insert-spec ((a# ms)@ ys) (oid,ref)=(a# ms)@ insert-spec ys (oid,ref)
        by auto
qed
```


2.3 Properties of the interp-ins function

lemma interp-ins-empty [simp]:
shows interp-ins [] = []
by (simp add: interp-ins-def)
lemma interp-ins-tail-unfold:
shows interp-ins (xs @ $[x]$) = insert-spec (interp-ins xs) x
by (clarsimp simp add: interp-ins-def)
lemma interp-ins-subset [simp]:
shows set (interp-ins op-list) \subseteq set (map fst op-list)
proof(induction op-list rule: List.rev-induct)
case Nil
then show set $($ interp-ins []) \subseteq set $($ map fst [])
by (simp add: interp-ins-def)
next

```
    case (snoc x xs)
    hence IH: set (interp-ins xs) \subseteq set (map fst xs)
        using interp-ins-def by blast
    obtain oid ref where x-pair: x = (oid,ref)
    by fastforce
    hence spec: interp-ins (xs @ [x]) = insert-spec (interp-ins xs) (oid,ref)
    by (simp add: interp-ins-def)
    then show set (interp-ins (xs @ [x]))\subseteq set (map fst (xs @ [x]))
    proof(cases ref)
        case None
        then show set (interp-ins (xs @ [x])) \subseteq set (map fst (xs @ [x]))
            using IH spec x-pair by auto
    next
        case (Some a)
        then show set (interp-ins (xs @ [x])) \subseteq set (map fst (xs @ [x]))
        using IH spec x-pair by (cases a G set (interp-ins xs), auto)
    qed
qed
lemma interp-ins-distinct:
    assumes insert-ops op-list
    shows distinct (interp-ins op-list)
    using assms proof(induction op-list rule: rev-induct)
    case Nil
    then show distinct (interp-ins [])
        by (simp add: interp-ins-def)
next
    case (snoc x xs)
    hence IH: distinct (interp-ins xs) by blast
    obtain oid ref where x-pair: x = (oid, ref) by force
    hence }\forallx\in\operatorname{set}(map fst xs). x< oid
        using last-op-greatest snoc.prems by blast
    hence }\forallx\in\mathrm{ set (interp-ins xs). x< oid
        using interp-ins-subset by fastforce
    hence distinct (insert-spec (interp-ins xs) (oid, ref))
        using IH insert-spec-distinct insert-spec-nonex by metis
    then show distinct (interp-ins (xs @ [x]))
        by (simp add: x-pair interp-ins-tail-unfold)
qed
```


2.4 Equivalence of the two definitions of insertion

At the beginning of this section we gave two different definitions of interpretation functions for list insertion: insert-spec and insert-alt. In this section we prove that the two are equivalent.
We first define how to derive the successor relation from an Isabelle list. This relation contains (id, None) if $i d$ is the last element of the list, and (id1, id2) if $i d 1$ is immediately followed by $i d 2$ in the list.

```
fun succ-rel :: 'oid list \(\Rightarrow\) ('oid \(\times\) 'oid option) set where
    succ-rel []\(=\{ \} \mid\)
    succ-rel \([\) head \(]=\{(\) head, None \()\} \mid\)
    succ-rel \((\) head \(\# x \# x s)=\{(\) head, Some \(x)\} \cup\) succ-rel \((x \# x s)\)
```

interp-alt is the equivalent of interp-ins, but using insert-alt instead of insertspec. To match the paper, it uses a distinct head element to refer to the beginning of the list.

```
definition interp-alt \(::\) 'oid \(\Rightarrow\) ('oid \(\times\) 'oid option) list \(\Rightarrow\) ('oid \(\times\) 'oid option) set
where
    interp-alt head ops \(\equiv\) foldl insert-alt \(\{(\) head, None \()\}\)
    (map ( \(\lambda x\). case \(x\) of
        (oid, None) \(\quad \Rightarrow\) (oid, head \() \mid\)
        (oid, Some ref) \(\Rightarrow(\) oid, ref \())\)
        ops)
lemma succ-rel-set-fst:
    shows \(f s t\) ' \((\) succ-rel \(x s)=\) set \(x s\)
    by (induction xs rule: succ-rel.induct, auto)
lemma succ-rel-functional:
    assumes \((a, b 1) \in\) succ-rel xs
        and \((a, b 2) \in\) succ-rel \(x s\)
        and distinct xs
    shows \(b 1=b 2\)
    using assms proof(induction xs rule: succ-rel.induct)
    case 1
    then show? ?ase by simp
next
    case (2 head)
    then show? case by simp
next
    case (3 head \(x\) xs)
    then show ?case
    \(\operatorname{proof}(\) cases \(a=\) head \()\)
        case True
        hence \(a \notin \operatorname{set}(x \# x s)\)
            using 3 by auto
        hence \(a \notin f_{s t}\) ' (succ-rel ( \(x \# x s\) ))
            using succ-rel-set-fst by metis
        then show \(b 1=b 2\)
            using 3 image-iff by fastforce
    next
        case False
        hence \(\{(a, b 1),(a, b 2)\} \subseteq \operatorname{succ}-r e l(x \# x s)\)
            using 3 by auto
        moreover have distinct ( \(x \# x s\) )
            using 3 by auto
        ultimately show \(b 1=b 2\)
```

using 3.IH by auto
qed
qed
lemma succ-rel-rem-head:
assumes distinct (x \# xs)
shows $\{(p, n) \in \operatorname{succ}$-rel $(x \# x s) . p \neq x\}=$ succ-rel $x s$
proof -
have head-notin: $x \notin f$ st' succ-rel xs
using assms by (simp add: succ-rel-set-fst)
moreover obtain y where $(x, y) \in \operatorname{succ}-r e l(x \# x s)$
by (cases xs, auto)
moreover have succ-rel $(x \# x s)=\{(x, y)\} \cup$ succ-rel xs
using calculation head-notin image-iff by (cases xs, fastforce +)
moreover from this have $\bigwedge n .(x, n) \in \operatorname{succ}$-rel $(x \# x s) \Longrightarrow n=y$
by (metis Pair-inject fst-conv head-notin image-eqI insertE insert-is-Un)
hence $\{(p, n) \in \operatorname{succ}-r e l(x \# x s) . p \neq x\}=\operatorname{succ}-r e l(x \# x s)-\{(x, y)\}$
by blast
moreover have succ-rel $(x \# x s)-\{(x, y)\}=$ succ-rel $x s$
using image-iff calculation by fastforce
ultimately show $\{(p, n) \in \operatorname{succ}-r e l(x \# x s) . p \neq x\}=$ succ-rel $x s$
by simp
qed
lemma succ-rel-swap-head:
assumes distinct (ref \# list)
and (ref, n) \in succ-rel (ref \# list)
shows succ-rel (oid $\#$ list $)=\{($ oid, $n)\} \cup$ succ-rel list
proof(cases list)
case Nil
then show ?thesis using assms by auto
next
case (Cons a list)
moreover from this have $n=$ Some a
by (metis Un-iff assms singletonI succ-rel.simps(3) succ-rel-functional)
ultimately show ?thesis by simp
qed
lemma succ-rel-insert-alt:
assumes $a \neq r e f$
and distinct (oid \# a \# b \# list)
shows insert-alt (succ-rel ($a \# b$ \# list) $)($ oid, ref $)=$ $\{(a$, Some b) $\} \cup$ insert-alt (succ-rel $(b \#$ list $))($ oid, ref $)$
$\operatorname{proof}($ cases $\exists n$. (ref, $n) \in \operatorname{succ}-r e l(a \# b \#$ list $))$
case True
hence insert-alt (succ-rel ($a \# b \#$ list) $)($ oid, ref $)=$
$\{(p, n) \in \operatorname{succ}-r e l(a \# b \#$ list $) . p \neq r e f\} \cup\{($ ref, Some oid $)\} \cup$ $\{(i, n) . i=$ oid $\wedge($ ref,$n) \in \operatorname{succ}-$ rel $(a \# b \#$ list $)\}$
by simp
moreover have $\{(p, n) \in \operatorname{succ}-r e l(a \# b \#$ list $) . p \neq r e f\}=$ $\{(a$, Some $b)\} \cup\{(p, n) \in \operatorname{succ}-r e l(b \#$ list $) . p \neq r e f\}$ using assms (1) by auto
moreover have insert-alt (succ-rel (b \# list)) (oid, ref) $=$ $\{(p, n) \in \operatorname{succ}-\mathrm{rel}(b \neq$ list $) . p \neq r e f\} \cup\{($ ref, Some oid $)\} \cup$ $\{(i, n) . i=$ oid $\wedge($ ref,$n) \in \operatorname{succ}-$ rel $(b \#$ list $)\}$
proof -
have $\exists n$. (ref, $n) \in \operatorname{succ}$-rel ($b \#$ list)
using assms(1) True by auto
thus ?thesis by simp
qed
moreover have $\{(i, n) . i=$ oid $\wedge($ ref,$n) \in \operatorname{succ}-\operatorname{rel}(a \# b \#$ list $)\}=$ $\{(i, n) . i=$ oid $\wedge($ ref,$n) \in \operatorname{succ}-r e l(b \#$ list $)\}$
using assms (1) by auto
ultimately show ?thesis by simp
next
case False
then show ?thesis by auto
qed
lemma succ-rel-insert-head:
assumes distinct (ref \# list)
shows succ-rel (insert-spec (ref \# list) (oid, Some ref)) = insert-alt (succ-rel (ref \# list)) (oid, ref)
proof -
obtain n where ref-in-rel: (ref, $n) \in$ succ-rel (ref \# list)
by (cases list, auto)
moreover from this have $\{(p, n) \in$ succ-rel (ref \# list). $p \neq$ ref $\}=$ succ-rel list
using assms succ-rel-rem-head by (metis (mono-tags, lifting))
moreover have $\{(i, n) . i=$ oid $\wedge($ ref,$n) \in \operatorname{succ}$-rel (ref \# list $)\}=\{($ oid,$n)\}$
proof -
have $\backslash n x$. $($ ref,$n x) \in \operatorname{succ}$-rel $($ ref \# list $) \Longrightarrow n x=n$
using assms by (simp add: succ-rel-functional ref-in-rel)
hence $\{(i, n) \in \operatorname{succ}-$ rel (ref \# list). $i=\operatorname{ref}\} \subseteq\{(r e f, n)\}$ by blast
moreover have $\{($ ref,$n)\} \subseteq\{(i, n) \in \operatorname{succ}$-rel (ref \# list). $i=r e f\}$ by (simp add: ref-in-rel)
ultimately show? ?thesis by blast

qed

moreover have insert-alt (succ-rel (ref \# list)) (oid, ref) $=$

$$
\begin{aligned}
& \{(p, n) \in \text { succ-rel }(\text { ref } \# \text { list }) . p \neq \operatorname{ref}\} \cup\{(\text { ref, Some oid })\} \cup \\
& \{(i, n) . i=\text { oid } \wedge(\text { ref }, n) \in \text { succ-rel }(\text { ref } \# \text { list })\}
\end{aligned}
$$

proof -
have $\exists n .($ ref,$n) \in \operatorname{succ}$-rel (ref \# list) using ref-in-rel by blast
thus? thesis by simp
qed
ultimately have insert-alt (succ-rel (ref \# list)) (oid, ref) $=$

```
                succ-rel list \cup{(ref, Some oid )}}\cup{(oid,n)
    by simp
    moreover have succ-rel (oid # list) ={(oid, n)}\cup succ-rel list
    using assms ref-in-rel succ-rel-swap-head by metis
    hence succ-rel (ref # oid # list) = {(ref, Some oid), (oid, n) } \cup succ-rel list
    by auto
    ultimately show succ-rel (insert-spec (ref # list) (oid, Some ref)) =
                        insert-alt (succ-rel (ref # list)) (oid, ref)
    by auto
qed
lemma succ-rel-insert-later:
    assumes succ-rel (insert-spec (b # list) (oid, Some ref)) =
            insert-alt (succ-rel (b # list)) (oid, ref)
        and a\not= ref
        and distinct (a # b # list)
    shows succ-rel (insert-spec (a # b # list) (oid, Some ref)) =
        insert-alt (succ-rel (a # b # list)) (oid, ref)
proof -
    have succ-rel (a#b # list)={(a,Some b) }\cup succ-rel (b # list)
        by simp
    moreover have insert-spec ( a # b # list) (oid, Some ref) =
                    a # (insert-spec (b # list) (oid, Some ref))
        using assms(2) by simp
    hence succ-rel (insert-spec (a#b # list) (oid, Some ref))=
                {(a,Some b)}\cup succ-rel (insert-spec (b # list) (oid, Some ref))
        by auto
    hence succ-rel (insert-spec (a # b # list) (oid, Some ref)) =
                {(a,Some b)}\cup insert-alt (succ-rel (b # list)) (oid, ref)
        using assms(1) by auto
    moreover have insert-alt (succ-rel (a#b # list)) (oid, ref)=
            {(a,Some b)} \cup insert-alt (succ-rel (b # list)) (oid, ref)
        using succ-rel-insert-alt assms(2) by auto
    ultimately show ?thesis by blast
qed
lemma succ-rel-insert-Some:
    assumes distinct list
    shows succ-rel (insert-spec list (oid, Some ref)) = insert-alt (succ-rel list) (oid,
ref)
    using assms proof(induction list)
    case Nil
    then show succ-rel (insert-spec [] (oid, Some ref)) = insert-alt (succ-rel []) (oid,
ref)
    by simp
next
    case (Cons a list)
    hence distinct (a # list)
        by simp
```

```
    then show succ-rel (insert-spec (a \# list) (oid, Some ref)) =
                insert-alt (succ-rel (a \# list)) (oid, ref)
    \(\operatorname{proof}(\) cases \(a=\) ref \()\)
    case True
    then show ?thesis
        using succ-rel-insert-head 〈distinct (a \# list)〉 by metis
    next
    case False
    hence \(a \neq\) ref by simp
    moreover have succ-rel (insert-spec list (oid, Some ref)) \(=\)
                insert-alt (succ-rel list) (oid, ref)
        using Cons.IH Cons.prems by auto
    ultimately show succ-rel (insert-spec (a\# list) (oid, Some ref)) =
                    insert-alt (succ-rel ( a \# list)) (oid, ref)
        by (cases list, force, metis Cons.prems succ-rel-insert-later)
    qed
qed
```

The main result of this section, that insert-spec and insert-alt are equivalent.

```
theorem insert-alt-equivalent:
    assumes insert-ops ops
        and head \(\notin f s t\) ' set ops
        and \(\bigwedge r\). Some \(r \in\) snd' set ops \(\Longrightarrow r \neq\) head
    shows succ-rel (head \# interp-ins ops) = interp-alt head ops
    using assms proof(induction ops rule: List.rev-induct)
    case Nil
    then show succ-rel (head \# interp-ins []) = interp-alt head []
        by (simp add: interp-ins-def interp-alt-def)
next
    case (snoc \(x\) xs)
    have \(I H\) : succ-rel (head \# interp-ins xs) = interp-alt head xs
        using snoc by auto
    have distinct-list: distinct (head \# interp-ins xs)
    proof -
        have distinct (interp-ins xs)
        using interp-ins-distinct snoc.prems(1) by blast
        moreover have set (interp-ins xs) \(\subseteq f\) ft ' set xs
            using interp-ins-subset snoc.prems(1) by fastforce
            ultimately show distinct (head \# interp-ins xs)
                using snoc.prems(2) by auto
    qed
    obtain oid \(r\) where \(x\)-pair: \(x=(\) oid, \(r)\) by force
    then show succ-rel (head \# interp-ins (xs @ \([x])\) ) = interp-alt head (xs @ \([x]\) )
    proof (cases r)
        case None
        have interp-alt head (xs @ [x]) = insert-alt (interp-alt head xs) (oid, head)
            by (simp add: interp-alt-def None x-pair)
        moreover have ... = insert-alt (succ-rel (head \# interp-ins xs)) (oid, head)
            by (simp add: \(I H\) )
```

```
    moreover have ... = succ-rel (insert-spec (head # interp-ins xs) (oid, Some
head))
            using distinct-list succ-rel-insert-Some by metis
    moreover have ... = succ-rel (head # (insert-spec (interp-ins xs) (oid, None)))
        by auto
    moreover have ... = succ-rel (head # (interp-ins (xs @ [x])))
        by (simp add: interp-ins-tail-unfold None x-pair)
    ultimately show ?thesis by simp
    next
    case (Some ref)
    have ref }\not=\mathrm{ head
        by (simp add: Some snoc.prems(3) x-pair)
    have interp-alt head (xs @ [x]) = insert-alt (interp-alt head xs) (oid,ref)
        by (simp add: interp-alt-def Some x-pair)
    moreover have ... = insert-alt (succ-rel (head # interp-ins xs)) (oid,ref)
            by (simp add: IH)
    moreover have ... = succ-rel (insert-spec (head # interp-ins xs) (oid, Some
ref))
            using distinct-list succ-rel-insert-Some by metis
    moreover have ... = succ-rel (head # (insert-spec (interp-ins xs) (oid, Some
ref)))
            using <ref }\not=\mathrm{ head〉 by auto
        moreover have ... = succ-rel (head # (interp-ins (xs @ [x])))
            by (simp add: interp-ins-tail-unfold Some x-pair)
    ultimately show ?thesis by simp
    qed
qed
```


2.5 The list-order predicate

list-order ops $x y$ holds iff, after interpreting the list of insertion operations $o p s$, the list element with ID x appears before the list element with ID y in the resulting list. We prove several lemmas about this predicate; in particular, that executing additional insertion operations does not change the relative ordering of existing list elements.
definition list-order $::\left({ }^{\prime}\right.$ oid $::\{$ linorder $\} \times{ }^{\prime}$ oid option) list \Rightarrow 'oid \Rightarrow 'oid \Rightarrow bool where
list-order ops $x y \equiv \exists x s$ ys zs. interp-ins ops $=x s$ @ $[x]$ @ ys @ $[y]$ @ zs

lemma list-orderI:

assumes interp-ins ops $=x s$ @ $[x]$ @ $y s$ @ $[y]$ @ zs
shows list-order ops $x y$
using assms by (auto simp add: list-order-def)
lemma list-orderE:
assumes list-order ops $x y$
shows \exists xs ys zs. interp-ins ops $=x s$ @ $[x]$ @ ys @ $[y]$ @ zs
using assms by (auto simp add: list-order-def)

```
lemma list-order-memb1:
    assumes list-order ops x y
    shows }x\in\mathrm{ set (interp-ins ops)
    using assms by (auto simp add: list-order-def)
lemma list-order-memb2:
    assumes list-order ops x y
    shows y fet (interp-ins ops)
    using assms by (auto simp add: list-order-def)
lemma list-order-trans:
    assumes insert-ops op-list
        and list-order op-list x y
        and list-order op-list y z
    shows list-order op-list x z
proof -
    obtain xxs xys xzs where 1: interp-ins op-list = (xxs@[x]@xys)@(y#xzs)
        using assms by (auto simp add: list-order-def interp-ins-def)
    obtain yxs yys yzs where 2: interp-ins op-list = yxs@y#(yys@[z]@yzs)
        using assms by (auto simp add: list-order-def interp-ins-def)
    have 3: distinct (interp-ins op-list)
        using assms interp-ins-distinct by blast
    hence xzs=yys@[z]@yzs
        using distinct-list-split[OF 3, OF 2,OF 1] by auto
    hence interp-ins op-list = xxs@[x]@xys@[y]@yys@[z]@yzs
        using 12 3 by clarsimp
    thus list-order op-list x z
        using assms by (metis append.assoc list-orderI)
qed
lemma insert-preserves-order
    assumes insert-ops ops and insert-ops rest
        and rest = before @ after
        and ops = before @ (oid,ref) # after
    shows \existsxs ys zs. interp-ins rest =xs @ zs ^ interp-ins ops=xs @ ys @ zs
    using assms proof(induction after arbitrary: rest ops rule: List.rev-induct)
    case Nil
    then have 1: interp-ins ops = insert-spec (interp-ins before) (oid,ref)
    by (simp add: interp-ins-tail-unfold)
    then show \exists xs ys zs.interp-ins rest =xs @ zs ^ interp-ins ops = xs @ ys @ zs
    proof(cases ref)
        case None
        hence interp-ins rest = [] @ (interp-ins before) ^
                interp-ins ops = [] @ [oid] @ (interp-ins before)
            using 1 Nil.prems(3) by simp
        then show ?thesis by blast
next
    case (Some a)
```

```
    then show ?thesis
    proof(cases a set (interp-ins before))
        case True
        then obtain xs ys where interp-ins before =xs @ ys ^
            insert-spec (interp-ins before) (oid, ref) = xs @ oid # ys
            using insert-somewhere Some by metis
        hence interp-ins rest =xs@ ys ^ interp-ins ops =xs@ [oid]@ ys
            using 1 Nil.prems(3) by auto
        then show ?thesis by blast
        next
            case False
            hence interp-ins ops = (interp-ins rest)@ [] @ []
            using insert-spec-nonex 1 Nil.prems(3) Some by simp
            then show ?thesis by blast
        qed
    qed
next
    case (snoc oper op-list)
    then have insert-ops ((before @ (oid,ref) # op-list) @ [oper])
        and insert-ops ((before @ op-list) @ [oper])
        by auto
    then have ops1: insert-ops (before @ op-list)
        and ops2: insert-ops (before @ (oid,ref) # op-list)
        using insert-ops-appendD by blast+
    then obtain xs ys zs where IH1: interp-ins(before @ op-list)=xs @ zs
        and IH2: interp-ins (before @ (oid,ref) # op-list) = xs @ ys @ zs
        using snoc.IH by blast
    obtain i2 r2 where oper = (i2, r2) by force
    then show \existsxs ys zs.interp-ins rest =xs@zs ^ interp-ins ops=xs@ ys @zs
    proof(cases r2)
    case None
    hence interp-ins (before @ op-list @ [oper])=(i2 # xs) @ zs
    by (metis IH1 <oper = (i2, r2)` append.assoc append-Cons insert-spec.simps(1)
                interp-ins-tail-unfold)
    moreover have interp-ins (before @ (oid,ref) # op-list @ [oper])=(i2 # xs)
@ ys@zs
    by (metis IH2 None <oper = (i2, r2)` append.assoc append-Cons insert-spec.simps(1)
        interp-ins-tail-unfold)
    ultimately show ?thesis
        using snoc.prems(3) snoc.prems(4) by blast
    next
    case (Some r)
    then have 1: interp-ins (before @ (oid,ref) # op-list @ [(i2,r2)])=
                    insert-spec (xs @ ys @ zs) (i2,Some r)
        by (metis IH2 append.assoc append-Cons interp-ins-tail-unfold)
    have 2: interp-ins (before @ op-list @ [(i2, r2)]) = insert-spec (xs @ zs) (i2,
Some r)
    by (metis IH1 append.assoc interp-ins-tail-unfold Some)
    consider (r-xs)r\in set xs | (r-ys)r set ys | (r-zs)r re set zs |
```

```
        (r-nonex) r\not\inset(xs@ys @ zs)
        by auto
    then show \existsxs ys zs.interp-ins rest =xs@zs ^ interp-ins ops =xs@ys @
zs
    proof(cases)
        case r-xs
        from this have insert-spec (xs @ ys @ zs) (i2, Some r)=
                        (insert-spec xs (i2,Some r))@ ys @ zs
        by (meson insert-first-part)
        moreover have insert-spec (xs @ zs) (i2,Some r) = (insert-spec xs (i2,Some
r))@zs
        by (meson r-xs insert-first-part)
        ultimately show ?thesis
        using 12 <oper = (i2,r2)> snoc.prems by auto
    next
        case r-ys
        hence r& set xs and r\not\in set zs
            using IH2 ops2 interp-ins-distinct by force+
            moreover from this have insert-spec (xs@ ys @ zs) (i2,Some r)=
                    xs@ (insert-spec ys (i2, Some r))@ zs
            using insert-first-part insert-second-part insert-spec-nonex
            by (metis Some UnE r-ys set-append)
            moreover have insert-spec (xs @ zs) (i2,Some r)=xs @ zs
            by (simp add: Some calculation(1) calculation(2))
            ultimately show ?thesis
            using 12 <oper = (i2, r2)> snoc.prems by auto
    next
        case r-zs
        hence r& set xs and r}\not\in\mathrm{ set ys
            using IH2 ops2 interp-ins-distinct by force+
            moreover from this have insert-spec (xs @ ys @ zs) (i2, Some r)=
                xs @ ys @ (insert-spec zs (i2,Some r))
            by (metis Some UnE insert-second-part insert-spec-nonex set-append)
            moreover have insert-spec (xs@ @s) (i2, Some r)=xs@ (insert-spec zs (i2,
Some r))
            by (simp add: r-zs calculation(1) insert-second-part)
            ultimately show ?thesis
            using 12 <oper = (i2, r2)> snoc.prems by auto
        next
            case r-nonex
            then have insert-spec(xs @ ys @ zs)(i2,Some r)=xs@ ys @ zs
            by simp
            moreover have insert-spec (xs @ zs) (i2, Some r) = xs @ zs
                using r-nonex by simp
            ultimately show ?thesis
            using 12 <oper = (i2,r2)> snoc.prems by auto
        qed
    qed
qed
```

```
lemma distinct-fst:
    assumes distinct (map fst A)
    shows distinct A
    using assms by (induction A) auto
lemma subset-distinct-le:
    assumes set A\subseteq set B and distinct A and distinct B
    shows length }A\leq\mathrm{ length }
    using assms proof(induction B arbitrary: A)
    case Nil
    then show length A < length [] by simp
next
    case (Cons a B)
    then show length }A\leqlength (a#B
    proof(cases a \in set A)
        case True
        have set (remove1 a A)\subseteq set B
            using Cons.prems by auto
        hence length (remove1 a A) \leqlength B
            using Cons.IH Cons.prems by auto
        then show length A\leq length (a#B)
            by (simp add:True length-remove1)
    next
        case False
        hence set A\subseteq set B
            using Cons.prems by auto
        hence length A < length B
            using Cons.IH Cons.prems by auto
        then show length A < length ( a#B)
            by simp
    qed
qed
lemma set-subset-length-eq:
    assumes set A\subseteq set B and length B\leqlength A
        and distinct A and distinct B
    shows set A = set B
proof -
    have length }A\leq\mathrm{ length }
        using assms by (simp add: subset-distinct-le)
    moreover from this have card (set A) = card (set B)
        using assms by (simp add: distinct-card le-antisym)
    ultimately show set A = set B
        using assms(1) by (simp add: card-subset-eq)
qed
lemma length-diff-Suc-exists:
    assumes length xs - length ys = Suc m
```

```
    and set ys \subseteqset xs
    and distinct ys and distinct xs
    shows \existse.e\in set xs ^e\not\in set ys
    using assms proof(induction xs arbitrary:ys)
    case Nil
    then show \existse.e\in set []^e\not\in set ys
        by simp
next
    case (Cons a xs)
    then show \existse.e\in\operatorname{set}(a#xs)\wedgee\not\in\operatorname{set}ys
    proof(cases a \in set ys)
        case True
        have IH:\existse. e\in set xs ^e\not\inset(remove1 a ys)
        proof -
        have length xs - length (remove1 a ys) = Suc m
            by (metis Cons.prems(1) One-nat-def Suc-pred True diff-Suc-Suc length-Cons
                length-pos-if-in-set length-remove1)
        moreover have set (remove1 a ys)\subseteq set xs
            using Cons.prems by auto
        ultimately show ?thesis
            by (meson Cons.IH Cons.prems distinct.simps(2) distinct-remove1)
    qed
    moreover have set ys - {a}\subseteq set xs
        using Cons.prems(2) by auto
    ultimately show }\existse.e\in\operatorname{set}(a#xs)\wedgee\not\inset y
            by (metis Cons.prems(4) distinct.simps(2) in-set-remove1 set-subset-Cons
subsetCE)
    next
        case False
        then show }\existse.e\in\operatorname{set}(a#xs)\wedgee\not\in\operatorname{set}y
            by auto
    qed
qed
lemma app-length-lt-exists:
    assumes xsa@ zsa=xs @ ys
        and length xsa \leqlength xs
    shows xsa@ (drop (length xsa) xs)=xs
    using assms by (induction xsa arbitrary: xs zsa ys, simp,
        metis append-eq-append-conv-if append-take-drop-id)
lemma list-order-monotonic:
    assumes insert-ops }A\mathrm{ and insert-ops B
        and set A\subseteq set B
        and list-order A x y
    shows list-order B x y
    using assms proof(induction rule: measure-induct-rule[where f=\lambdax. (length x
- length A)])
    case (less xa)
```

have distinct（map fst A ）and distinct（map fst xa）and
sorted（map fst A）and sorted（map fst xa）
using less．prems by（auto simp add：insert－ops－def spec－ops－def）
hence distinct A and distinct $x a$
by（auto simp add：distinct－fst）
then show list－order xa x y
proof（cases length $x a-$ length A ）

case 0

hence set $A=$ set $x a$
using set－subset－length－eq less．prems（3）〈distinct $A\rangle\langle$ distinct xa〉diff－is－0－eq
by blast
hence $A=x a$
using 〈distinct（map fst A）〉〈distinct（map fst xa）〉
〈sorted（map fst A）〉〈sorted（map fst xa）〉 map－sorted－distinct－set－unique
by（metis distinct－map less．prems（3）subset－Un－eq）
then show list－order xa x y
using less．prems（4）by blast
next
case（Suc nat）
then obtain e where $e \in$ set $x a$ and $e \notin$ set A
using length－diff－Suc－exists 〈distinct A〉〈distinct xa〉 less．prems（3）by blast
hence $I H$ ：list－order（remove1 e xa）$x y$
proof－
have length（remove1 e xa）－length $A<$ Suc nat
using diff－Suc－1 diff－commute length－remove1 less－Suc－eq Suc $\langle e \in$ set xa
by metis
moreover have insert－ops（remove1 e xa）
by（simp add：insert－ops－remove1 less．prems（2））
moreover have set $A \subseteq$ set（remove1 e xa）
by（metis（no－types，lifting）$\langle e \notin$ set $A\rangle$ in－set－remove1 less．prems（3）
set－rev－mp subsetI）
ultimately show ？thesis
by（simp add：Suc less．IH less．prems（1）less．prems（4））
qed
then obtain $x s$ ys zs where interp－ins（remove1 exa）＝xs＠x\＃ys＠y\＃ $z s$
using list－order－def by fastforce
moreover obtain oid ref where e－pair：$e=$（oid，ref） by fastforce
moreover obtain $p s$ ss where xa－split：xa $=p s$＠$[e]$＠ss and $e \notin$ set ps using split－list－first $\langle e \in$ set xa by fastforce
hence remove1 $e(p s @ e \# s s)=p s$＠ss by（simp add：remove1－append）
moreover from this have insert－ops（ps＠ss）and insert－ops（ps＠$e \# s s$ ）
using xa－split less．prems（2）by（metis append－Cons append－Nil insert－ops－remove1， auto）
then obtain xsa ysa zsa where interp－ins（ps＠ss）＝xsa＠zsa and interp－xa：interp－ins（ps＠（oid，ref）\＃ss）＝xsa＠ysa＠zsa using insert－preserves－order e－pair by metis
moreover have xsa-zsa: xsa @ zsa=xs @ $x \# y s$ @ $y \# z s$
using interp-ins-def remove1-append calculation xa-split by auto
then show list-order xa $x y$
proof (cases length xsa \leq length $x s$)
case True
then obtain $t s$ where $x s a @ t s=x s$
using app-length-lt-exists xsa-zsa by blast

using calculation xa-split by auto
then show list-order xa x y using list-order-def by blast
next
case False
then show list-order xa $x y$

case True
have $x s a-z s a 1: x s a @ z s a=(x s @ x \# y s) @(y \# z s)$ by (simp add: xsa-zsa)
then obtain us where xsa @us=xs @ $x \# y s$ using app-length-lt-exists True by blast
moreover from this have $x s$ @ x \# (drop (Suc (length xs)) xsa) = xsa using append-eq-append-conv-if id-take-nth-drop linorder-not-less nth-append nth-append-length False by metis
moreover have us @ $y \# z s=z s a$
by (metis True xsa-zsa1 append-eq-append-conv-if append-eq-conv-conj
calculation(1))
ultimately have interp-ins $x a=x s @[x] @$ ((drop (Suc (length xs)) xsa) @ ysa @us) @ [y] @ zs by (simp add: e-pair interp-xa xa-split)
then show list-order xa x y using list-order-def by blast
next
case False
hence length (xs @ $x \# y s$) < length xsa using not-less by blast
hence length (xs @ $x \# y s$ @ $[y]$) \leq length $x s a$ by simp
moreover have (xs @ x \# ys @ [y]) @ zs =xsa @ zsa by (simp add: xsa-zsa)
ultimately obtain vs where (xs @ $x \# y s$ @ $[y]$) @ vs = xsa using app-length-lt-exists by blast
hence xsa@ysa@zsa=xs@[x]@ys@[y]@vs@ysa@zsa by simp
hence interp-ins xa=xs @ [x] @ ys @ [y] @ (vs @ ysa @ zsa)
using e-pair interp-xa xa-split by auto
then show list-order xa x y
using list-order-def by blast
qed
qed
end

3 Relationship to Strong List Specification

In this section we show that our list specification is stronger than the $\mathcal{A}_{\text {strong }}$ specification of collaborative text editing by Attiya et al. [1]. We do this by showing that the OpSet interpretation of any set of insertion and deletion operations satisfies all of the consistency criteria that constitute the $\mathcal{A}_{\text {strong }}$ specification.
Attiya et al.'s specification is as follows [1]:
An abstract execution $A=(H$, vis $)$ belongs to the strong list specification $\mathcal{A}_{\text {strong }}$ if and only if there is a relation lo $\subseteq \operatorname{elems}(A) \times$ elems (A), called the list order, such that:

1. Each event $e=d o(o p, w) \in H$ returns a sequence of elements $w=a_{0} \ldots a_{n-1}$, where $a_{i} \in \operatorname{elems}(A)$, such that
(a) w contains exactly the elements visible to e that have been inserted, but not deleted:

$$
\forall a . a \in w \quad \Longleftrightarrow \quad\left(d o\left(\operatorname{ins}(a,-),,_{-}\right) \leq_{\operatorname{vis}} e\right) \wedge \neg\left(d o\left(\operatorname{del}(a),,_{-}\right) \leq_{\operatorname{vis}} e\right)
$$

(b) The order of the elements is consistent with the list order:

$$
\forall i, j .(i<j) \Longrightarrow\left(a_{i}, a_{j}\right) \in \mathrm{lo}
$$

(c) Elements are inserted at the specified position: if $o p=$ $\operatorname{ins}(a, k)$, then $a=a_{\min \{k, n-1\}}$.
2. The list order lo is transitive, irreflexive and total, and thus determines the order of all insert operations in the execution.

This specification considers only insertion and deletion operations, but no assignment. Moreover, it considers only a single list object, not a graph of composable objects like in our paper. Thus, we prove the relationship to $\mathcal{A}_{\text {strong }}$ using a simplified interpretation function that defines only insertion and deletion on a single list.
theory List-Spec
imports Insert-Spec
begin
We first define a datatype for list operations, with two constructors: Insert ref val, and Delete ref. For insertion, the ref argument is the ID of the
existing element after which we want to insert, or None to insert at the head of the list. The val argument is an arbitrary value to associate with the list element. For deletion, the ref argument is the ID of the existing list element to delete.

```
datatype ('oid, 'val) list-op =
    Insert 'oid option 'val |
    Delete 'oid
```

When interpreting operations, the result is a pair (list, vals). The list contains the IDs of list elements in the correct order (equivalent to the list relation in the paper), and vals is a mapping from list element IDs to values (equivalent to the element relation in the paper).
Insertion delegates to the previously defined insert-spec interpretation function. Deleting a list element removes it from vals.

```
fun interp-op :: ('oid list \(\times\left({ }^{\prime}\right.\) oid - 'val \(\left.)\right) \Rightarrow\left({ }^{\prime}\right.\) oid \(\times\left({ }^{\prime}\right.\) oid, 'val) list-op \()\)
    \(\Rightarrow\) ('oid list \(\times\left({ }^{\prime}\right.\) oid \(\rightharpoonup\) 'val \()\) ) where
    interp-op (list, vals) (oid, Insert ref val) \()=(\) insert-spec list (oid, ref), vals(oid \(\mapsto\)
val)) |
    interp-op (list, vals) (oid, Delete ref \()=(\) list, vals(ref \(:=\) None \())\)
definition interp-ops :: ('oid \(\times\) ('oid, 'val) list-op) list \(\Rightarrow\) ('oid list \(\times\) ('oid \(\rightarrow\)
'val)) where
    interp-ops ops \(\equiv\) foldl interp-op ([], Map.empty) ops
```

list-order ops $x y$ holds iff, after interpreting the list of operations ops, the list element with ID x appears before the list element with ID y in the resulting list.
definition list-order :: ('oid $\times\left({ }^{\prime}\right.$ oid, 'val) list-op) list $\Rightarrow{ }^{\prime}$ oid \Rightarrow 'oid \Rightarrow bool where list-order ops $x y \equiv \exists x s y s z s . f s t($ interp-ops ops $)=x s @[x] @ y s @[y] @ z s$

The make-insert function generates a new operation for insertion into a given index in a given list. The exclamation mark is Isabelle's list subscript operator.
fun make-insert :: 'oid list \Rightarrow 'val \Rightarrow nat \Rightarrow ('oid, 'val) list-op where
make-insert list val $0 \quad=$ Insert None val
make-insert [] val $k=$ Insert None val \mid
make-insert list val $($ Suc $k)=\operatorname{Insert}($ Some $($ list $!(\min k($ length list -1$))))$ val
The list-ops predicate is a specialisation of spec-ops to the list-op datatype: it describes a list of (ID, operation) pairs that is sorted by ID, and can thus be used for the sequential interpretation of the OpSet.

```
fun list-op-deps :: ('oid, 'val) list-op }=>\mathrm{ 'oid set where
    list-op-deps (Insert (Some ref) -) ={ref} |
    list-op-deps(Insert None -) ={} |
    list-op-deps(Delete ref )}={ref
```

definition list-ops :: ('oid::\{linorder $\} \times($ 'oid, 'val) list-op) list \Rightarrow bool where list-ops ops \equiv spec-ops ops list-op-deps

3.1 Lemmas about insertion and deletion

definition insertions $::($ 'oid $::\{$ linorder $\} \times(' o i d$, 'val $)$ list-op $)$ list $\Rightarrow($ 'oid \times 'oid option) list where
insertions ops \equiv List.map-filter (λ oper.
case oper of (oid, Insert ref val) \Rightarrow Some (oid, ref) \mid
(oid, Delete ref) \Rightarrow None) ops
definition inserted-ids :: ('oid::\{linorder $\} \times($ 'oid, 'val) list-op) list \Rightarrow 'oid list where
inserted-ids ops \equiv List.map-filter (λ oper.
case oper of (oid, Insert ref val) \Rightarrow Some oid \mid (oid, Delete ref $) \Rightarrow$ None) ops
definition deleted-ids :: ('oid::\{linorder\} $\times($ 'oid, 'val) list-op) list \Rightarrow 'oid list where
deleted-ids ops \equiv List.map-filter (doper.
case oper of (oid, Insert ref val) \Rightarrow None
(oid, Delete ref) \Rightarrow Some ref) ops
lemma interp-ops-unfold-last:
shows interp-ops (xs @ $[x]$)= interp-op (interp-ops xs) x
by (simp add: interp-ops-def)
lemma map-filter-append:
shows List.map-filter P (xs @ ys) = List.map-filter P xs @ List.map-filter P ys by (auto simp add: List.map-filter-def)
lemma map-filter-Some:
assumes P x Some y
shows List.map-filter $P[x]=[y]$
by (simp add: assms map-filter-simps(1) map-filter-simps(2))
lemma map-filter-None:
assumes $P x=$ None
shows List.map-filter $P[x]=[]$
by (simp add: assms map-filter-simps(1) map-filter-simps(2))
lemma insertions-last-ins:
shows insertions (xs @ [(oid, Insert ref val)]) = insertions xs @ [(oid, ref)]
by (simp add: insertions-def map-filter-Some map-filter-append)
lemma insertions-last-del:

```
    shows insertions (xs @ [(oid, Delete ref)])= insertions xs
    by (simp add: insertions-def map-filter-None map-filter-append)
lemma insertions-fst-subset:
    shows set (map fst (insertions ops))\subseteq set (map fst ops)
proof(induction ops rule: List.rev-induct)
    case Nil
    then show set (map fst (insertions [])) \subseteq set (map fst [])
        by (simp add: insert-ops-def spec-ops-def insertions-def map-filter-def)
next
    case (snoc a ops)
    obtain oid oper where a-pair: a = (oid,oper)
        by fastforce
    then show set (map fst (insertions (ops @ [a]))) \subseteq set (map fst (ops @ [a]))
    proof(cases oper)
        case (Insert ref val)
        hence insertions (ops @ [a])= insertions ops @ [(oid,ref)]
            by (simp add: a-pair insertions-last-ins)
        then show ?thesis using snoc.IH a-pair by auto
    next
        case (Delete ref)
        hence insertions (ops @ [a])= insertions ops
            by (simp add: a-pair insertions-last-del)
        then show ?thesis using snoc.IH by auto
    qed
qed
lemma insertions-subset:
    assumes list-ops A and list-ops B
        and set A\subseteq set B
    shows set (insertions A)\subseteq set (insertions B)
    using assms proof(induction B arbitrary: A rule: List.rev-induct)
    case Nil
    then show set (insertions A)\subseteq set (insertions [])
        by (simp add: insertions-def map-filter-simps(2))
next
    case (snoc a ops)
    obtain oid oper where a-pair: a = (oid, oper)
    by fastforce
    have list-ops ops
        using list-ops-def spec-ops-rem-last snoc.prems(2) by blast
    then show set (insertions A)\subseteq set (insertions (ops @ [a]))
    proof(cases a }\in\mathrm{ set A)
    case True
    then obtain as bs where A-split: A=as @ a#bs ^a\not\in set as
        by (meson split-list-first)
    hence remove1 a A=as@ bs
            by (simp add: remove1-append)
    hence as-bs:insertions (remove1 a A) = insertions as @ insertions bs
```

```
    by (simp add: insertions-def map-filter-append)
    moreover have A=as @ [a] @ bs
        by (simp add: A-split)
    hence as-a-bs: insertions A = insertions as @ insertions [a] @ insertions bs
    by (metis insertions-def map-filter-append)
    moreover have IH:set (insertions (remove1 a A))\subseteq set (insertions ops)
    proof -
        have list-ops (remove1 a A)
            using snoc.prems(1) list-ops-def spec-ops-remove1 by blast
    moreover have set (remove1 a A)\subseteq set ops
    proof -
        have distinct A
            using snoc.prems(1) list-ops-def spec-ops-distinct by blast
    hence }a\not\in\mathrm{ set (remove1 a A)
            by auto
    moreover have set (ops @ [a])= set ops \cup{a}
            by auto
    moreover have set (remove1 a A)\subseteq set A
            by (simp add: set-remove1-subset)
    ultimately show set (remove1 a A)\subseteq set ops
            using snoc.prems(3) by blast
    qed
    ultimately show ?thesis
    by (simp add: <list-ops ops` snoc.IH)
    qed
    ultimately show ?thesis
    proof(cases oper)
    case (Insert ref val)
    hence insertions [a]=[(oid,ref)]
        by (simp add: insertions-def map-filter-Some a-pair)
    hence set (insertions A)=set (insertions (remove1 a A)) \cup{(oid,ref)}
        using as-a-bs as-bs by auto
    moreover have set (insertions (ops @ [a])) = set (insertions ops) \cup {(oid,
ref)}
            by (simp add: Insert a-pair insertions-last-ins)
    ultimately show ?thesis
            using IH by auto
    next
    case (Delete ref)
    hence insertions [a]=[]
            by (simp add: insertions-def map-filter-None a-pair)
    hence set (insertions A) = set (insertions (remove1 a A))
            using as-a-bs as-bs by auto
    moreover have set (insertions (ops @ [a])) = set (insertions ops)
            by (simp add: Delete a-pair insertions-last-del)
    ultimately show ?thesis
            using IH by auto
    qed
next
```

```
    case False
    hence set A\subseteq set ops
        using DiffE snoc.prems by auto
    hence set (insertions A)\subseteq set (insertions ops)
        using snoc.IH snoc.prems(1) <list-ops ops` by blast
    moreover have set (insertions ops) \subseteqset (insertions (ops @ [a]))
    by (simp add: insertions-def map-filter-append)
    ultimately show ?thesis
        by blast
    qed
qed
lemma list-ops-insertions:
    assumes list-ops ops
    shows insert-ops (insertions ops)
    using assms proof(induction ops rule: List.rev-induct)
    case Nil
    then show insert-ops (insertions [])
        by (simp add: insert-ops-def spec-ops-def insertions-def map-filter-def)
next
    case (snoc a ops)
    hence IH: insert-ops (insertions ops)
        using list-ops-def spec-ops-rem-last by blast
    obtain oid oper where a-pair: a = (oid,oper)
        by fastforce
    then show insert-ops (insertions(ops@ @a]))
    proof(cases oper)
        case (Insert ref val)
        hence insertions (ops @ [a])= insertions ops @ [(oid,ref)]
            by (simp add: a-pair insertions-last-ins)
        moreover have }\bigwedgei.i\in\operatorname{set (map fst ops) \Longrightarrowi< oid
            using a-pair list-ops-def snoc.prems spec-ops-id-inc by fastforce
            hence \i.i i\in set (map fst (insertions ops)) \Longrightarrowi< oid
            using insertions-fst-subset by blast
            moreover have list-op-deps oper = set-option ref
            using Insert by (cases ref, auto)
        hence \r.r set-option ref \Longrightarrowr< oid
            using list-ops-def spec-ops-ref-less
            by (metis a-pair last-in-set snoc.prems snoc-eq-iff-butlast)
        ultimately show ?thesis
            using IH insert-ops-def spec-ops-add-last by metis
    next
        case (Delete ref)
        hence insertions (ops @ [a]) = insertions ops
            by (simp add: a-pair insertions-last-del)
        then show ?thesis by (simp add:IH)
    qed
qed
```

lemma inserted-ids-last-ins:
shows inserted-ids (xs @ [(oid, Insert ref val)])= inserted-ids xs @ [oid]
by (simp add: inserted-ids-def map-filter-Some map-filter-append)
lemma inserted-ids-last-del:
shows inserted-ids (xs @ [(oid, Delete ref)]) = inserted-ids xs
by (simp add: inserted-ids-def map-filter-None map-filter-append)
lemma inserted-ids-exist:
shows oid \in set (inserted-ids ops $) \longleftrightarrow(\exists$ ref val. (oid, Insert ref val $) \in$ set ops $)$
proof(induction ops rule: List.rev-induct)
case Nil
then show oid \in set (inserted-ids []$) \longleftrightarrow(\exists$ ref val. (oid, Insert ref val) \in set
[])
by (simp add: inserted-ids-def List.map-filter-def)
next
case (snoc a ops)
obtain i oper where a-pair: $a=(i$, oper $)$
by fastforce
then show oid \in set (inserted-ids (ops @ [a])) \longleftrightarrow $(\exists$ ref val. (oid, Insert ref val) \in set (ops @ $[a]))$
proof(cases oper)
case (Insert $r v$)
moreover from this have inserted-ids (ops @ [a]) = inserted-ids ops @ [i]
by (simp add: a-pair inserted-ids-last-ins)
ultimately show ?thesis
using snoc.IH a-pair by auto
next
case (Delete r)
moreover from this have inserted-ids (ops @ [a])= inserted-ids ops by (simp add: a-pair inserted-ids-last-del)
ultimately show ?thesis
by (simp add: a-pair snoc.IH)
qed
qed
lemma deleted-ids-last-ins:
shows deleted-ids (xs @ [(oid, Insert ref val)]) = deleted-ids xs
by (simp add: deleted-ids-def map-filter-None map-filter-append)
lemma deleted-ids-last-del:
shows deleted-ids (xs @ [(oid, Delete ref $)]$) = deleted-ids xs @ [ref]
by (simp add: deleted-ids-def map-filter-Some map-filter-append)
lemma deleted-ids-exist:
shows ref \in set $($ deleted-ids ops $) \longleftrightarrow(\exists i .(i$, Delete ref $) \in$ set ops $)$
proof(induction ops rule: List.rev-induct)
case Nil
then show ref \in set $($ deleted-ids []$) \longleftrightarrow(\exists i .(i$, Delete ref $) \in$ set []$)$

```
    by (simp add: deleted-ids-def List.map-filter-def)
next
    case (snoc a ops)
    obtain oid oper where a-pair: a = (oid,oper)
        by fastforce
    then show ref }\in\mathrm{ set (deleted-ids (ops @ [a])) }\longleftrightarrow(\existsi.(i, Delete ref) \in set (op
@ [a]))
    proof(cases oper)
        case (Insert r v)
        moreover from this have deleted-ids (ops @ [a])= deleted-ids ops
            by (simp add: a-pair deleted-ids-last-ins)
        ultimately show ?thesis
            using a-pair snoc.IH by auto
    next
        case (Delete r)
        moreover from this have deleted-ids (ops @ [a])= deleted-ids ops @ [r]
            by (simp add: a-pair deleted-ids-last-del)
        ultimately show ?thesis
            using a-pair snoc.IH by auto
    qed
qed
lemma deleted-ids-refs-older:
    assumes list-ops (ops @ [(oid,oper)])
    shows \ref.ref }\in\mathrm{ set (deleted-ids ops) }\Longrightarrow\mathrm{ ref < oid
proof -
    fix ref
    assume ref \in set (deleted-ids ops)
    then obtain i where in-ops:(i,Delete ref) \in set ops
        using deleted-ids-exist by blast
    have ref < i
    proof -
        have \i oper r. (i,oper ) \in set ops \Longrightarrowr list-op-deps oper \Longrightarrow }\Longrightarrowr<
            by (meson assms list-ops-def spec-ops-ref-less spec-ops-rem-last)
        thus ref < i
            using in-ops by auto
    qed
    moreover have i< oid
    proof -
        have }\bigwedgei.i\in\operatorname{set (map fst ops) \Longrightarrowi< oid
            using assms by (simp add: list-ops-def spec-ops-id-inc)
        thus ?thesis
            by (metis in-ops in-set-zipE zip-map-fst-snd)
    qed
    ultimately show ref < oid
        using order.strict-trans by blast
qed
```


3.2 Lemmas about interpreting operations

```
lemma interp-ops-list-equiv:
    shows fst (interp-ops ops) = interp-ins (insertions ops)
proof(induction ops rule: List.rev-induct)
    case Nil
    have 1: fst (interp-ops []) = []
        by (simp add: interp-ops-def)
    have 2: interp-ins (insertions []) = []
        by (simp add: insertions-def map-filter-def interp-ins-def)
    show fst (interp-ops []) = interp-ins (insertions [])
        by (simp add: 1 2)
next
    case (snoc a ops)
    obtain oid oper where a-pair: a = (oid,oper)
        by fastforce
    then show fst (interp-ops (ops @ [a])) = interp-ins (insertions (ops @ [a]))
    proof(cases oper)
        case (Insert ref val)
        hence insertions (ops @ [a])= insertions ops @ [(oid,ref)]
            by (simp add: a-pair insertions-last-ins)
            hence interp-ins (insertions (ops @ [a])) = insert-spec (interp-ins (insertions
ops)) (oid, ref)
            by (simp add: interp-ins-tail-unfold)
    moreover have fst (interp-ops (ops @ [a]))= insert-spec (fst (interp-ops ops))
(oid,ref)
            by (metis Insert a-pair fst-conv interp-op.simps(1) interp-ops-unfold-last
prod.collapse)
            ultimately show ?thesis
            using snoc.IH by auto
    next
        case (Delete ref)
        hence insertions (ops @ [a]) = insertions ops
            by (simp add: a-pair insertions-last-del)
        moreover have fst (interp-ops (ops @ [a]))=fst (interp-ops ops)
            by (metis Delete a-pair eq-fst-iff interp-op.simps(2) interp-ops-unfold-last)
        ultimately show ?thesis
            using snoc.IH by auto
        qed
qed
lemma interp-ops-distinct:
    assumes list-ops ops
    shows distinct (fst (interp-ops ops))
    by (simp add: assms interp-ins-distinct interp-ops-list-equiv list-ops-insertions)
```

lemma list-order-equiv:
shows list-order ops $x y \longleftrightarrow$ Insert-Spec.list-order (insertions ops) $x y$
by (simp add: Insert-Spec.list-order-def List-Spec.list-order-def interp-ops-list-equiv)

```
lemma interp-ops-vals-domain:
    assumes list-ops ops
    shows dom (snd (interp-ops ops)) = set (inserted-ids ops) - set (deleted-ids ops)
    using assms proof(induction ops rule: List.rev-induct)
    case Nil
    have 1: interp-ops [] = ([], Map.empty)
    by (simp add: interp-ops-def)
    moreover have 2: inserted-ids [] = [] and deleted-ids [] = []
    by (auto simp add: inserted-ids-def deleted-ids-def map-filter-simps(2))
    ultimately show dom (snd (interp-ops [])) = set (inserted-ids []) - set (deleted-ids
[])
    by (simp add: 1 2)
next
    case (snoc x xs)
    hence IH: dom (snd (interp-ops xs)) = set (inserted-ids xs) - set (deleted-ids
xs)
    using list-ops-def spec-ops-rem-last by blast
    obtain oid oper where x-pair: x = (oid, oper)
        by fastforce
    obtain list vals where interp-xs: interp-ops xs = (list,vals)
    by fastforce
then show dom (snd (interp-ops (xs @ [x])))=
                            set (inserted-ids (xs @ [x])) - set (deleted-ids (xs @ [x]))
    proof(cases oper)
    case (Insert ref val)
    hence interp-ops (xs @ [x]) = (insert-spec list (oid,ref),vals(oid \mapsto val))
        by (simp add: interp-ops-unfold-last interp-xs x-pair)
    hence dom (snd (interp-ops (xs @ [x]))) = (dom vals) \cup {oid}
        by simp
    moreover have set (inserted-ids xs) - set (deleted-ids xs) = dom vals
    using IH interp-xs by auto
    moreover have inserted-ids (xs @ [x]) = inserted-ids xs @ [oid]
    by (simp add: Insert inserted-ids-last-ins x-pair)
    moreover have deleted-ids (xs @ [x]) = deleted-ids xs
        by (simp add: Insert deleted-ids-last-ins x-pair)
    hence set (inserted-ids (xs @ [x])) - set (deleted-ids (xs @ [x])) =
                {oid} \cup set (inserted-ids xs) - set (deleted-ids xs)
            using calculation(3) by auto
    moreover have ... ={oid} \cup (set (inserted-ids xs) - set (deleted-ids xs))
            using deleted-ids-refs-older snoc.prems x-pair by blast
    ultimately show ?thesis by auto
next
    case (Delete ref)
    hence interp-ops (xs @ [x])=(list,vals(ref := None))
            by (simp add: interp-ops-unfold-last interp-xs x-pair)
    hence dom (snd (interp-ops (xs @ [x]))) = (dom vals) - {ref}
            by simp
    moreover have set (inserted-ids xs) - set (deleted-ids xs) = dom vals
```

using IH interp－xs by auto
moreover have inserted－ids（xs＠$[x]$ ）＝inserted－ids xs by（simp add：Delete inserted－ids－last－del x－pair）
moreover have deleted－ids（xs＠$[x]$ ）＝deleted－ids xs＠［ref］ by（simp add：Delete deleted－ids－last－del x－pair）
hence set（inserted－ids（xs＠$[x])$ ）－set（deleted－ids $(x s$＠$[x]))=$ set（inserted－ids xs）－（set（deleted－ids xs $) \cup\{r e f\})$
using calculation（3）by auto
moreover have $\ldots=$ set（inserted－ids xs）- set（deleted－ids xs）$-\{$ ref $\}$
by blast
ultimately show ？thesis by auto
qed
qed
lemma insert－spec－nth－oid：
assumes distinct xs
and $n<$ length $x s$
shows insert－spec xs（oid，Some（xs ！n））！Suc $n=$ oid
using assms proof（induction xs arbitrary：n ）
case Nil
then show insert－spec［］（oid，Some（［］！n））！Suc $n=$ oid
by simp
next
case（Cons a xs）
have distinct（ $a \# x s$ ）
using Cons．prems（1）by auto
then show insert－spec（a\＃xs）（oid，Some（（a\＃xs）！n））！Suc n＝oid
$\operatorname{proof}($ cases $a=(a \# x s)!n)$
case True
then have $n=0$
using 〈distinct（ $a \neq x s$ ）〉Cons．prems（2）gr－implies－not－zero by force
then show insert－spec（a\＃xs）（oid，Some $((a \# x s)!n))!$ Suc $n=$ oid
by auto
next
case False
then have $n>0$
using 〈distinct（ a \＃xs）〉Cons．prems（2）gr－implies－not－zero by force
then obtain m where $n=$ Suc m
using Suc－pred＇by blast
then show insert－spec $(a \# x s)($ oid，Some $((a \# x s)!n))!S u c n=$ oid using Cons．IH Cons．prems by auto
qed
qed
lemma insert－spec－inc－length：
assumes distinct xs
and $n<$ length $x s$
shows length（insert－spec xs（oid，Some $(x s!n))$ ）$=$ Suc（length $x s$ ）
using assms proof（induction xs arbitrary：n，simp）

```
    case (Cons a xs)
    have distinct (a#xs)
    using Cons.prems(1) by auto
    then show length (insert-spec (a# xs) (oid, Some ((a# xs)!n)))}=\mathrm{ Suc (length
(a# xs))
    proof(cases n)
        case 0
        hence insert-spec (a# xs) (oid, Some ((a# xs)!n))=a# oid # xs
            by simp
        then show ?thesis
            by simp
    next
        case (Suc nat)
        hence nat < length xs
            using Cons.prems(2) by auto
        hence length (insert-spec xs (oid, Some (xs ! nat))) = Suc (length xs)
            using Cons.IH Cons.prems(1) by auto
        then show ?thesis
            by (simp add: Suc)
    qed
qed
lemma list-split-two-elems:
    assumes distinct xs
        and }x\in\mathrm{ set xs and }y\in\mathrm{ set xs
        and}x\not=
    shows \exists}\mathrm{ pre mid suf.xs= pre @ x # mid @ y # suf V xs=pre @ y # mid @
x # suf
proof -
    obtain as bs where as-bs:xs=as@ @ [x]@ bs
            using assms(2) split-list-first by fastforce
    show ?thesis
    proof(cases y \in set as)
        case True
        then obtain cs ds where as=cs@ [y]@ds
            using assms(3) split-list-first by fastforce
        then show ?thesis
            by (auto simp add: as-bs)
    next
        case False
        then have y set bs
            using as-bs assms(3) assms(4) by auto
            then obtain cs ds where bs=cs@ [y] @ ds
            using assms(3) split-list-first by fastforce
        then show ?thesis
            by (auto simp add: as-bs)
    qed
qed
```


3.3 Satisfying all conditions of $\mathcal{A}_{\text {strong }}$

Part 1(a) of Attiya et al.'s specification states that whenever the list is observed, the elements of the list are exactly those that have been inserted but not deleted. $\mathcal{A}_{\text {strong }}$ uses the visibility relation $\leq_{\text {vis }}$ to capture the operations known to a node at some arbitrary point in the execution; in the OpSet model, we can simply prove the theorem for an arbitrary OpSet, since the contents of the OpSet at a particular time on a particular node correspond exactly to the set of operations known to that node at that time.

```
theorem inserted-but-not-deleted:
    assumes list-ops ops
        and interp-ops ops = (list, vals)
    shows }a\in\mathrm{ dom (vals )}\longleftrightarrow(\exists\mathrm{ ref val. (a, Insert ref val ) }\in\mathrm{ set ops) }
                            (#i. (i, Delete a) \in set ops)
    using assms deleted-ids-exist inserted-ids-exist interp-ops-vals-domain
    by (metis Diff-iff snd-conv)
```

Part 1(b) states that whenever the list is observed, the order of list elements is consistent with the global list order. We can define the global list order simply as the list order that arises from interpreting the OpSet containing all operations in the entire execution. Then, at any point in the execution, the OpSet is some subset of the set of all operations.
We can then rephrase condition 1(b) as follows: whenever list element x appears before list element y in the interpretation of some-ops, then for any OpSet all-ops that is a superset of some-ops, x must also appear before y in the interpretation of all-ops. In other words, adding more operations to the OpSet does not change the relative order of any existing list elements.

```
theorem list-order-consistent:
    assumes list-ops some-ops and list-ops all-ops
        and set some-ops \subseteq set all-ops
        and list-order some-ops x y
    shows list-order all-ops x y
    using assms list-order-monotonic list-ops-insertions insertions-subset list-order-equiv
by metis
```

Part 1(c) states that inserted elements appear at the specified position: that is, immediately after an insertion of oid at index k, the list index k does indeed contain oid (provided that k is less than the length of the list). We prove this property below.

```
theorem correct-position-insert:
    assumes list-ops (ops @ [(oid,ins)])
        and ins = make-insert (fst (interp-ops ops)) val k
        and list = fst (interp-ops (ops @ [(oid, ins)]))
    shows list!(min k (length list - 1)) = oid
proof(cases k=0\veefst(interp-ops ops) = [])
    case True
```

```
    moreover from this
    have make-insert (fst (interp-ops ops)) val k= Insert None val
        and min-k: min k (length (fst (interp-ops ops)))}=
    by (cases k, auto)
    hence fst (interp-ops (ops @ [(oid, ins)])) = oid # fst (interp-ops ops)
    using assms(2) interp-ops-unfold-last
    by (metis fst-conv insert-spec.simps(1) interp-op.simps(1) prod.collapse)
    ultimately show ?thesis
    by (simp add: min-k assms(3))
next
    case False
    moreover from this have k>0 and fst (interp-ops ops) }\not=[
        using neq0-conv by blast+
    from this obtain nat where k=Suc nat
        using gr0-implies-Suc by blast
    hence make-insert (fst (interp-ops ops)) val k=
            Insert (Some ((fst (interp-ops ops))! (min nat (length (fst (interp-ops ops))
- 1)))) val
    using False by (cases fst (interp-ops ops), auto)
    hence fst (interp-ops (ops @ [(oid, ins)]))=
        insert-spec (fst (interp-ops ops)) (oid, Some ((fst (interp-ops ops))! (min
nat (length (fst (interp-ops ops)) - 1))))
    by (metis assms(2) fst-conv interp-op.simps(1) interp-ops-unfold-last prod.collapse)
    moreover have min nat (length (fst (interp-ops ops)) - 1) < length (fst (interp-ops
ops))
    by (simp add: <fst (interp-ops ops) }=[[]>\mathrm{ min.strict-coboundedI2)
    moreover have distinct (fst (interp-ops ops))
        using interp-ops-distinct list-ops-def spec-ops-rem-last assms(1) by blast
    moreover have length list = Suc (length (fst (interp-ops ops)))
        using assms(3) calculation by (simp add: insert-spec-inc-length)
    ultimately show ?thesis
        using assms insert-spec-nth-oid
        by (metis Suc-diff-1 «k = Suc nat` diff-Suc-1 length-greater-0-conv min-Suc-Suc)
qed
Part 2 states that the list order relation must be transitive, irreflexive, and total. These three properties are straightforward to prove, using our definition of the list-order predicate.
theorem list-order-trans:
assumes list-ops ops
and list-order ops \(x y\)
and list-order ops \(y z\)
shows list-order ops \(x z\)
using assms list-order-trans list-ops-insertions list-order-equiv by blast
theorem list-order-irrefl:
assumes list-ops ops
shows \(\neg\) list-order ops \(x x\)
proof -
```

```
    have list-order ops x x F False
    proof -
    assume list-order ops x x
    then obtain xs ys zs where split:fst (interp-ops ops)=xs@ [x]@ys @ [x]
@ zs
            by (meson List-Spec.list-order-def)
    moreover have distinct (fst (interp-ops ops))
            by (simp add: assms interp-ops-distinct)
    ultimately show False
            by (simp add: split)
    qed
    thus \neglist-order ops x x
    by blast
qed
theorem list-order-total:
    assumes list-ops ops
        and }x\in\operatorname{set}(fst (interp-ops ops))
        and}y\in\operatorname{set}(fst (interp-ops ops)
        and }x\not=
    shows list-order ops x y ` list-order ops y x
proof -
    have distinct (fst (interp-ops ops))
        using assms(1) by (simp add: interp-ops-distinct)
    then obtain pre mid suf
        where fst (interp-opsops)=pre @ x # mid @ y # suf \vee
                fst (interp-ops ops)=pre @ y # mid @ x # suf
        using list-split-two-elems assms by metis
    then show list-order ops x y V list-order ops y x
        by (simp add: list-order-def, blast)
qed
end
```


4 Interleaving of concurrent insertions

In this section we prove that our list specification rules out interleaving of concurrent insertion sequences starting at the same position.

```
theory Interleaving
    imports Insert-Spec
begin
```


4.1 Lemmas about insert-ops

```
lemma map-fst-append1:
    assumes }\foralli\in\operatorname{set (map fst xs). P i
    and P x
    shows \foralli\in set (map fst (xs @ [(x,y)])). Pi
```

using assms by (induction xs, auto)
lemma insert-ops-split:
assumes insert-ops ops
and (oid, ref) \in set ops
shows \exists pre suf. ops = pre @ [(oid, ref)] @ suf \wedge

$$
(\forall i \in \text { set (map fst pre). } i<\text { oid }) \wedge
$$

($\forall i \in \operatorname{set}(m a p$ fst suf). oid $<i)$
using assms proof(induction ops rule: List.rev-induct)
case Nil
then show? case by auto
next
case (snoc $x x s$)
then show? case
$\operatorname{proof}($ cases $x=($ oid, ref $))$
case True
moreover from this have $\forall i \in$ set (map fst xs). $i<$ oid
using last-op-greatest snoc.prems(1) by blast
ultimately have $x s$ @ $[x]=x s$ @ $[($ oid, ref $)] @[] \wedge$
$(\forall i \in \operatorname{set}(\operatorname{map} f s t x s) . i<$ oid $) \wedge$
$(\forall i \in \operatorname{set}(m a p f s t[])$. oid $<i)$
by auto
then show? thesis by force
next
case False
hence (oid, ref) \in set $x s$
using snoc.prems(2) by auto
from this obtain pre suf where $I H: x s=$ pre @ [(oid, ref)] @ suf \wedge
($\forall i \in \operatorname{set}(m a p$ fst pre). $i<$ oid $) \wedge$
$(\forall i \in \operatorname{set}(m a p$ fst suf). oid $<i)$
using snoc.IH snoc.prems(1) by blast
obtain xi xr where x-pair: $x=(x i, x r)$
by force
hence distinct (map fst (pre @ [(oid, ref)] @ suf @ [(xi, xr)]))
by (metis IH append.assoc insert-ops-def spec-ops-def snoc.prems(1))
hence xi \neq oid
by auto
have xi-max: $\forall x \in \operatorname{set}(\operatorname{map}$ fst (pre @ [(oid, ref)] @ suf)). $x<x i$
using IH last-op-greatest snoc.prems(1) x-pair by blast
then show ?thesis
proof $($ cases $x i<$ oid $)$
case True
moreover from this have $\forall x \in$ set suf. fst $x<$ oid using xi-max by auto
hence $s u f=[]$
using IH last-in-set by fastforce
ultimately have $x s$ @ $[x]=($ pre @ $[(x i, x r)]) @[] \wedge$
$(\forall i \in \operatorname{set}($ map fst $(($ pre @ $[(x i, x r)]))) . i<$ oid $) \wedge$
($\forall i \in \operatorname{set}($ map fst []). oid $<i)$

```
            using dual-order.asym xi-max by auto
            then show ?thesis by (simp add:IH)
        next
            case False
            hence oid < xi
            using <xi\not= oid\rangle by auto
            hence }\foralli\in\operatorname{set (map fst (suf @ [(xi,xr)])). oid < i
            using IH map-fst-append1 by auto
    hence xs @ [x]=pre @ [(oid, ref)] @ (suf @ [(xi,xr)])^
                (\foralli\in set (map fst pre). i< oid)^
                (\foralli\in\operatorname{set (map fst (suf @ [(xi, xr)])). oid < i)}
            by (simp add: IH x-pair)
            then show ?thesis by blast
        qed
    qed
qed
lemma insert-ops-split-2:
    assumes insert-ops ops
        and (xid, xr) \in set ops
        and (yid, yr) \in set ops
        and xid < yid
    shows \existsas bs cs.ops=as@ [(xid, xr)]@bs @ [(yid,yr)]@cs^
                (\foralli\in\operatorname{set (map fst as). i< xid)^}
                ( }\foralli\in\operatorname{set}(map fst bs). xid < i^i< yid)
                (\foralli\in set (map fst cs). yid < i)
proof -
    obtain as as1 where x-split:ops=as @ [(xid, xr)]@ as1 ^
        (\foralli\in\operatorname{set (map fst as).i< xid) ^( }\foralli\in\operatorname{set}(map fst as1). xid < i)
        using assms insert-ops-split by blast
    hence insert-ops ((as @ [(xid, xr)])@ as1)
        using assms(1) by auto
    hence insert-ops as1
        using assms(1) insert-ops-rem-prefix by blast
    have (yid, yr) \in set as1
        using x-split assms by auto
    from this obtain bs cs where y-split:as1=bs @ [(yid,yr)] @ cs ^
        (\foralli\in\operatorname{set (map fst bs).i< yid)}\wedge(\foralli\in\operatorname{set (map fst cs). yid < i)}
        using assms insert-ops-split <insert-ops as1> by blast
    hence ops=as@ [(xid, xr)]@ bs@ [(yid,yr)]@ cs
        using x-split by blast
    moreover have }\foralli\in\operatorname{set (map fst bs). xid < i^i< yid
        by (simp add: x-split y-split)
    ultimately show ?thesis
        using x-split }y\mathrm{ -split by blast
qed
lemma insert-ops-sorted-oids:
    assumes insert-ops(xs@ [(i1,r1)] @ ys @ [(i2,r2)])
```

```
    shows \(i 1<i 2\)
proof -
    have \(\bigwedge i . i \in \operatorname{set}(\operatorname{map} f s t(x s @[(i 1, r 1)] @ y s)) \Longrightarrow i<i 2\)
        by (metis append.assoc assms last-op-greatest)
    moreover have \(i 1 \in \operatorname{set}(\operatorname{map} f s t(x s @[(i 1, r 1)]\) @ ys))
        by auto
    ultimately show \(i 1<i 2\)
        by blast
qed
lemma insert-ops-subset-last:
    assumes insert-ops (xs @ [x])
        and insert-ops ys
        and set \(y s \subseteq \operatorname{set}(x s @[x])\)
        and \(x \in\) set \(y s\)
    shows \(x=\) last \(y s\)
    using assms proof(induction ys, simp)
    case (Cons y ys)
    then show \(x=\) last \((y \# y s)\)
    \(\operatorname{proof}(\) cases ys \(=[])\)
        case True
        then show \(x=\) last ( \(y \# y s\) )
            using Cons.prems(4) by auto
    next
        case ys-nonempty: False
        have \(x \neq y\)
        proof -
            obtain mid \(l\) where \(y s=\) mid @ \([l]\)
            using append-butlast-last-id ys-nonempty by metis
            moreover obtain li lr where \(l=(l i, l r)\)
                by force
            moreover have \(\bigwedge i . i \in \operatorname{set}(\operatorname{map} f s t(y \# m i d)) \Longrightarrow i<l i\)
                by (metis last-op-greatest Cons.prems(2) calculation append-Cons)
            hence \(f\) st \(y<l i\)
                by \(\operatorname{simp}\)
            moreover have \(\bigwedge i . i \in \operatorname{set}(\operatorname{map} f s t x s) \Longrightarrow i<f s t x\)
                using assms(1) last-op-greatest by (metis prod.collapse)
            hence \(\bigwedge i . i \in \operatorname{set}(\operatorname{map} f s t(y \# y s)) \Longrightarrow i \leq f s t x\)
                using Cons.prems(3) by fastforce
            ultimately show \(x \neq y\)
            by fastforce
        qed
        then show \(x=\) last \((y \# y s)\)
            using Cons.IH Cons.prems insert-ops-rem-cons ys-nonempty
            by (metis dual-order.trans last-ConsR set-ConsD set-subset-Cons)
    qed
qed
lemma subset-butlast:
```

```
    assumes set xs \subseteqset (ys @ [y])
    and last xs = y
    and distinct xs
    shows set (butlast xs)\subseteq set ys
    using assms by (induction xs, auto)
lemma distinct-append-butlast1:
    assumes distinct (map fst xs @ map fst ys)
    shows distinct (map fst (butlast xs) @ map fst ys)
    using assms proof(induction xs, simp)
    case (Cons a xs)
    have fst a & set (map fst xs @ map fst ys)
        using Cons.prems by auto
    moreover have set (map fst (butlast xs))\subseteq set (map fst xs)
        by (metis in-set-butlastD map-butlast subsetI)
    hence set (map fst (butlast xs) @ map fst ys) \subseteq set (map fst xs @ map fst ys)
        by auto
    ultimately have fst a & set (map fst (butlast xs)@ map fst ys)
        by blast
    then show distinct (map fst (butlast (a # xs)) @ map fst ys)
        using Cons.IH Cons.prems by auto
qed
lemma distinct-append-butlast2:
    assumes distinct (map fst xs @ map fst ys)
    shows distinct (map fst xs @ map fst (butlast ys))
    using assms proof(induction xs)
    case Nil
    then show distinct (map fst [] @ map fst (butlast ys))
        by (simp add: distinct-butlast map-butlast)
next
    case (Cons a xs)
    have fst a & set (map fst xs @ map fst ys)
        using Cons.prems by auto
    moreover have set (map fst (butlast ys))\subseteq set (map fst ys)
        by (metis in-set-butlastD map-butlast subsetI)
    hence set (map fst xs @ map fst (butlast ys)) \subseteq set (map fst xs @ map fst ys)
        by auto
    ultimately have fst a & set (map fst xs @ map fst (butlast ys))
        by blast
    then show ?case
        using Cons.IH Cons.prems by auto
qed
```


4.2 Lemmas about interp-ins

```
lemma interp-ins-maybe-grow:
assumes insert-ops (xs @ [(oid, ref)])
shows set (interp-ins \((x s\) @ \([(\) oid, ref \()]))=\operatorname{set}(\) interp-ins \(x s) \vee\)
```

set $($ interp-ins $(x s @[($ oid, ref $)]))=($ set $($ interp-ins xs $) \cup\{$ oid $\})$
by (cases ref, simp add: interp-ins-tail-unfold,
metis insert-spec-nonex insert-spec-set interp-ins-tail-unfold)
lemma interp-ins-maybe-grow2:
assumes insert-ops (xs @ [x])
shows set $($ interp-ins $(x s @[x]))=$ set (interp-ins xs $) \vee$ set $($ interp-ins $(x s @[x]))=($ set $($ interp-ins xs $) \cup\{f s t x\})$
using assms interp-ins-maybe-grow by (cases x, auto)
lemma interp-ins-maybe-grow3:
assumes insert-ops (xs @ys)
shows $\exists A . A \subseteq \operatorname{set}($ map fst ys) $\wedge \operatorname{set}($ interp-ins $(x s @ y s))=\operatorname{set}($ interp-ins
xs) $\cup A$
using assms proof(induction ys rule: List.rev-induct)
case Nil
then show? case by simp
next
case (snoc x ys)
then have insert-ops (xs @ys)
by (metis append-assoc insert-ops-rem-last)
then obtain A where $I H: A \subseteq \operatorname{set}($ map fst ys) \wedge

```
                set (interp-ins (xs@ys))=set (interp-ins xs)\cupA
```

using snoc.IH by blast
then show ?case
$\operatorname{proof}($ cases set $($ interp-ins $(x s @ y s @[x]))=$ set $($ interp-ins $(x s @ y s)))$
case True
moreover have $A \subseteq \operatorname{set}$ (map fst (ys @ [x]))
using $I H$ by auto
ultimately show ?thesis
using $I H$ by auto
next
case False
then have set (interp-ins $(x s @ y s @[x]))=$ set $($ interp-ins $(x s @ y s)) \cup\{f s t$
$x\}$ by (metis append-assoc interp-ins-maybe-grow2 snoc.prems)
moreover have $A \cup\{f s t x\} \subseteq \operatorname{set}($ map fst $(y s$ @ $[x])$)
using $I H$ by auto
ultimately show ?thesis
using IH Un-assoc by metis
qed
qed
lemma interp-ins-ref-nonex:
assumes insert-ops ops
and ops =xs@ [(oid, Some ref $)]$ @ ys
and ref \notin set (interp-ins xs)
shows oid \notin set (interp-ins ops)
using assms proof(induction ys arbitrary: ops rule: List.rev-induct)

```
    case Nil
    then have interp-ins ops = insert-spec (interp-ins xs) (oid, Some ref)
    by (simp add: interp-ins-tail-unfold)
    moreover have \\i.i\in set (map fst xs)\Longrightarrowi< oid
    using Nil.prems last-op-greatest by fastforce
    hence }\i.i\in\operatorname{set}(\mathrm{ interp-ins xs) }\Longrightarrowi< oid
    by (meson interp-ins-subset subsetCE)
    ultimately show oid #set (interp-ins ops)
        using assms(3) by auto
next
    case (snoc x ys)
    then have insert-ops (xs @ (oid, Some ref) # ys)
        by (metis append.assoc append.simps(1) append-Cons insert-ops-appendD)
    hence IH: oid & set (interp-ins (xs @ (oid,Some ref) # ys))
    by (simp add: snoc.IH snoc.prems(3))
    moreover have distinct (map fst (xs @ (oid, Some ref) # ys @ [x]))
    using snoc.prems by (metis append-Cons append-self-conv2 insert-ops-def spec-ops-def)
    hence fst }x\not=\mathrm{ oid
        using empty-iff by auto
    moreover have insert-ops ((xs @ (oid, Some ref) # ys) @ [x])
        using snoc.prems by auto
    hence set (interp-ins ((xs @ (oid, Some ref) # ys) @ [x]))=
                set (interp-ins (xs @ (oid, Some ref) # ys))\vee
                set (interp-ins ((xs @ (oid,Some ref) # ys) @ [x]))=
                set (interp-ins (xs @ (oid, Some ref) # ys)) \cup{fst x}
    using interp-ins-maybe-grow2 by blast
    ultimately show oid & set (interp-ins ops)
    using snoc.prems(2) by auto
qed
lemma interp-ins-last-None:
    shows oid \in set (interp-ins (ops @ [(oid, None)]))
    by (simp add: interp-ins-tail-unfold)
lemma interp-ins-monotonic:
    assumes insert-ops (pre @ suf)
        and oid \in set (interp-ins pre)
    shows oid \in set (interp-ins (pre @ suf))
    using assms interp-ins-maybe-grow3 by auto
lemma interp-ins-append-non-memb:
    assumes insert-ops(pre @ [(oid, Some ref)] @ suf)
        and ref }\not\in\mathrm{ set (interp-ins pre)
    shows ref }\not\in\operatorname{set}(\mathrm{ interp-ins (pre @ [(oid, Some ref)] @ suf))
    using assms proof(induction suf rule: List.rev-induct)
    case Nil
    then show ref & set (interp-ins(pre @ [(oid, Some ref)] @ []))
        by (metis append-Nil2 insert-spec-nonex interp-ins-tail-unfold)
next
```

```
    case (snoc x xs)
    hence IH:ref & set (interp-ins(pre @ [(oid,Some ref)] @ xs))
    by (metis append-assoc insert-ops-rem-last)
    moreover have ref < oid
    using insert-ops-ref-older snoc.prems(1) by auto
    moreover have oid < fst x
    using insert-ops-sorted-oids by (metis prod.collapse snoc.prems(1))
    have set (interp-ins ((pre @ [(oid, Some ref)] @ xs) @ [x]))=
        set (interp-ins (pre @ [(oid, Some ref)] @ xs)) \vee
        set (interp-ins ((pre @ [(oid, Some ref)] @ xs) @ [x])) =
        set (interp-ins (pre @ [(oid,Some ref)] @ xs)) \cup {fst x}
    by (metis (full-types) append.assoc interp-ins-maybe-grow2 snoc.prems(1))
    ultimately show ref & set (interp-ins (pre @ [(oid, Some ref)] @ xs @ [x]))
    using <oid < fst x by auto
qed
lemma interp-ins-append-memb:
    assumes insert-ops(pre @ [(oid, Some ref)] @ suf)
    and ref \in set (interp-ins pre)
    shows oid \in set (interp-ins (pre @ [(oid, Some ref)] @ suf))
    using assms by (metis UnCI append-assoc insert-spec-set interp-ins-monotonic
        interp-ins-tail-unfold singletonI)
lemma interp-ins-append-forward:
    assumes insert-ops (xs @ ys)
        and oid \in set (interp-ins (xs @ ys))
        and oid \in set (map fst xs)
    shows oid \in set (interp-ins xs)
    using assms proof(induction ys rule: List.rev-induct, simp)
    case (snoc y ys)
    obtain cs ds ref where xs=cs@ (oid,ref) # ds
    by (metis (no-types, lifting) imageE prod.collapse set-map snoc.prems(3) split-list-last)
    hence insert-ops (cs@ [(oid,ref)] @ (ds @ ys) @ [y])
        using snoc.prems(1) by auto
    hence oid < fst y
        using insert-ops-sorted-oids by (metis prod.collapse)
    hence oid }\not=\mathrm{ fst y
        by blast
    then show ?case
        using snoc.IH snoc.prems(1) snoc.prems(2) assms(3) inserted-item-ident
        by (metis append-assoc insert-ops-appendD interp-ins-tail-unfold prod.collapse)
qed
lemma interp-ins-find-ref:
    assumes insert-ops(xs @ [(oid, Some ref)] @ ys)
        and ref \in set (interp-ins (xs @ [(oid, Some ref)] @ ys))
    shows }\existsr.(ref,r)\in set x
proof -
    have ref < oid
```

using assms（1）insert－ops－ref－older by blast
have ref $\in \operatorname{set}($ map fst（xs＠［（oid，Some ref $)]$＠ys））
by（meson assms（2）interp－ins－subset subsetCE）
then obtain x where x－prop：$x \in \operatorname{set}(x s @[($ oid，Some ref $)] @ y s) \wedge f s t x=$ ref
by fastforce
obtain $x r$ where x－pair：$x=(r e f, x r)$
using prod．exhaust－sel x－prop by blast
show $\exists r$ ．$(r e f, r) \in$ set $x s$
proof（cases $x \in$ set $x s$ ）
case True
then show $\exists r .(r e f, r) \in$ set $x s$
by（metis x－prop prod．collapse）
next
case False
hence $(r e f, x r) \in \operatorname{set}([($ oid，Some ref $)]$＠ys）
using x－prop x－pair by auto
hence $(r e f, x r) \in$ set ys
using 〈ref＜oid〉 x－prop
by（metis append－Cons append－self－conv2 fst－conv min．strict－order－iff set－ConsD）
then obtain as bs where $y s=a s @(r e f, x r) \# b s$
by（meson split－list）
hence insert－ops（（xs＠［（oid，Some ref）］＠as＠［（ref，xr）］）＠bs）
using assms（1）by auto
hence insert－ops（xs＠［（oid，Some ref）］＠as＠［（ref，xr）］）
using insert－ops－appendD by blast
hence oid＜ref
using insert－ops－sorted－oids by auto
then show？？thesis
using 〈ref＜oid〉 by force
qed
qed

4．3 Lemmas about list－order

lemma list－order－append：
assumes insert－ops（pre＠suf） and list－order pre $x y$
shows list－order（pre＠suf）xy
by（metis Un－iff assms list－order－monotonic insert－ops－appendD set－append subset－code（1））
lemma list－order－insert－ref：
assumes insert－ops（ops＠［（oid，Some ref）］）
and ref \in set（interp－ins ops）
shows list－order（ops＠［（oid，Some ref）］）ref oid
proof－
have interp－ins（ops＠［（oid，Some ref）］）＝insert－spec（interp－ins ops）（oid， Some ref）
by（simp add：interp－ins－tail－unfold）

```
    moreover obtain xs ys where interp-ins ops =xs @ [ref] @ ys
    using assms(2) split-list-first by fastforce
    hence insert-spec (interp-ins ops) (oid, Some ref) =xs @ [ref] @ [] [oid] @ys
    using assms (1) insert-after-ref interp-ins-distinct by fastforce
    ultimately show list-order (ops @ [(oid, Some ref)]) ref oid
    using assms(1) list-orderI by metis
qed
lemma list-order-insert-none:
    assumes insert-ops (ops @ [(oid, None)])
        and \(x \in\) set (interp-ins ops)
    shows list-order (ops @ [(oid, None)]) oid x
proof -
    have interp-ins (ops @ [(oid, None)])=insert-spec (interp-ins ops) (oid, None)
        by (simp add: interp-ins-tail-unfold)
    moreover obtain xs ys where interp-ins ops \(=x s\) @ \([x]\) @ ys
        using assms(2) split-list-first by fastforce
    hence insert-spec (interp-ins ops) (oid, None) = [] @ [oid] @ xs @ \([x]\) @ ys
        by \(\operatorname{simp}\)
    ultimately show list-order (ops @ [(oid, None)]) oid x
        using assms(1) list-orderI by metis
qed
lemma list-order-insert-between:
    assumes insert-ops (ops @ [(oid, Some ref)])
        and list-order ops ref \(x\)
    shows list-order (ops @ [(oid, Some ref)]) oid x
proof -
    have interp-ins (ops @ [(oid, Some ref)]) = insert-spec (interp-ins ops) (oid,
Some ref)
        by (simp add: interp-ins-tail-unfold)
    moreover obtain \(x s\) ys zs where interp-ins ops \(=x s\) @ \([r e f] @ y s @[x] @ z s\)
        using assms list-orderE by blast
    moreover have \(\ldots=x s\) @ ref \(\#(y s @[x] @ z s)\)
        by \(\operatorname{simp}\)
    moreover have distinct (xs @ ref \# (ys @ \([x]\) @ zs))
        using assms(1) calculation by (metis interp-ins-distinct insert-ops-rem-last)
    hence insert-spec (xs @ ref \# (ys @ [x] @ zs)) (oid, Some ref) = xs @ ref \#
oid \# (ys @ [x] @ zs)
        using assms(1) calculation by (simp add: insert-after-ref)
    moreover have..\(=(x s @[r e f])\) @ \([\) oid \(]\) @ \(y s\) @ \([x] @ z s\)
        by \(\operatorname{simp}\)
    ultimately show list-order (ops @ [(oid, Some ref)]) oid \(x\)
        using assms(1) list-orderI by metis
qed
```


4.4 The insert-seq predicate

The predicate insert-seq start ops is true iff ops is a list of insertion operations that begins by inserting after start, and then continues by placing each subsequent insertion directly after its predecessor. This definition models the sequential insertion of text at a particular place in a text document.
inductive insert-seq :: 'oid option \Rightarrow ('oid \times 'oid option) list \Rightarrow bool where
insert-seq start [(oid, start)] |
【insert-seq start (list @ [(prev, ref)])】
\Longrightarrow insert-seq start (list @ [(prev, ref),(oid, Some prev)])

```
lemma insert-seq-nonempty:
    assumes insert-seq start xs
    shows xs }\not=[
    using assms by (induction rule: insert-seq.induct, auto)
lemma insert-seq-hd:
    assumes insert-seq start xs
    shows \exists oid. hd xs = (oid, start)
    using assms by (induction rule: insert-seq.induct, simp,
        metis append-self-conv2 hd-append2 list.sel(1))
lemma insert-seq-rem-last:
    assumes insert-seq start (xs @ [x])
        and xs \not= []
    shows insert-seq start xs
    using assms insert-seq.cases by fastforce
lemma insert-seq-butlast:
    assumes insert-seq start xs
        and xs \not=[] and xs \not=[last xs]
    shows insert-seq start (butlast xs)
proof -
    have length xs > 1
    by (metis One-nat-def Suc-lessI add-0-left append-butlast-last-id append-eq-append-conv
        append-self-conv2 assms(2) assms(3) length-greater-0-conv list.size(3) list.size(4))
    hence butlast xs \not= []
        by (metis length-butlast less-numeral-extra(3) list.size(3) zero-less-diff)
    then show insert-seq start (butlast xs)
        using assms by (metis append-butlast-last-id insert-seq-rem-last)
qed
lemma insert-seq-last-ref:
    assumes insert-seq start (xs @ [(xi,xr),(yi,yr)])
    shows yr = Some xi
    using assms insert-seq.cases by fastforce
```

lemma insert-seq-start-none:

```
    assumes insert-ops ops
    and insert-seq None xs and insert-ops xs
    and set \(x s \subseteq\) set ops
shows \(\forall i \in \operatorname{set}\) (map fst xs). \(i \in\) set (interp-ins ops)
using assms proof(induction xs rule: List.rev-induct, simp)
case ( \(\operatorname{snoc} x x s\) )
then have IH: \(\forall i \in \operatorname{set}\) (map fst xs). \(i \in \operatorname{set}\) (interp-ins ops)
    by (metis Nil-is-map-conv append-is-Nil-conv insert-ops-appendD insert-seq-rem-last
        le-supE list.simps(3) set-append split-list)
    then show \(\forall i \in \operatorname{set}(\) map fst (xs @ \([x])) . i \in \operatorname{set}\) (interp-ins ops)
\(\operatorname{proof}(\) cases \(x s=[])\)
    case True
    then obtain oid where \(x s\) @ \([x]=[(\) oid, None \()]\)
        using insert-seq-hd snoc.prems(2) by fastforce
    hence (oid, None) \(\in\) set ops
        using snoc.prems(4) by auto
    then obtain as bs where ops=as @ (oid, None) \# bs
        by (meson split-list)
    hence \(o p s=(\) as @ \([(\) oid, None \()])\) @ bs
        by ( simp add: <ops = as @ (oid, None) \# bs \()\)
    moreover have oid \(\in \operatorname{set}(\) interp-ins (as @ [(oid, None)]))
        by (simp add: interp-ins-last-None)
    ultimately have oid \(\in\) set (interp-ins ops)
        using interp-ins-monotonic snoc.prems(1) by blast
    then show \(\forall i \in \operatorname{set}(\operatorname{map} f s t(x s @[x])) . i \in \operatorname{set}\) (interp-ins ops)
        using \(\langle x s @[x]=[(\) oid, None \()]\) by auto
    next
    case False
    then obtain rest \(y\) where snoc-y: xs \(=\) rest @ \([y]\)
        using append-butlast-last-id by metis
    obtain yi yr xi xr where yx-pairs: \(y=(y i, y r) \wedge x=(x i, x r)\)
        by force
    then have \(x r=\) Some \(y i\)
        using insert-seq-last-ref snoc.prems(2) snoc-y by fastforce
    have \(y i<x i\)
        using insert-ops-sorted-oids snoc-y yx-pairs snoc.prems(3)
        by (metis (no-types, lifting) append-eq-append-conv2)
    have \((y i, y r) \in\) set ops and \((x i\), Some \(y i) \in\) set ops
        using snoc.prems(4) snoc-y yx-pairs \(\langle x r=\) Some yi〉 by auto
    then obtain as bs cs where ops-split:ops \(=a s @[(y i, y r)] @ b s @[(x i, S o m e\)
yi)] @ cs
    using insert-ops-split-2 \(\langle y i<x i\rangle\) snoc.prems(1) by blast
    hence \(y i \in \operatorname{set}(\) interp-ins (as @ \([(y i, y r)] @ b s))\)
    proof -
        have yi \(\operatorname{set}\) (interp-ins ops)
            by (simp add: IH snoc-y yx-pairs)
        moreover have ops \(=(\) as @ \([(y i, y r)] @ b s) @([(x i\), Some yi \()] @ c s)\)
            using ops-split by simp
        moreover have yi \(\operatorname{set}(\operatorname{map} f s t(a s @[(y i, y r)] @ b s))\)
```

```
            by simp
            ultimately show ?thesis
            using snoc.prems(1) interp-ins-append-forward by blast
    qed
    hence xi \in set (interp-ins ((as @ [(yi,yr)]@ bs)@ [(xi,Some yi)] @ cs))
            using snoc.prems(1) interp-ins-append-memb ops-split by force
    hence xi \in set (interp-ins ops)
            by (simp add: ops-split)
    then show }\foralli\in\operatorname{set}(map fst (xs @ [x])).i\in set (interp-ins ops)
            using IH yx-pairs by auto
    qed
qed
lemma insert-seq-after-start:
    assumes insert-ops ops
        and insert-seq (Some ref) xs and insert-ops xs
        and set xs \subseteqset ops
        and ref \in set (interp-ins ops)
    shows }\foralli\in\mathrm{ set (map fst xs). list-order ops ref i
    using assms proof(induction xs rule: List.rev-induct, simp)
    case (snoc x xs)
    have IH:\foralli\in set (map fst xs). list-order ops ref i
        using snoc.IH snoc.prems insert-seq-rem-last insert-ops-appendD
    by (metis Nil-is-map-conv Un-subset-iff empty-set equalsOD set-append)
    moreover have list-order ops ref (fst x)
    proof(cases xs = [])
    case True
    hence snd x = Some ref
            using insert-seq-hd snoc.prems(2) by fastforce
    moreover have x\in set ops
    using snoc.prems(4) by auto
    then obtain cs ds where x-split:ops =cs@ x #ds
        by (meson split-list)
    have list-order (cs @ [(fst x, Some ref)]) ref (fst x)
    proof -
    have insert-ops(cs @ [(fst x, Some ref)] @ ds)
            using x-split «snd x = Some ref`
            by (metis append-Cons append-self-conv2 prod.collapse snoc.prems(1))
    moreover from this obtain rr where (ref,rr) \in set cs
            using interp-ins-find-ref x-split <snd x = Some ref`assms(5)
            by (metis (no-types, lifting) append-Cons append-self-conv2 prod.collapse)
    hence ref \in set (interp-ins cs)
    proof -
            have ops=cs@ ([(fst x, Some ref)]@ ds)
                    by (metis x-split <snd x = Some ref〉 append-Cons append-self-conv2
prod.collapse)
            thus ref \in set (interp-ins cs)
            using assms(5) calculation interp-ins-append-forward interp-ins-append-non-memb
by blast
```

qed
ultimately show list－order（cs＠［（fst x，Some ref）］）ref（fst x）
using list－order－insert－ref by（metis append．assoc insert－ops－appendD）
qed
moreover have ops $=(c s @[(f s t x$, Some ref $)])$＠ds
using calculation x－split
by（metis append－eq－Cons－conv append－eq－append－conv2 append－self－conv2 prod．collapse）
ultimately show list－order ops ref（fst x）
using list－order－append snoc．prems（1）by blast
next
case False
then obtain rest y where snoc－y ：xs $=$ rest＠$[y]$
using append－butlast－last－id by metis
obtain yi yr xi xr where yx－pairs：$y=(y i, y r) \wedge x=(x i, x r)$ by force
then have $x r=$ Some $y i$
using insert－seq－last－ref snoc．prems（2）snoc－y by fastforce
have $y i<x i$
using insert－ops－sorted－oids snoc－y yx－pairs snoc．prems（3）
by（metis（no－types，lifting）append－eq－append－conv2）
have $(y i, y r) \in$ set ops and $(x i$ ，Some yi）\in set ops
using snoc．prems（4）snoc－y yx－pairs $\langle x r=$ Some yi〉 by auto
then obtain as bs cs where ops－split：ops＝as＠［（yi，yr）］＠bs＠［（xi，Some
$y i)] @ c s$
using insert－ops－split－2 〈yi＜xi〉 snoc．prems（1）by blast
have list－order ops ref yi
by（simp add：IH snoc－y yx－pairs）
moreover have list－order（as＠$[(y i, y r)]$＠bs＠$[(x i$ ，Some yi）］）yi xi
proof－
have insert－ops（（as＠［（yi，yr）］＠bs＠［（xi，Some yi）］）＠cs） using ops－split snoc．prems（1）by auto
hence insert－ops（（as＠［（yi，yr）］＠bs）＠［（xi，Some yi）］）
using insert－ops－appendD by fastforce
moreover have yi set（interp－ins ops）
using 〈list－order ops ref yi＞list－order－memb2 by auto
hence $y i \in \operatorname{set}($ interp－ins（as＠［（yi，yr）］＠bs）） using interp－ins－append－non－memb ops－split snoc．prems（1）by force
ultimately show ？thesis
using list－order－insert－ref by force
qed
hence list－order ops yi xi
by（metis append－assoc list－order－append ops－split snoc．prems（1））
ultimately show list－order ops ref（ $f s t x$ ）
using list－order－trans snoc．prems（1）yx－pairs by auto
qed
ultimately show $\forall i \in \operatorname{set}($ map fst（xs＠$[x])$ ）．list－order ops ref i by auto
qed

```
lemma insert-seq-no-start:
    assumes insert-ops ops
        and insert-seq (Some ref) xs and insert-ops xs
        and set xs \subseteqset ops
        and ref }\not\in\mathrm{ set (interp-ins ops)
    shows }\foralli\in\mathrm{ set (map fst xs). i # set (interp-ins ops)
    using assms proof(induction xs rule: List.rev-induct, simp)
    case (snoc x xs)
    have IH:\foralli\in set (map fst xs). i\not\in set (interp-ins ops)
        using snoc.IH snoc.prems insert-seq-rem-last insert-ops-appendD
        by (metis append-is-Nil-conv le-sup-iff list.map-disc-iff set-append split-list-first)
    obtain as bs where ops=as @ x # bs
    using snoc.prems(4) by (metis split-list last-in-set snoc-eq-iff-butlast subset-code(1))
    have fst x & set (interp-ins ops)
    proof(cases xs = [])
    case True
    then obtain xi where x = (xi, Some ref)
        using insert-seq-hd snoc.prems(2) by force
    moreover have ref }\not\in\mathrm{ set (interp-ins as)
            using interp-ins-monotonic snoc.prems(1) snoc.prems(5)<ops = as @ x #
bs> by blast
    ultimately have xi #set (interp-ins (as @ [x]@ bs))
            using snoc.prems(1) by (simp add: interp-ins-ref-nonex <ops = as @ x # bs`)
    then show fst }x\not\in\mathrm{ set (interp-ins ops)
        by (simp add: <ops = as @ x # bs\rangle\langlex=(xi,Some ref)`)
    next
    case xs-nonempty: False
    then obtain y where xs = (butlast xs) @ [y]
        by (metis append-butlast-last-id)
    moreover from this obtain yi yr xi xr where y= (yi,yr)^x=(xi,xr)
        by fastforce
    moreover from this have xr = Some yi
        using insert-seq.cases snoc.prems(2) calculation by fastforce
    moreover have yi & set (interp-ins ops)
        using IH calculation
        by (metis Nil-is-map-conv fst-conv last-in-set last-map snoc-eq-iff-butlast)
    hence yi & set (interp-ins as)
        using <ops = as @ x # bs` interp-ins-monotonic snoc.prems(1) by blast
    ultimately have xi & set (interp-ins (as @ [x] @ bs))
        using interp-ins-ref-nonex snoc.prems(1)<ops =as @ x # bs` by fastforce
    then show fst x & set (interp-ins ops)
        by (simp add: <ops = as @ x # bs`<y = (yi,yr) ^ x = (xi, xr)`)
    qed
    then show }\foralli\in\operatorname{set}(map fst (xs @ [x])). i\not\in set (interp-ins ops
    using IH by auto
qed
```


4．5 The proof of no interleaving

lemma no－interleaving－ordered：
assumes insert－ops ops
and insert－seq start xs and insert－ops xs
and insert－seq start ys and insert－ops ys
and set $x s \subseteq$ set ops and set ys \subseteq set ops
and distinct（map fst xs＠map fst ys）
and fst（hd xs）＜fst（hd ys）
and $\bigwedge r$ ．start $=$ Some $r \Longrightarrow r \in$ set（interp－ins ops）
shows $(\forall x \in \operatorname{set}(m a p f s t x s) . \forall y \in \operatorname{set}(m a p$ fst ys）．list－order ops y $x) \wedge$
$(\forall r$. start $=$ Some $r \longrightarrow(\forall x \in$ set（map fst xs）．list－order ops $r x) \wedge$ （ $\forall y \in \operatorname{set}($ map fst ys）．list－order ops $r y))$
using assms proof（induction ops arbitrary：xs ys rule：List．rev－induct，simp） case（snoc a ops）
then have insert－ops ops
using insert－ops－rem－last by auto
consider $(a-i n-x s) a \in$ set $x s \mid(a-i n-y s) a \in$ set $y s \mid$（neither）$a \notin$ set $x s \wedge a \notin$ set ys
by blast
then show ？case
proof（cases）
case $a-i n-x s$
then have $a \notin$ set $y s$
using snoc．prems（8）by auto
hence set $y s \subseteq$ set ops
using snoc．prems（7）Diffe by auto
from a－in－xs have $a=$ last $x s$
using insert－ops－subset－last snoc．prems by blast
have $I H:(\forall x \in \operatorname{set}($ map fst（butlast xs））．$\forall y \in \operatorname{set}$（map fst ys）．list－order ops y x）\wedge
$(\forall r$. start $=$ Some $r \longrightarrow(\forall x \in$ set（map fst（butlast x s）$)$ ．list－order ops $r x) \wedge$
$(\forall y \in \operatorname{set}($ map fst $\quad y s)$. list－order ops $r y))$
$\operatorname{proof}($ cases $x s=[a])$
case True
moreover have $\forall r$ ．start $=$ Some $r \longrightarrow(\forall y \in$ set（map fst ys）．list－order ops r y）
using insert－seq－after－start〈insert－ops ops〉〈set ys \subseteq set ops〉snoc．prems
by（metis append－Nil2 calculation insert－seq－hd interp－ins－append－non－memb
list．sel（1））
ultimately show ？thesis by auto
next
case x－longer：False
from $\langle a=$ last $x s\rangle$ have set（butlast $x s$ ）\subseteq set ops
using snoc．prems by（simp add：distinct－fst subset－butlast）
moreover have insert－seq start（butlast xs）
using insert－seq－butlast insert－seq－nonempty xs－longer $\langle a=$ last xs \rangle snoc．prems（2）
by blast
moreover have insert－ops（butlast xs）
using snoc．prems（2）snoc．prems（3）insert－ops－appendD
by（metis append－butlast－last－id insert－seq－nonempty）
moreover have distinct（map fst（butlast xs）＠map fst ys）
using distinct－append－butlast1 snoc．prems（8）by blast
moreover have set ys \subseteq set ops
using $\langle a \notin$ set $y s\rangle\langle$ set $y s \subseteq$ set ops〉by blast
moreover have $h d$（butlast $x s)=h d x s$
by（metis append－butlast－last－id calculation（2）hd－append2 insert－seq－nonempty snoc．prems（2））
hence fst $(h d$（butlast xs））$<$ fst（hd ys）
by（simp add：snoc．prems（9））
moreover have $\bigwedge r$ ．start $=$ Some $r \Longrightarrow r \in$ set（interp－ins ops）
proof－
fix r
assume start $=$ Some r
then obtain xid where $h d x s=(x i d$ ，Some $r)$
using insert－seq－hd snoc．prems（2）by auto
hence $r<x i d$
by（metis hd－in－set insert－ops－memb－ref－older insert－seq－nonempty snoc．prems（2） snoc．prems（3））
moreover have xid $<f$ st a
proof－
have $x s=($ butlast $x s) @[a]$
using snoc．prems（2）insert－seq－nonempty $\langle a=$ last $x s\rangle$ by fastforce
moreover have（xid，Some r）\in set（butlast xs）
using $\langle h d x s=($ xid，Some $r)\rangle$ insert－seq－nonempty list．set－sel（1）
snoc．prems（2）
by $($ metis $\langle h d($ butlast $x s)=h d x s\rangle\langle$ insert－seq start（butlast $x s)\rangle)$
hence xid $\in \operatorname{set}$（map fst（butlast xs））
by（metis in－set－zipE zip－map－fst－snd）
ultimately show ？thesis
using snoc．prems（3）last－op－greatest by（metis prod．collapse）
qed
ultimately have $r \neq f s t a$
using dual－order．asym by blast
thus $r \in$ set（interp－ins ops）
using snoc．prems（1）snoc．prems（10）interp－ins－maybe－grow2 \langle start $=$ Some
r）by blast
qed
ultimately show ？thesis
using 〈insert－ops ops〉snoc．IH snoc．prems（4）snoc．prems（5）by blast
qed
moreover have x－exists：$\forall x \in \operatorname{set}$（map fst（butlast xs））．$x \in \operatorname{set}$（interp－ins ops）
proof（cases start）
case None
moreover have set（butlast xs）\subseteq set ops
using $\langle a=$ last xs〉distinct－map snoc．prems（6）snoc．prems（8）subset－butlast
by fastforce
ultimately show ？thesis
using insert－seq－start－none 〈insert－ops ops〉 snoc．prems
by（metis append－butlast－last－id butlast．simps（2）empty－iff empty－set insert－ops－rem－last insert－seq－butlast insert－seq－nonempty list．simps（8））
next
case（Some a）
then show？thesis
using IH list－order－memb2 by blast
qed
moreover have $\forall y \in \operatorname{set}($ map fst ys）．list－order（ops＠$[a]) y(f s t a)$
$\operatorname{proof}($ cases $x s=[a])$
case $x s$－a ：True
have $y s \neq[] \Longrightarrow$ False
proof－
assume $y s \neq[]$
then obtain $y i$ where $y i$－def：$y s=(y i, s t a r t) \#(t l y s)$
by（metis hd－Cons－tl insert－seq－hd snoc．prems（4））
hence（yi，start）\in set ops by（metis 〈set ys \subseteq set ops〉list．set－intros（1）subsetCE）
hence yi \in set（map fst ops）
by force
hence $y i<f s t a$ using snoc．prems（1）last－op－greatest by（metis prod．collapse）
moreover have fst $a<y i$ by（metis yi－def xs－a fst－conv list．sel（1）snoc．prems（9））
ultimately show False using less－not－sym by blast
qed
then show $\forall y \in \operatorname{set}(\operatorname{map} f s t y s)$ ．list－order（ops＠$[a]) y(f s t a)$
using insert－seq－nonempty snoc．prems（4）by blast
next
case x－longer：False
hence butlast－split：butlast xs $=($ butlast（butlast xs））＠［last（butlast xs）］
using $\langle a=$ last $x s\rangle$ insert－seq－butlast insert－seq－nonempty snoc．prems（2）by fastforce
hence ref－exists：fst（last（butlast xs））\in set（interp－ins ops）
using x－exists by（metis last－in－set last－map map－is－Nil－conv snoc－eq－iff－butlast）
moreover from butlast－split have xs $=($ butlast（butlast xs））＠［last（butlast $x s), a]$
by（metis $\langle a=$ last xs $>$ append．assoc append－butlast－last－id butlast．simps（2） insert－seq－nonempty last－ConsL last－ConsR list．simps（3）snoc．prems（2））
hence snd $a=\operatorname{Some}(f s t($ last（butlast xs）））
using snoc．prems（2）insert－seq－last－ref by（metis prod．collapse）
hence list－order（ops＠［a］）（fst（last（butlast xs）））（fst a）
using list－order－insert－ref ref－exists snoc．prems（1）by（metis prod．collapse）
moreover have $\forall y \in \operatorname{set}$（ map fst ys）．list－order ops y（fst（last（butlast xs）））
by（metis IH butlast－split last－in－set last－map map－is－Nil－conv snoc－eq－iff－butlast）
hence $\forall y \in \operatorname{set}(m a p$ fst ys）．list－order（ops＠［a］）y（fst（last（butlast xs）））
using list－order－append snoc．prems（1）by blast
ultimately show $\forall y \in \operatorname{set}(m a p ~ f s t y s)$ ．list－order（ops＠［a］）y（fst a） using list－order－trans snoc．prems（1）by blast
qed
moreover have map－fst－xs：map fst $x s=$ map fst（butlast xs）＠map fst［last $x s]$
by（metis append－butlast－last－id insert－seq－nonempty map－append snoc．prems（2））
hence set（map fst xs）$=$ set（map fst（butlast xs）$) \cup\{$ fst a\}
by（ simp add：$\langle a=$ last xs $)$
moreover have $\forall r$ ．start $=$ Some $r \longrightarrow$ list－order $($ ops＠［a］）r（fst a）
using snoc．prems by（cases start，auto simp add：insert－seq－after－start $\langle a=$ last xs＞map－fst－xs）
ultimately show（ $\forall x \in \operatorname{set}$（map fst $x s$ ）．$\forall y \in$ set（map fst ys）．list－order（ops ＠［a］）$y x) \wedge$

$$
(\forall r . \text { start }=\text { Some } r \longrightarrow(\forall x \in \text { set }(\text { map fst } x s) . \text { list-order }(o p s @[a]) r
$$ $x) \wedge$

$$
(\forall y \in \operatorname{set}(\text { map fst ys). list-order (ops @ }[a]) r y))
$$

using snoc．prems（1）by（simp add：list－order－append）

next

case a－in－ys
then have $a \notin$ set $x s$ using snoc．prems（8）by auto
hence set $x s \subseteq$ set ops
using snoc．prems（6）Diffe by auto
from a－in－ys have $a=$ last ys
using insert－ops－subset－last snoc．prems by blast
have $I H:(\forall x \in \operatorname{set}($ map fst $x s) . \forall y \in \operatorname{set}($ map fst（butlast ys））．list－order ops $y x) \wedge$

$$
(\forall r . \text { start }=\text { Some } r \longrightarrow(\forall x \in \text { set }(\text { map fst } \quad x s) . \text { list-order ops }
$$ $r x) \wedge$

$(\forall y \in \operatorname{set}($ map fst（butlast ys））．list－order ops ry））
$\operatorname{proof}($ cases ys $=[a])$
case True
moreover have $\forall r$ ．start $=$ Some $r \longrightarrow(\forall y \in$ set（map fst xs）．list－order ops r y）
using insert－seq－after－start 〈insert－ops ops〉〈set xs \subseteq set ops〉 snoc．prems
by（metis append－Nil2 calculation insert－seq－hd interp－ins－append－non－memb list．sel（1））
ultimately show ？thesis by auto
next
case ys－longer：False
from $\langle a=$ last $y s\rangle$ have set（butlast ys）\subseteq set ops
using snoc．prems by（simp add：distinct－fst subset－butlast）
moreover have insert－seq start（butlast ys）
using insert－seq－butlast insert－seq－nonempty ys－longer $\langle a=$ last ys \rangle snoc．prems（4）
by blast
moreover have insert－ops（butlast ys）
using snoc．prems（4）snoc．prems（5）insert－ops－appendD
by（metis append－butlast－last－id insert－seq－nonempty）

```
    moreover have distinct (map fst xs @ map fst (butlast ys))
            using distinct-append-butlast2 snoc.prems(8) by blast
    moreover have set xs \subseteqset ops
            using <a # set xs><set xs \subseteq set ops〉 by blast
    moreover have hd (butlast ys) = hd ys
    by (metis append-butlast-last-id calculation(2) hd-append2 insert-seq-nonempty
snoc.prems(4))
    hence fst (hd xs) < fst (hd (butlast ys))
        by (simp add: snoc.prems(9))
    moreover have \r.start = Some r\Longrightarrowr\in set (interp-ins ops)
    proof -
        fix r
        assume start = Some r
    then obtain yid where hd ys = (yid, Some r)
            using insert-seq-hd snoc.prems(4) by auto
    hence r < yid
    by (metis hd-in-set insert-ops-memb-ref-older insert-seq-nonempty snoc.prems(4)
snoc.prems(5))
    moreover have yid < fst a
    proof -
        have ys = (butlast ys) @ [a]
            using snoc.prems(4) insert-seq-nonempty <a = last ys` by fastforce
            moreover have (yid, Some r)\in set (butlast ys)
                using <hd ys = (yid, Some r)\rangle insert-seq-nonempty list.set-sel(1)
snoc.prems(2)
            by (metis <hd (butlast ys) =hd ys\rangle\langleinsert-seq start (butlast ys)\rangle)
            hence yid \in set (map fst (butlast ys))
                by (metis in-set-zipE zip-map-fst-snd)
            ultimately show ?thesis
                using snoc.prems(5) last-op-greatest by (metis prod.collapse)
            qed
            ultimately have r}\not=fst 
            using dual-order.asym by blast
            thus r set (interp-ins ops)
            using snoc.prems(1) snoc.prems(10) interp-ins-maybe-grow2 <start = Some
r) by blast
            qed
            ultimately show ?thesis
            using〈insert-ops ops` snoc.IH snoc.prems(2) snoc.prems(3) by blast
    qed
    moreover have }\forallx\in\operatorname{set (map fst xs). list-order (ops @ [a]) (fst a)x
    proof(cases ys = [a])
        case ys-a:True
        then show }\forallx\in\operatorname{set (map fst xs). list-order (ops @ [a]) (fst a) x
        proof(cases start)
            case None
            then show ?thesis
                using insert-seq-start-none list-order-insert-none snoc.prems
            by (metis <insert-ops ops〉<set xs \subseteq set ops` fst-conv insert-seq-hd list.sel(1)
```


$y s-a)$

next
case (Some r)
moreover from this have $\forall x \in$ set (map fst xs). list-order ops $r x$ using $I H$ by blast
ultimately show? ?thesis
using snoc.prems(1) snoc.prems(4) list-order-insert-between
by (metis fst-conv insert-seq-hd list.sel(1) ys-a)
qed
next
case ys-longer: False
hence butlast-split: butlast ys = (butlast (butlast ys)) @ [last (butlast ys)]
using $\langle a=$ last $y s$) insert-seq-butlast insert-seq-nonempty snoc.prems(4) by fastforce
moreover from this have $y s=($ butlast (butlast ys)) @ [last (butlast ys), a] by (metis $\langle a=$ last ys \backslash append.assoc append-butlast-last-id butlast.simps(2) insert-seq-nonempty last-ConsL last-ConsR list.simps(3) snoc.prems(4))
hence snd $a=$ Some (fst (last (butlast ys)))
using snoc.prems(4) insert-seq-last-ref by (metis prod.collapse)
moreover have $\forall x \in \operatorname{set}$ (map fst xs). list-order ops (fst (last (butlast ys))) x
by (metis IH butlast-split last-in-set last-map map-is-Nil-conv snoc-eq-iff-butlast)
ultimately show $\forall x \in \operatorname{set}$ (map fst xs). list-order (ops @ [a]) (fst a) x
using list-order-insert-between snoc.prems(1) by (metis prod.collapse)
qed
moreover have map-fst-xs: map fst ys = map fst (butlast ys) @ map fst [last $y s]$
by (metis append-butlast-last-id insert-seq-nonempty map-append snoc.prems(4))
hence set $($ map fst ys) $)$ set $($ map fst $($ butlast ys) $) \cup\{f s t a\}$
by (simp add: $\langle a=$ last $y s$)
moreover have $\forall r$. start $=$ Some $r \longrightarrow$ list-order $($ ops @ $[a]) r(f s t a)$
using snoc.prems by (cases start, auto simp add: insert-seq-after-start $\langle a=$ last ys> map-fst-xs)
ultimately show ($\forall x \in$ set (map fst $x s$). $\forall y \in$ set (map fst ys). list-order (ops @ [a]) $y x \wedge$
$(\forall r$. start $=$ Some $r \longrightarrow(\forall x \in$ set (map fst xs). list-order (ops @ [a]) r $x) \wedge$
$(\forall y \in \operatorname{set}($ map fst ys). list-order (ops @ [a])ry))
using snoc.prems(1) by (simp add: list-order-append)
next
case neither
hence set $x s \subseteq$ set ops and set ys \subseteq set ops
using snoc.prems(6) snoc.prems(7) Diffe by auto
have $(\forall r$. start $=$ Some $r \longrightarrow r \in$ set (interp-ins ops $)) \vee(x s=[] \wedge y s=[])$
proof(cases xs)
case Nil
then show ?thesis using insert-seq-nonempty snoc.prems(2) by blast
next
case xs-nonempty: (Cons x xsa)
have $\wedge r$. start $=$ Some $r \Longrightarrow r \in$ set (interp-ins ops)

```
    proof -
    fix \(r\)
    assume start \(=\) Some \(r\)
    then obtain \(x i\) where \(x=(x i\), Some \(r)\)
        using insert-seq-hd xs-nonempty snoc.prems(2) by fastforce
    hence (xi, Some r) \(\in\) set ops
        using <set \(x s \subseteq\) set ops〉 xs-nonempty by auto
    hence \(r<x i\)
        using 〈insert-ops ops〉 insert-ops-memb-ref-older by blast
    moreover have \(x i \in \operatorname{set}\) (map fst ops)
        using \(\langle(x i\), Some \(r) \in\) set ops by force
    hence \(x i<f s t a\)
            using last-op-greatest snoc.prems(1) by (metis prod.collapse)
    ultimately have fst \(a \neq r\)
            using order.asym by blast
        then show \(r \in\) set (interp-ins ops)
        using snoc.prems(1) snoc.prems(10) interp-ins-maybe-grow2 \(\langle\) start \(=\) Some
r) by blast
    qed
    then show ?thesis by blast
    qed
    hence \((\forall x \in \operatorname{set}(\) map fst \(x s) . \forall y \in \operatorname{set}(\) map fst ys). list-order ops y \(x) \wedge\)
            \((\forall r\). start \(=\) Some \(r \longrightarrow(\forall x \in\) set \((\) map fst xs). list-order ops \(r x) \wedge\)
                    ( \(\forall y \in\) set (map fst ys). list-order ops \(r y)\) )
        using snoc.prems snoc.IH 〈set xs \(\subseteq\) set ops〉〈set ys \(\subseteq\) set ops by blast
    then show \((\forall x \in \operatorname{set}(m a p f s t ~ x s) . \forall y \in \operatorname{set}(m a p ~ f s t ~ y s) . ~ l i s t-o r d e r ~(o p s ~ @ ~\)
[a]) \(y x) \wedge\)
            \((\forall r\). start \(=\) Some \(r \longrightarrow(\forall x \in \operatorname{set}(\) map fst xs). list-order \((\) ops @ [a])r
x) \(\wedge\)
                        \((\forall y \in \operatorname{set}(\) map fst ys). list-order (ops @ [a])ry))
        using snoc.prems(1) by (simp add: list-order-append)
    qed
qed
Consider an execution that contains two distinct insertion sequences，xs and \(y s\) ，that both begin at the same initial position start．We prove that，provided the starting element exists，the two insertion sequences are not interleaved． That is，in the final list order，either all insertions by \(x s\) appear before all insertions by \(y s\) ，or vice versa．
```

```
theorem no-interleaving:
```

theorem no-interleaving:
assumes insert-ops ops
assumes insert-ops ops
and insert-seq start xs and insert-ops xs
and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and insert-seq start ys and insert-ops ys
and set xs \subseteq set ops and set ys \subseteq set ops
and set xs \subseteq set ops and set ys \subseteq set ops
and distinct (map fst xs @ map fst ys)
and distinct (map fst xs @ map fst ys)
and start =None \vee (\existsr. start = Some r ^r\in set (interp-ins ops))
and start =None \vee (\existsr. start = Some r ^r\in set (interp-ins ops))
shows (\forallx\in set (map fst xs). \forally fet (map fst ys). list-order ops x y) \vee
shows (\forallx\in set (map fst xs). \forally fet (map fst ys). list-order ops x y) \vee
(\forallx\in\operatorname{set (map fst xs).}\forally\in\operatorname{set (map fst ys). list-order ops y x)}

```
(\forallx\in\operatorname{set (map fst xs).}\forally\in\operatorname{set (map fst ys). list-order ops y x)}
```

```
\(\operatorname{proof}(\) cases \(f s t(h d x s)<f s t(h d y s))\)
    case True
    moreover have \(\bigwedge r\). start \(=\) Some \(r \Longrightarrow r \in\) set (interp-ins ops)
        using assms (9) by blast
    ultimately have \(\forall x \in\) set (map fst xs). \(\forall y \in\) set (map fst ys). list-order ops y \(x\)
        using assms no-interleaving-ordered by blast
    then show ?thesis by blast
next
    case False
    hence \(f s t\) ( \(h d y s\) ) \(<\) fst ( \(h d x s\) )
        using assms(2) assms(4) assms(8) insert-seq-nonempty distinct-fst-append
        by (metis (no-types, lifting) hd-in-set hd-map list.map-disc-iff map-append neqE)
    moreover have distinct (map fst ys @ map fst xs)
        using assms (8) distinct-append-swap by blast
    moreover have \(\bigwedge r\). start \(=\) Some \(r \Longrightarrow r \in\) set (interp-ins ops)
        using assms (9) by blast
    ultimately have \(\forall x \in \operatorname{set}\) ( map fst ys). \(\forall y \in \operatorname{set}\) (map fst xs). list-order ops \(y x\)
        using assms no-interleaving-ordered by blast
    then show? ?hesis by blast
qed
```

For completeness, we also prove what happens if there are two insertion sequences, $x s$ and $y s$, but their initial position start does not exist. In that case, none of the insertions in $x s$ or $y s$ take effect.

```
theorem missing-start-no-insertion:
    assumes insert-ops ops
        and insert-seq (Some start) xs and insert-ops xs
        and insert-seq (Some start) ys and insert-ops ys
        and set xs \subseteq set ops and set ys \subseteq set ops
        and start }#\mathrm{ set (interp-ins ops)
    shows }\forallx\in\operatorname{set (map fst xs)\cup set (map fst ys). x & set (interp-ins ops)
    using assms insert-seq-no-start by (metis UnE)
```

end

5 The Replicated Growable Array (RGA)

The RGA algorithm [4] is a replicated list (or collaborative text-editing) algorithm. In this section we prove that RGA satisfies our list specification. The Isabelle/HOL definition of RGA in this section is based on our prior work on formally verifying CRDTs [3, 2].

```
theory \(R G A\)
    imports Insert-Spec
begin
fun insert-body :: 'oid::\{linorder \(\}\) list \(\Rightarrow\) 'oid \(\Rightarrow\) 'oid list where
    insert-body [] \(\quad e=[e] \mid\)
```

```
insert-body \((x \#\) xs \() e=\)
    (if \(x<e\) then \(e \# x \# x s\)
                else \(x\) \# insert-body xs e)
```

fun insert-rga :: 'oid $::\{$ linorder $\}$ list \Rightarrow ('oid \times 'oid option $) \Rightarrow$ 'oid list where
insert-rga xs $\quad(e$, None $)=$ insert-body xs e \mid
insert-rga [] $\quad(e$, Some $i)=[] \mid$
insert-rga $(x \#$ xs $)(e$, Some $i)=$
(if $x=i$ then
x \# insert-body xs e
else
x \# insert-rga xs (e, Some i))
definition interp-rga $::$ ('oid::\{linorder $\} \times$ 'oid option) list \Rightarrow 'oid list where
interp-rga ops \equiv foldl insert-rga [] ops

5.1 Commutativity of insert-rga

lemma insert-body-set-ins [simp]:
shows set (insert-body xs e) $=$ insert e (set xs)
by (induction xs, auto)
lemma insert-rga-set-ins:
assumes $i \in$ set $x s$
shows set (insert-rga xs (oid, Some i)) = insert oid (set xs)
using assms by (induction xs, auto)
lemma insert-body-commutes:
shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1 by (induction xs, auto)
lemma insert-rga-insert-body-commute:
assumes $i 2 \neq$ Some e1
shows insert-rga (insert-body xs e1) (e2, i2) $=$ insert-body (insert-rga xs (e2, i2)) e1
using assms by (induction xs; cases i2) (auto simp add: insert-body-commutes)
lemma insert-rga-None-commutes:
assumes $i 2 \neq$ Some e1
shows insert-rga (insert-rga xs (e1, None)) $(e 2$, i2 $)=$ insert-rga (insert-rga xs (e2, i2)) (e1, None)
using assms by (induction xs; cases i2) (auto simp add: insert-body-commutes)
lemma insert-rga-nonexistent:
assumes $i \notin$ set $x s$
shows insert-rga xs (e, Some i) $=x s$
using assms by (induction xs, auto)
lemma insert-rga-Some-commutes:

```
    assumes \(i 1 \in\) set \(x s\) and \(i 2 \in\) set xs
    and \(e 1 \neq i 2\) and \(e 2 \neq i 1\)
    shows insert-rga (insert-rga xs (e1, Some i1)) \((\) e2, Some i2 \()=\)
        insert-rga (insert-rga xs (e2, Some i2)) (e1, Some i1)
    using assms proof (induction xs, simp)
    case (Cons a xs)
    then show ?case
    by (cases \(a=i 1\); cases \(a=i 2\);
        auto simp add: insert-body-commutes insert-rga-insert-body-commute)
qed
lemma insert-rga-commutes:
    assumes \(i 2 \neq\) Some e1 and \(i 1 \neq\) Some e2
    shows insert-rga (insert-rga xs (e1, i1)) \((e 2, i 2)=\)
        insert-rga (insert-rga xs (e2, i2)) (e1, i1)
proof(cases i1)
    case None
    then show ?thesis
        using assms (1) insert-rga-None-commutes by (cases i2, fastforce, blast)
next
    case some-r1: (Some r1)
    then show ?thesis
    proof(cases i2)
        case None
        then show ?thesis
            using assms(2) insert-rga-None-commutes by fastforce
    next
        case some-r2: (Some r2)
        then show ?thesis
        proof (cases r1 \(\in\) set \(x s \wedge r \mathcal{Z} \in\) set \(x s\) )
            case True
            then show ?thesis
                using assms some-r1 some-r2 by (simp add: insert-rga-Some-commutes)
        next
            case False
            then show ?thesis
                using assms some-r1 some-r2
                by (metis insert-iff insert-rga-nonexistent insert-rga-set-ins)
        qed
    qed
qed
lemma insert-body-split:
    shows \(\exists p\) s. xs \(=p\) @ \(s \wedge\) insert-body xs \(e=p @ e \# s\)
proof(induction xs, force)
    case (Cons a xs)
    then obtain \(p s\) where \(I H: x s=p @ s \wedge\) insert-body xs \(e=p @ e \# s\)
        by blast
    then show \(\exists p\) s. \(a \# x s=p @ s \wedge\) insert-body \((a \# x s) e=p @ e \# s\)
```

```
    proof(cases a <e)
    case True
    then have }a#xs=[]@(a#p@s)\wedge insert-body (a#xs)e=[]@e#(a
# p@s)
        by (simp add: IH)
    then show ?thesis by blast
    next
    case False
    then have a# xs =(a#p)@ s ^ insert-body (a#xs)e=(a#p)@e#s
        using IH by auto
    then show ?thesis by blast
    qed
qed
lemma insert-between-elements:
    assumes xs = pre @ ref # suf
    and distinct xs
    and }\bigwedgei.i\in\mathrm{ set xs # i<e
    shows insert-rga xs (e, Some ref) = pre @ ref # e# suf
    using assms proof(induction xs arbitrary: pre, force)
    case (Cons a xs)
    then show insert-rga (a # xs) (e, Some ref) = pre @ ref # e # suf
    proof(cases pre)
        case pre-nil: Nil
        then have a=ref
            using Cons.prems(1) by auto
        then show ?thesis
            using Cons.prems pre-nil by (cases suf, auto)
    next
        case (Cons b pre')
        then have insert-rga xs (e, Some ref) = pre' @ ref # e# suf
            using Cons.IH Cons.prems by auto
        then show ?thesis
            using Cons.prems(1) Cons.prems(2) local.Cons by auto
    qed
qed
lemma insert-rga-after-ref:
    assumes }\forallx\in\mathrm{ set as. }a\not=
        and insert-body (cs @ ds)e=cs@e#ds
    shows insert-rga(as @ a#cs @ ds) (e, Some a)=as@ a#cs@e#ds
    using assms by (induction as; auto)
lemma insert-rga-preserves-order:
    assumes i=None \vee (\exists\mp@subsup{i}{}{\prime}.i=Some i'^ 涼\in set xs)
        and distinct xs
    shows \exists pre suf.xs=pre@ suf ^ insert-rga xs (e,i)=pre@ e#suf
proof(cases i)
    case None
```

```
    then show \exists pre suf.xs = pre @ suf ^ insert-rga xs (e,i)= pre @e#suf
    using insert-body-split by auto
next
    case (Some r)
    moreover from this obtain as bs where xs=as@ @# bs ^(\forallx\in set as. x
# r)
    using assms(1) split-list-first by fastforce
    moreover have \existscs ds.bs=cs @ ds ^ insert-bodybs e=cs@e#ds
        by (simp add: insert-body-split)
    then obtain cs ds where bs=cs@ ds ^ insert-bodybs e=cs@ e #ds
        by blast
    ultimately have xs=(as @ r# cs)@ ds ^ insert-rga xs (e,i)=(as@ @ |
cs)@e # ds
        using insert-rga-after-ref by fastforce
    then show ?thesis by blast
qed
```


5.2 Lemmas about the rga-ops predicate

```
definition rga-ops :: ('oid::{linorder} > 'oid option) list }=>\mathrm{ bool where
    rga-ops list \equivcrdt-ops list set-option
lemma rga-ops-rem-last:
    assumes rga-ops (xs@ @x])
    shows rga-ops xs
    using assms crdt-ops-rem-last rga-ops-def by blast
lemma rga-ops-rem-penultimate:
    assumes rga-ops (xs @ [(i1, r1),(i2,r2)])
        and \r.r2 = Some r \Longrightarrowr\not=i1
    shows rga-ops (xs @ [(i2,r2)])
    using assms proof -
    have crdt-ops (xs @ [(i2, r2)]) set-option
        using assms crdt-ops-rem-penultimate rga-ops-def by fastforce
    thus rga-ops (xs @ [(i2, r2)])
        by (simp add: rga-ops-def)
qed
lemma rga-ops-ref-exists:
    assumes rga-ops (pre @ (oid, Some ref) # suf)
    shows ref \infst'set pre
proof -
    from assms have crdt-ops (pre @ (oid, Some ref) # suf) set-option
        by (simp add: rga-ops-def)
    moreover have set-option (Some ref) ={ref}
        by simp
    ultimately show ref \infst' set pre
        using crdt-ops-ref-exists by fastforce
qed
```


5.3 Lemmas about the interp-rga function

```
lemma interp-rga-tail-unfold:
    shows interp-rga (xs@[x]) = insert-rga (interp-rga (xs)) x
    by (clarsimp simp add: interp-rga-def)
lemma interp-rga-ids:
    assumes rga-ops xs
    shows set (interp-rga xs) = set (map fst xs)
    using assms proof(induction xs rule: List.rev-induct)
    case Nil
    then show set (interp-rga []) = set (map fst [])
    by (simp add: interp-rga-def)
next
    case (snoc x xs)
    hence IH: set (interp-rga xs) = set (map fst xs)
        using rga-ops-rem-last by blast
    obtain xi xr where x-pair: x = (xi,xr) by force
    then show set (interp-rga (xs @ [x])) = set (map fst (xs@ [x]))
    proof(cases xr)
        case None
        then show ?thesis
            using IH x-pair by (clarsimp simp add: interp-rga-def)
    next
        case (Some r)
        moreover from this have r\in set (interp-rga xs)
            using IH rga-ops-ref-exists by (metis x-pair list.set-map snoc.prems)
        ultimately have set (interp-rga (xs @ [(xi,xr)])) = insert xi (set (interp-rga
xs))
            by (simp add: insert-rga-set-ins interp-rga-tail-unfold)
        then show set (interp-rga (xs @ [x])) = set (map fst (xs @ [x]))
            using IH x-pair by auto
        qed
qed
lemma interp-rga-distinct:
    assumes rga-ops xs
    shows distinct (interp-rga xs)
    using assms proof(induction xs rule: List.rev-induct)
    case Nil
    then show distinct (interp-rga []) by (simp add: interp-rga-def)
next
    case (snoc x xs)
    hence IH: distinct (interp-rga xs)
        using rga-ops-rem-last by blast
    moreover obtain xi xr where x-pair: x = (xi,xr)
        by force
    moreover from this have xi & set (interp-rga xs)
        using interp-rga-ids crdt-ops-unique-last rga-ops-rem-last
```

```
    by (metis rga-ops-def snoc.prems)
moreover have \exists pre suf. interp-rga xs = pre@suf ^
            insert-rga (interp-rga xs) (xi,xr)= pre @ xi # suf
    proof -
    have \r.r set-option xr \Longrightarrowr\in set (map fst xs)
        using crdt-ops-ref-exists rga-ops-def snoc.prems x-pair by fastforce
    hence xr = None \vee (\existsr.xr=Some r ^r set (map fst xs))
        using option.set-sel by blast
    hence xr = None \vee (\existsr.xr = Some r ^r set (interp-rga xs))
        using interp-rga-ids rga-ops-rem-last snoc.prems by blast
    thus ?thesis
        using IH insert-rga-preserves-order by blast
qed
ultimately show distinct (interp-rga (xs @ [x]))
    by (metis Un-iff disjoint-insert(1) distinct.simps(2) distinct-append
        interp-rga-tail-unfold list.simps(15) set-append)
qed
```


5.4 Proof that RGA satisfies the list specification

lemma final-insert:
assumes $\operatorname{set}(x s @[x])=\operatorname{set}(y s @[x])$
and rga-ops (xs @ $[x]$)
and insert-ops (ys @ $[x]$)
and interp-rga xs $=$ interp-ins ys
shows interp-rga (xs @ $[x])=$ interp-ins (ys @ $[x]$)
proof -
obtain oid ref where x-pair: $x=$ (oid, ref) by force
have distinct ($x s$ @ $[x]$) and distinct (ys @ $[x]$)
using assms crdt-ops-distinct spec-ops-distinct rga-ops-def insert-ops-def by
blast+
then have set $x s=$ set $y s$
using assms(1) by force
have oid-greatest: $\bigwedge i . i \in$ set (interp-rga $x s) \Longrightarrow i<$ oid
proof -
have $\bigwedge i . i \in \operatorname{set}($ map fst $y s) \Longrightarrow i<$ oid using assms(3) by (simp add: spec-ops-id-inc x-pair insert-ops-def)
hence $\bigwedge i . i \in \operatorname{set}($ map fst $x s) \Longrightarrow i<$ oid
using set $x s=$ set $y s$ 〉 by auto
thus $\bigwedge i . i \in$ set (interp-rga xs) $\Longrightarrow i<$ oid
using assms(2) interp-rga-ids rga-ops-rem-last by blast
qed
thus interp-rga (xs @ $[x])=$ interp-ins $(y s @[x])$
proof(cases ref)
case None
moreover from this have insert-rga (interp-rga xs) (oid, ref) $=$ oid $\#$
interp-rga xs
using oid-greatest hd-in-set insert-body.elims insert-body.simps(1)
insert-rga.simps(1) list.sel(1) by metis

```
    ultimately show interp-rga (xs @ [x]) = interp-ins (ys @ [x])
            using assms(4) by (simp add: interp-ins-tail-unfold interp-rga-tail-unfold
x-pair)
    next
        case (Some r)
        have \existsas bs. interp-rga xs =as @ r# bs
        proof -
            have r\in set (map fst xs)
            using assms(2) Some by (simp add: rga-ops-ref-exists x-pair)
            hence r\in set (interp-rga xs)
            using assms(2) interp-rga-ids rga-ops-rem-last by blast
            thus ?thesis by (simp add: split-list)
        qed
        from this obtain as bs where as-bs: interp-rga xs = as @ r # bs by force
        hence distinct (as @ r# bs)
            by (metis assms(2) interp-rga-distinct rga-ops-rem-last)
            hence insert-rga (as @r # bs) (oid, Some r)=as @ r # oid # bs
            by (metis as-bs insert-between-elements oid-greatest)
            moreover have insert-spec (as @ r # bs) (oid, Some r)= as @ r # oid # bs
            by (meson<distinct (as @ r # bs)` insert-after-ref)
            ultimately show interp-rga (xs @ [x])= interp-ins (ys @ [x])
                by (metis assms(4) Some as-bs interp-ins-tail-unfold interp-rga-tail-unfold
x-pair)
    qed
qed
lemma interp-rga-reorder:
    assumes rga-ops (pre @ suf @ [(oid,ref)])
        and \ir. (i,Some r) \in set suf \Longrightarrow }\Longrightarrow\not=\mathrm{ oid
        and \r.ref = Some r\Longrightarrowr\not\infst'set suf
    shows interp-rga (pre @ (oid,ref) # suf)= interp-rga (pre @ suf @ [(oid,ref)])
    using assms proof(induction suf rule: List.rev-induct)
    case Nil
    then show ?case by simp
next
    case (snoc x xs)
    have ref-not-x: \r.ref = Some r\Longrightarrowr\not=fst x using snoc.prems(3) by auto
    have IH: interp-rga (pre @ (oid,ref) # xs)= interp-rga (pre @ xs @ [(oid,ref)])
    proof -
        have rga-ops ((pre @ xs) @ [x] @ [(oid,ref)])
            using snoc.prems(1) by auto
            moreover have \bigwedger. ref = Some r \Longrightarrow r f fst x
                by (simp add: ref-not-x)
            ultimately have rga-ops ((pre @ xs) @ [(oid,ref)])
            using rga-ops-rem-penultimate
            by (metis (no-types, lifting) Cons-eq-append-conv prod.collapse)
            thus ?thesis using snoc by force
    qed
    obtain xi xr where x-pair: x = (xi,xr) by force
```

have interp-rga (pre @ (oid, ref) \# xs @ $[(x i, x r)])=$
insert-rga (interp-rga (pre @ xs @ [(oid, ref)])) (xi, xr)
using IH interp-rga-tail-unfold by (metis append.assoc append-Cons)
moreover have $\ldots=$ insert-rga (insert-rga (interp-rga (pre @ xs)) (oid, ref)) ($x i, x r$)
using interp-rga-tail-unfold by (metis append-assoc)
moreover have $\ldots=$ insert-rga (insert-rga (interp-rga (pre @ xs)) $(x i, x r))($ oid, ref)
proof -
have $\bigwedge x r r . x r=$ Some $x r r \Longrightarrow x r r \neq$ oid using x-pair snoc.prems(2) by auto
thus ?thesis
using insert-rga-commutes ref-not-x by (metis fst-conv x-pair)
qed
moreover have ... = interp-rga (pre @ xs @ [x] @ [(oid, ref)])
by (metis append-assoc interp-rga-tail-unfold x-pair)
ultimately show interp-rga (pre @ (oid, ref) \# xs @ $[x]$) =
interp-rga (pre @ (xs @ $[x]$) @ [(oid, ref)])
by (simp add: x-pair)
qed
lemma rga-spec-equal:
assumes set $x s=$ set ys
and insert-ops xs
and rga-ops ys
shows interp-ins xs $=$ interp-rga ys
using assms proof(induction xs arbitrary: ys rule: rev-induct)
case Nil
then show ?case by (simp add: interp-rga-def interp-ins-def)
next
case (snoc $x x s$)
hence $x \in$ set $y s$
by (metis last-in-set snoc-eq-iff-butlast)
from this obtain pre suf where ys-split: ys $=$ pre @ $[x]$ @ suf
using split-list-first by fastforce
have $I H$: interp-ins $x s=$ interp-rga (pre @ suf)
proof -
have crdt-ops (pre @ suf) set-option
proof -
have crdt-ops (pre @ $[x]$ @ suf) set-option
using rga-ops-def snoc.prems(3) ys-split by blast
thus crdt-ops (pre @ suf) set-option
using crdt-ops-rem-spec snoc.prems ys-split insert-ops-def by blast
qed
hence rga-ops (pre @ suf)
using rga-ops-def by blast
moreover have set $x s=$ set (pre @ suf)
by (metis append-set-rem-last crdt-ops-distinct insert-ops-def rga-ops-def snoc.prems spec-ops-distinct ys-split)

```
    ultimately show ?thesis
    using insert-ops-rem-last ys-split snoc by metis
    qed
    have valid-rga: rga-ops(pre @ suf @ [x])
    proof -
    have crdt-ops(pre @ suf @ [x]) set-option
        using snoc.prems ys-split
        by (simp add: crdt-ops-reorder-spec insert-ops-def rga-ops-def)
    thus rga-ops(pre @ suf @ [x])
        by (simp add:rga-ops-def)
    qed
    have interp-ins (xs @ [x])= interp-rga (pre @ suf @ [x])
    proof -
        have set (xs @ [x])= set (pre @ suf @ [x])
            using snoc.prems(1) ys-split by auto
        thus ?thesis
        using IH snoc.prems(2) valid-rga final-insert append-assoc by metis
    qed
    moreover have ... = interp-rga (pre @ [x]@ suf)
    proof -
        obtain oid ref where x-pair: x = (oid,ref)
            by force
        have \op2 r. op2 \in snd'set suf \Longrightarrowr\in set-option op2 \Longrightarrowr\not= oid
            using snoc.prems
        by (simp add: crdt-ops-independent-suf insert-ops-def rga-ops-def x-pair ys-split)
        hence \ir. (i,Some r) \in set suf \Longrightarrowr\not= oid
            by fastforce
    moreover have \^r.ref = Some r\Longrightarrowr\not\infst`set suf
            using crdt-ops-no-future-ref snoc.prems(3) x-pair ys-split
            by (metis option.set-intros rga-ops-def)
    ultimately show interp-rga (pre @ suf @ [x])= interp-rga (pre @ [x] @ suf)
            using interp-rga-reorder valid-rga x-pair by force
    qed
    ultimately show interp-ins (xs @ [x]) = interp-rga ys
    by (simp add: ys-split)
qed
lemma insert-ops-exist:
    assumes rga-ops xs
    shows \existsys. set xs = set ys ^ insert-ops ys
    using assms by (simp add:crdt-ops-spec-ops-exist insert-ops-def rga-ops-def)
theorem rga-meets-spec:
    assumes rga-ops xs
    shows \existsys. set ys = set xs ^ insert-ops ys ^ interp-ins ys = interp-rga xs
    using assms rga-spec-equal insert-ops-exist by metis
end
```


References

[1] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang, and M. Zawirski. Specification and complexity of collaborative text editing. In ACM Symposium on Principles of Distributed Computing (PODC), pages 259-268, July 2016.
[2] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. A framework for establishing strong eventual consistency for conflict-free replicated data types. Archive of Formal Proofs, July 2017.
[3] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. Verifying strong eventual consistency in distributed systems. Proceedings of the ACM on Programming Languages (PACMPL), 1(OOPSLA), Oct. 2017.
[4] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract data types: Building blocks for collaborative applications. Journal of Parallel and Distributed Computing, 71(3):354-368, 2011.

