
OpSets: Sequential Specifications for Replicated Datatypes

Proof Document

Martin Kleppmann1, Victor B. F. Gomes1, Dominic P. Mulligan2, and Alastair
R. Beresford1

1Department of Computer Science and Technology, University of Cambridge, UK
2Security Research Group, Arm Research, Cambridge, UK

Abstract

We introduce OpSets, an executable framework for specifying and reasoning
about the semantics of replicated datatypes that provide eventual consistency in a
distributed system, and for mechanically verifying algorithms that implement these
datatypes. Our approach is simple but expressive, allowing us to succinctly specify
a variety of abstract datatypes, including maps, sets, lists, text, graphs, trees, and
registers. Our datatypes are also composable, enabling the construction of complex
data structures. To demonstrate the utility of OpSets for analysing replication
algorithms, we highlight an important correctness property for collaborative text
editing that has traditionally been overlooked; algorithms that do not satisfy this
property can exhibit awkward interleaving of text. We use OpSets to specify this
correctness property and prove that although one existing replication algorithm
satisfies this property, several other published algorithms do not.

Contents

1 Abstract OpSet 2
1.1 OpSet definition . 2
1.2 Helper lemmas about lists . 3
1.3 The spec-ops predicate . 5
1.4 The crdt-ops predicate . 12

2 Specifying list insertion 18
2.1 The insert-ops predicate . 19
2.2 Properties of the insert-spec function 20
2.3 Properties of the interp-ins function 25
2.4 Equivalence of the two definitions of insertion 26
2.5 The list-order predicate . 32

3 Relationship to Strong List Specification 40
3.1 Lemmas about insertion and deletion 42
3.2 Lemmas about interpreting operations 48
3.3 Satisfying all conditions of Astrong 52

1

4 Interleaving of concurrent insertions 54
4.1 Lemmas about insert-ops . 54
4.2 Lemmas about interp-ins . 58
4.3 Lemmas about list-order . 62
4.4 The insert-seq predicate . 64
4.5 The proof of no interleaving . 69

5 The Replicated Growable Array (RGA) 76
5.1 Commutativity of insert-rga . 77
5.2 Lemmas about the rga-ops predicate 80
5.3 Lemmas about the interp-rga function 81
5.4 Proof that RGA satisfies the list specification 82

1 Abstract OpSet

In this section, we define a general-purpose OpSet abstraction that is not
specific to any one particular datatype. We develop a library of useful lemmas
that we can build upon later when reasoning about a specific datatype.

theory OpSet
imports Main

begin

1.1 OpSet definition

An OpSet is a set of (ID, operation) pairs with an associated total order
on IDs (represented here with the linorder typeclass), and satisfying the
following properties:

1. The ID is unique (that is, if any two pairs in the set have the same ID,
then their operation is also the same).

2. If the operation references the IDs of any other operations, those ref-
erenced IDs are less than that of the operation itself, according to the
total order on IDs. To avoid assuming anything about the structure of
operations here, we use a function deps that returns the set of depen-
dent IDs for a given operation. This requirement is a weak expression
of causality: an operation can only depend on causally prior operations,
and by making the total order on IDs a linear extension of the causal
order, we can easily ensure that any referenced IDs are less than that
of the operation itself.

3. The OpSet is finite (but we do not assume any particular maximum
size).

locale opset =
fixes opset :: (′oid ::{linorder} × ′oper) set

and deps :: ′oper ⇒ ′oid set

2

assumes unique-oid : (oid , op1) ∈ opset =⇒ (oid , op2) ∈ opset =⇒ op1 = op2
and ref-older : (oid , oper) ∈ opset =⇒ ref ∈ deps oper =⇒ ref < oid
and finite-opset : finite opset

We prove that any subset of an OpSet is also a valid OpSet. This is the case
because, although an operation can depend on causally prior operations, the
OpSet does not require those prior operations to actually exist. This weak
assumption makes the OpSet model more general and simplifies reasoning
about OpSets.

lemma opset-subset :
assumes opset Y deps

and X ⊆ Y
shows opset X deps

proof
fix oid op1 op2
assume (oid , op1) ∈ X and (oid , op2) ∈ X
thus op1 = op2

using assms by (meson opset .unique-oid set-mp)
next

fix oid oper ref
assume (oid , oper) ∈ X and ref ∈ deps oper
thus ref < oid

using assms by (meson opset .ref-older set-rev-mp)
next

show finite X
using assms opset .finite-opset finite-subset by blast

qed

lemma opset-insert :
assumes opset (insert x ops) deps
shows opset ops deps
using assms opset-subset by blast

lemma opset-sublist :
assumes opset (set (xs @ ys @ zs)) deps
shows opset (set (xs @ zs)) deps

proof −
have set (xs @ zs) ⊆ set (xs @ ys @ zs)

by auto
thus opset (set (xs @ zs)) deps

using assms opset-subset by blast
qed

1.2 Helper lemmas about lists

Some general-purpose lemas about lists and sets that are helpful for subse-
quent proofs.

lemma distinct-rem-mid :

3

assumes distinct (xs @ [x] @ ys)
shows distinct (xs @ ys)
using assms by (induction ys rule: rev-induct , simp-all)

lemma distinct-fst-append :
assumes x ∈ set (map fst xs)

and distinct (map fst (xs @ ys))
shows x /∈ set (map fst ys)
using assms by (induction ys, force+)

lemma distinct-set-remove-last :
assumes distinct (xs @ [x])
shows set xs = set (xs @ [x]) − {x}
using assms by force

lemma distinct-set-remove-mid :
assumes distinct (xs @ [x] @ ys)
shows set (xs @ ys) = set (xs @ [x] @ ys) − {x}
using assms by force

lemma distinct-list-split :
assumes distinct xs

and xs = xa @ x # ya
and xs = xb @ x # yb

shows xa = xb ∧ ya = yb
using assms proof(induction xs arbitrary : xa xb x)
fix xa xb x
assume [] = xa @ x # ya
thus xa = xb ∧ ya = yb

by auto
next

fix a xs xa xb x
assume IH :

∧
xa xb x . distinct xs =⇒ xs = xa @ x # ya =⇒ xs = xb @ x # yb

=⇒ xa = xb ∧ ya = yb
and distinct (a # xs) and a # xs = xa @ x # ya and a # xs = xb @ x # yb

thus xa = xb ∧ ya = yb
by(case-tac xa; case-tac xb) auto

qed

lemma distinct-append-swap:
assumes distinct (xs @ ys)
shows distinct (ys @ xs)
using assms by (induction ys, auto)

lemma append-subset :
assumes set xs = set (ys @ zs)
shows set ys ⊆ set xs and set zs ⊆ set xs
by (metis Un-iff assms set-append subsetI)+

4

lemma append-set-rem-last :
assumes set (xs @ [x]) = set (ys @ [x] @ zs)

and distinct (xs @ [x]) and distinct (ys @ [x] @ zs)
shows set xs = set (ys @ zs)

proof −
have distinct xs

using assms distinct-append by blast
moreover from this have set xs = set (xs @ [x]) − {x}

by (meson assms distinct-set-remove-last)
moreover have distinct (ys @ zs)

using assms distinct-rem-mid by simp
ultimately show set xs = set (ys @ zs)

using assms distinct-set-remove-mid by metis
qed

lemma distinct-map-fst-remove1 :
assumes distinct (map fst xs)
shows distinct (map fst (remove1 x xs))
using assms proof(induction xs)
case Nil
then show distinct (map fst (remove1 x []))

by simp
next

case (Cons a xs)
hence IH : distinct (map fst (remove1 x xs))

by simp
then show distinct (map fst (remove1 x (a # xs)))
proof(cases a = x)

case True
then show ?thesis

using Cons.prems by auto
next

case False
moreover have fst a /∈ fst ‘ set (remove1 x xs)

by (metis (no-types, lifting) Cons.prems distinct .simps(2) image-iff
list .simps(9) notin-set-remove1 set-map)

ultimately show ?thesis
using IH by auto

qed
qed

1.3 The spec-ops predicate

The spec-ops predicate describes a list of (ID, operation) pairs that corre-
sponds to the linearisation of an OpSet, and which we use for sequentially
interpreting the OpSet. A list satisfies spec-ops iff it is sorted in ascending
order of IDs, if the IDs are unique, and if every operation’s dependencies have
lower IDs than the operation itself. A list is implicitly finite in Isabelle/HOL.

5

These requirements correspond to the OpSet definition above, and indeed we
prove later that every OpSet has a linearisation that satisfies spec-ops.

definition spec-ops :: (′oid ::{linorder} × ′oper) list ⇒ (′oper ⇒ ′oid set) ⇒ bool
where

spec-ops ops deps ≡ (sorted (map fst ops) ∧ distinct (map fst ops) ∧
(∀ oid oper ref . (oid , oper) ∈ set ops ∧ ref ∈ deps oper −→ ref < oid))

lemma spec-ops-empty :
shows spec-ops [] deps
by (simp add : spec-ops-def)

lemma spec-ops-distinct :
assumes spec-ops ops deps
shows distinct ops
using assms distinct-map spec-ops-def by blast

lemma spec-ops-distinct-fst :
assumes spec-ops ops deps
shows distinct (map fst ops)
using assms by (simp add : spec-ops-def)

lemma spec-ops-sorted :
assumes spec-ops ops deps
shows sorted (map fst ops)
using assms by (simp add : spec-ops-def)

lemma spec-ops-rem-cons:
assumes spec-ops (x # xs) deps
shows spec-ops xs deps

proof −
have sorted (map fst (x # xs)) and distinct (map fst (x # xs))

using assms spec-ops-def by blast+
moreover from this have sorted (map fst xs)

by (simp add : sorted-Cons)
moreover have ∀ oid oper ref . (oid , oper) ∈ set xs ∧ ref ∈ deps oper −→ ref <

oid
by (meson assms set-subset-Cons spec-ops-def subsetCE)

ultimately show spec-ops xs deps
by (simp add : spec-ops-def)

qed

lemma spec-ops-rem-last :
assumes spec-ops (xs @ [x]) deps
shows spec-ops xs deps

proof −
have sorted (map fst (xs @ [x])) and distinct (map fst (xs @ [x]))

using assms spec-ops-def by blast+
moreover from this have sorted (map fst xs) and distinct xs

6

by (auto simp add : sorted-append distinct-butlast distinct-map)
moreover have ∀ oid oper ref . (oid , oper) ∈ set xs ∧ ref ∈ deps oper −→ ref <

oid
by (metis assms butlast-snoc in-set-butlastD spec-ops-def)

ultimately show spec-ops xs deps
by (simp add : spec-ops-def)

qed

lemma spec-ops-remove1 :
assumes spec-ops xs deps
shows spec-ops (remove1 x xs) deps
using assms distinct-map-fst-remove1 spec-ops-def
by (metis notin-set-remove1 sorted-map-remove1 spec-ops-def)

lemma spec-ops-ref-less:
assumes spec-ops xs deps

and (oid , oper) ∈ set xs
and r ∈ deps oper

shows r < oid
using assms spec-ops-def by force

lemma spec-ops-ref-less-last :
assumes spec-ops (xs @ [(oid , oper)]) deps

and r ∈ deps oper
shows r < oid
using assms spec-ops-ref-less by fastforce

lemma spec-ops-id-inc:
assumes spec-ops (xs @ [(oid , oper)]) deps

and x ∈ set (map fst xs)
shows x < oid

proof −
have sorted ((map fst xs) @ (map fst [(oid , oper)]))

using assms(1) by (simp add : spec-ops-def)
hence ∀ i ∈ set (map fst xs). i ≤ oid

by (simp add : sorted-append)
moreover have distinct ((map fst xs) @ (map fst [(oid , oper)]))

using assms(1) by (simp add : spec-ops-def)
hence ∀ i ∈ set (map fst xs). i 6= oid

by auto
ultimately show x < oid

using assms(2) le-neq-trans by auto
qed

lemma spec-ops-add-last :
assumes spec-ops xs deps

and ∀ i ∈ set (map fst xs). i < oid
and ∀ ref ∈ deps oper . ref < oid

shows spec-ops (xs @ [(oid , oper)]) deps

7

proof −
have sorted ((map fst xs) @ [oid])

using assms sorted-append spec-ops-sorted by fastforce
moreover have distinct ((map fst xs) @ [oid])

using assms spec-ops-distinct-fst by fastforce
moreover have ∀ oid oper ref . (oid , oper) ∈ set xs ∧ ref ∈ deps oper −→ ref <

oid
using assms(1) spec-ops-def by fastforce

hence ∀ i opr r . (i , opr) ∈ set (xs @ [(oid , oper)]) ∧ r ∈ deps opr −→ r < i
using assms(3) by auto

ultimately show spec-ops (xs @ [(oid , oper)]) deps
by (simp add : spec-ops-def)

qed

lemma spec-ops-add-any :
assumes spec-ops (xs @ ys) deps

and ∀ i ∈ set (map fst xs). i < oid
and ∀ i ∈ set (map fst ys). oid < i
and ∀ ref ∈ deps oper . ref < oid

shows spec-ops (xs @ [(oid , oper)] @ ys) deps
using assms proof(induction ys rule: rev-induct)
case Nil
then show spec-ops (xs @ [(oid , oper)] @ []) deps

by (simp add : spec-ops-add-last)
next

case (snoc y ys)
have IH : spec-ops (xs @ [(oid , oper)] @ ys) deps
proof −

from snoc have spec-ops (xs @ ys) deps
by (metis append-assoc spec-ops-rem-last)

thus spec-ops (xs @ [(oid , oper)] @ ys) deps
using assms(2) snoc by auto

qed
obtain yi yo where y-pair : y = (yi , yo)

by force
have oid-yi : oid < yi

by (simp add : snoc.prems(3) y-pair)
have yi-biggest : ∀ i ∈ set (map fst (xs @ [(oid , oper)] @ ys)). i < yi
proof −

have ∀ i ∈ set (map fst xs). i < yi
using oid-yi assms(2) less-trans by blast

moreover have ∀ i ∈ set (map fst ys). i < yi
by (metis UnCI append-assoc map-append set-append snoc.prems(1) spec-ops-id-inc

y-pair)
ultimately show ?thesis

using oid-yi by auto
qed
have sorted (map fst (xs @ [(oid , oper)] @ ys @ [y]))
proof −

8

from IH have sorted (map fst (xs @ [(oid , oper)] @ ys))
using spec-ops-def by blast

hence sorted (map fst (xs @ [(oid , oper)] @ ys) @ [yi])
using yi-biggest sorted-append

by (metis (no-types, lifting) append-Nil2 order-less-imp-le set-ConsD sorted-single)
thus sorted (map fst (xs @ [(oid , oper)] @ ys @ [y]))

by (simp add : y-pair)
qed
moreover have distinct (map fst (xs @ [(oid , oper)] @ ys @ [y]))
proof −

have distinct (map fst (xs @ [(oid , oper)] @ ys) @ [yi])
using IH yi-biggest spec-ops-def
by (metis distinct .simps(2) distinct1-rotate order-less-irrefl rotate1 .simps(2))

thus distinct (map fst (xs @ [(oid , oper)] @ ys @ [y]))
by (simp add : y-pair)

qed
moreover have ∀ i opr r . (i , opr) ∈ set (xs @ [(oid , oper)] @ ys @ [y])

∧ r ∈ deps opr −→ r < i
proof −

have ∀ i opr r . (i , opr) ∈ set (xs @ [(oid , oper)] @ ys) ∧ r ∈ deps opr −→ r
< i

by (meson IH spec-ops-def)
moreover have ∀ ref . ref ∈ deps yo −→ ref < yi
by (metis spec-ops-ref-less append-is-Nil-conv last-appendR last-in-set last-snoc

list .simps(3) snoc.prems(1) y-pair)
ultimately show ?thesis

using y-pair by auto
qed
ultimately show spec-ops (xs @ [(oid , oper)] @ ys @ [y]) deps

using spec-ops-def by blast
qed

lemma spec-ops-split :
assumes spec-ops xs deps

and oid /∈ set (map fst xs)
shows ∃ pre suf . xs = pre @ suf ∧

(∀ i ∈ set (map fst pre). i < oid) ∧
(∀ i ∈ set (map fst suf). oid < i)

using assms proof(induction xs rule: rev-induct)
case Nil
then show ?case by force

next
case (snoc x xs)
obtain xi xr where y-pair : x = (xi , xr)

by force
obtain pre suf where IH : xs = pre @ suf ∧

(∀ a∈set (map fst pre). a < oid) ∧
(∀ a∈set (map fst suf). oid < a)

by (metis UnCI map-append set-append snoc spec-ops-rem-last)

9

then show ?case
proof(cases xi < oid)

case xi-less: True
have ∀ x ∈ set (map fst (pre @ suf)). x < xi

using IH spec-ops-id-inc snoc.prems(1) y-pair by metis
hence ∀ x ∈ set suf . fst x < xi

by simp
hence ∀ x ∈ set suf . fst x < oid

using xi-less by auto
hence suf = []

using IH last-in-set by fastforce
hence xs @ [x] = (pre @ [(xi , xr)]) @ [] ∧

(∀ a∈set (map fst ((pre @ [(xi , xr)]))). a < oid) ∧
(∀ a∈set (map fst []). oid < a)

by (simp add : IH xi-less y-pair)
then show ?thesis by force

next
case False
hence oid < xi using snoc.prems(2) y-pair by auto
hence xs @ [x] = pre @ (suf @ [(xi , xr)]) ∧

(∀ i ∈ set (map fst pre). i < oid) ∧
(∀ i ∈ set (map fst (suf @ [(xi , xr)])). oid < i)

by (simp add : IH y-pair)
then show ?thesis by blast

qed
qed

lemma spec-ops-exists-base:
assumes finite ops

and
∧

oid op1 op2 . (oid , op1) ∈ ops =⇒ (oid , op2) ∈ ops =⇒ op1 = op2
and

∧
oid oper ref . (oid , oper) ∈ ops =⇒ ref ∈ deps oper =⇒ ref < oid

shows ∃ op-list . set op-list = ops ∧ spec-ops op-list deps
using assms proof(induct ops rule: Finite-Set .finite-induct-select)
case empty
then show ∃ op-list . set op-list = {} ∧ spec-ops op-list deps

by (simp add : spec-ops-empty)
next

case (select subset)
from this obtain op-list where set op-list = subset and spec-ops op-list deps

using assms by blast
moreover obtain oid oper where select : (oid , oper) ∈ ops − subset

using select .hyps(1) by auto
moreover from this have

∧
op2 . (oid , op2) ∈ ops =⇒ op2 = oper

using assms(2) by auto
hence oid /∈ fst ‘ subset

by (metis (no-types, lifting) DiffD2 select image-iff prod .collapse psubsetD se-
lect .hyps(1))

from this obtain pre suf
where op-list = pre @ suf

10

and ∀ i ∈ set (map fst pre). i < oid
and ∀ i ∈ set (map fst suf). oid < i

using spec-ops-split calculation by (metis (no-types, lifting) set-map)
moreover have set (pre @ [(oid , oper)] @ suf) = insert (oid , oper) subset

using calculation by auto
moreover have spec-ops (pre @ [(oid , oper)] @ suf) deps

using calculation spec-ops-add-any assms(3) by (metis DiffD1)
ultimately show ?case by blast

qed

We prove that for any given OpSet, a spec-ops linearisation exists:

lemma spec-ops-exists:
assumes opset ops deps
shows ∃ op-list . set op-list = ops ∧ spec-ops op-list deps

proof −
have finite ops

using assms opset .finite-opset by force
moreover have

∧
oid op1 op2 . (oid , op1) ∈ ops =⇒ (oid , op2) ∈ ops =⇒ op1

= op2
using assms opset .unique-oid by force

moreover have
∧

oid oper ref . (oid , oper) ∈ ops =⇒ ref ∈ deps oper =⇒ ref <
oid

using assms opset .ref-older by force
ultimately show ∃ op-list . set op-list = ops ∧ spec-ops op-list deps

by (simp add : spec-ops-exists-base)
qed

lemma spec-ops-oid-unique:
assumes spec-ops op-list deps

and (oid , op1) ∈ set op-list
and (oid , op2) ∈ set op-list

shows op1 = op2
using assms proof(induction op-list , simp)
case (Cons x op-list)
have distinct (map fst (x # op-list))

using Cons.prems(1) spec-ops-def by blast
hence notin: fst x /∈ set (map fst op-list)

by simp
then show op1 = op2
proof(cases fst x = oid)

case True
then show op1 = op2
using Cons.prems notin by (metis Pair-inject in-set-zipE set-ConsD zip-map-fst-snd)

next
case False
then have (oid , op1) ∈ set op-list and (oid , op2) ∈ set op-list

using Cons.prems by auto
then show op1 = op2

using Cons.IH Cons.prems(1) spec-ops-rem-cons by blast

11

qed
qed

Conversely, for any given spec-ops list, the set of pairs in the list is an OpSet:

lemma spec-ops-is-opset :
assumes spec-ops op-list deps
shows opset (set op-list) deps

proof −
have

∧
oid op1 op2 . (oid , op1) ∈ set op-list =⇒ (oid , op2) ∈ set op-list =⇒ op1

= op2
using assms spec-ops-oid-unique by fastforce

moreover have
∧

oid oper ref . (oid , oper) ∈ set op-list =⇒ ref ∈ deps oper =⇒
ref < oid

by (meson assms spec-ops-ref-less)
moreover have finite (set op-list)

by simp
ultimately show opset (set op-list) deps

by (simp add : opset-def)
qed

1.4 The crdt-ops predicate

Like spec-ops, the crdt-ops predicate describes the linearisation of an OpSet
into a list. Like spec-ops, it requires IDs to be unique. However, its other
properties are different: crdt-ops does not require operations to appear in
sorted order, but instead, whenever any operation references the ID of a
prior operation, that prior operation must appear previously in the crdt-ops
list. Thus, the order of operations is partially constrained: operations must
appear in causal order, but concurrent operations can be ordered arbitrarily.

This list describes the operation sequence in the order it is typically applied
to an operation-based CRDT. Applying operations in the order they appear
in crdt-ops requires that concurrent operations commute. For any crdt-ops
operation sequence, there is a permutation that satisfies the spec-ops predi-
cate. Thus, to check whether a CRDT satisfies its sequential specification, we
can prove that interpreting any crdt-ops operation sequence with the commu-
tative operation interpretation results in the same end result as interpreting
the spec-ops permutation of that operation sequence with the sequential op-
eration interpretation.

inductive crdt-ops :: (′oid ::{linorder} × ′oper) list ⇒ (′oper ⇒ ′oid set) ⇒ bool
where

crdt-ops [] deps |
[[crdt-ops xs deps;

oid /∈ set (map fst xs);
∀ ref ∈ deps oper . ref ∈ set (map fst xs) ∧ ref < oid

]] =⇒ crdt-ops (xs @ [(oid , oper)]) deps

12

inductive-cases crdt-ops-last : crdt-ops (xs @ [x]) deps

lemma crdt-ops-intro:
assumes

∧
r . r ∈ deps oper =⇒ r ∈ fst ‘ set xs ∧ r < oid

and oid /∈ fst ‘ set xs
and crdt-ops xs deps

shows crdt-ops (xs @ [(oid , oper)]) deps
using assms crdt-ops.simps by force

lemma crdt-ops-rem-last :
assumes crdt-ops (xs @ [x]) deps
shows crdt-ops xs deps
using assms crdt-ops.cases snoc-eq-iff-butlast by blast

lemma crdt-ops-ref-less:
assumes crdt-ops xs deps

and (oid , oper) ∈ set xs
and r ∈ deps oper

shows r < oid
using assms by (induction rule: crdt-ops.induct , auto)

lemma crdt-ops-ref-less-last :
assumes crdt-ops (xs @ [(oid , oper)]) deps

and r ∈ deps oper
shows r < oid
using assms crdt-ops-ref-less by fastforce

lemma crdt-ops-distinct-fst :
assumes crdt-ops xs deps
shows distinct (map fst xs)
using assms proof (induction xs rule: List .rev-induct , simp)
case (snoc x xs)
hence distinct (map fst xs)

using crdt-ops-last by blast
moreover have fst x /∈ set (map fst xs)

using snoc by (metis crdt-ops-last fstI image-set)
ultimately show distinct (map fst (xs @ [x]))

by simp
qed

lemma crdt-ops-distinct :
assumes crdt-ops xs deps
shows distinct xs
using assms crdt-ops-distinct-fst distinct-map by blast

lemma crdt-ops-unique-last :
assumes crdt-ops (xs @ [(oid , oper)]) deps
shows oid /∈ set (map fst xs)
using assms crdt-ops.cases by blast

13

lemma crdt-ops-unique-mid :
assumes crdt-ops (xs @ [(oid , oper)] @ ys) deps
shows oid /∈ set (map fst xs) ∧ oid /∈ set (map fst ys)
using assms proof(induction ys rule: rev-induct)
case Nil
then show oid /∈ set (map fst xs) ∧ oid /∈ set (map fst [])
by (metis crdt-ops-unique-last Nil-is-map-conv append-Nil2 empty-iff empty-set)

next
case (snoc y ys)
obtain yi yr where y-pair : y = (yi , yr)

by fastforce
have IH : oid /∈ set (map fst xs) ∧ oid /∈ set (map fst ys)

using crdt-ops-rem-last snoc by (metis append-assoc)
have (xs @ (oid , oper) # ys) @ [(yi , yr)] = xs @ (oid , oper) # ys @ [(yi , yr)]

by simp
hence yi /∈ set (map fst (xs @ (oid , oper) # ys))
using crdt-ops-unique-last by (metis append-Cons append-self-conv2 snoc.prems

y-pair)
thus oid /∈ set (map fst xs) ∧ oid /∈ set (map fst (ys @ [y]))

using IH y-pair by auto
qed

lemma crdt-ops-ref-exists:
assumes crdt-ops (pre @ (oid , oper) # suf) deps

and ref ∈ deps oper
shows ref ∈ fst ‘ set pre
using assms proof(induction suf rule: List .rev-induct)
case Nil thus ?case

by (metis crdt-ops-last prod .sel(2))
next

case (snoc x xs) thus ?case
using crdt-ops.cases by force

qed

lemma crdt-ops-no-future-ref :
assumes crdt-ops (xs @ [(oid , oper)] @ ys) deps
shows

∧
ref . ref ∈ deps oper =⇒ ref /∈ fst ‘ set ys

proof −
from assms(1) have

∧
ref . ref ∈ deps oper =⇒ ref ∈ set (map fst xs)

by (simp add : crdt-ops-ref-exists)
moreover have distinct (map fst (xs @ [(oid , oper)] @ ys))

using assms crdt-ops-distinct-fst by blast
ultimately have

∧
ref . ref ∈ deps oper =⇒ ref /∈ set (map fst ([(oid , oper)] @

ys))
using distinct-fst-append by metis

thus
∧

ref . ref ∈ deps oper =⇒ ref /∈ fst ‘ set ys
by simp

qed

14

lemma crdt-ops-reorder :
assumes crdt-ops (xs @ [(oid , oper)] @ ys) deps

and
∧

op2 r . op2 ∈ snd ‘ set ys =⇒ r ∈ deps op2 =⇒ r 6= oid
shows crdt-ops (xs @ ys @ [(oid , oper)]) deps
using assms proof(induction ys rule: rev-induct)
case Nil
then show crdt-ops (xs @ [] @ [(oid , oper)]) deps

using crdt-ops-rem-last by auto
next

case (snoc y ys)
then obtain yi yo where y-pair : y = (yi , yo)

by fastforce
have IH : crdt-ops (xs @ ys @ [(oid , oper)]) deps
proof −

have crdt-ops (xs @ [(oid , oper)] @ ys) deps
by (metis snoc(2) append .assoc crdt-ops-rem-last)

thus crdt-ops (xs @ ys @ [(oid , oper)]) deps
using snoc.IH snoc.prems(2) by auto

qed
have crdt-ops (xs @ ys @ [y]) deps
proof −

have yi /∈ fst ‘ set (xs @ [(oid , oper)] @ ys)
by (metis y-pair append-assoc crdt-ops-unique-last set-map snoc.prems(1))

hence yi /∈ fst ‘ set (xs @ ys)
by auto

moreover have
∧

r . r ∈ deps yo =⇒ r ∈ fst ‘ set (xs @ ys) ∧ r < yi
proof −

have
∧

r . r ∈ deps yo =⇒ r 6= oid
using snoc.prems(2) y-pair by fastforce

moreover have
∧

r . r ∈ deps yo =⇒ r ∈ fst ‘ set (xs @ [(oid , oper)] @ ys)
by (metis y-pair append-assoc snoc.prems(1) crdt-ops-ref-exists)

moreover have
∧

r . r ∈ deps yo =⇒ r < yi
using crdt-ops-ref-less snoc.prems(1) y-pair by fastforce

ultimately show
∧

r . r ∈ deps yo =⇒ r ∈ fst ‘ set (xs @ ys) ∧ r < yi
by simp

qed
moreover from IH have crdt-ops (xs @ ys) deps

using crdt-ops-rem-last by force
ultimately show crdt-ops (xs @ ys @ [y]) deps

using y-pair crdt-ops-intro by (metis append .assoc)
qed
moreover have oid /∈ fst ‘ set (xs @ ys @ [y])

using crdt-ops-unique-mid by (metis (no-types, lifting) UnE image-Un
image-set set-append snoc.prems(1))

moreover have
∧

r . r ∈ deps oper =⇒ r ∈ fst ‘ set (xs @ ys @ [y])
using crdt-ops-ref-exists
by (metis UnCI append-Cons image-Un set-append snoc.prems(1))

moreover have
∧

r . r ∈ deps oper =⇒ r < oid

15

using IH crdt-ops-ref-less by fastforce
ultimately show crdt-ops (xs @ (ys @ [y]) @ [(oid , oper)]) deps

using crdt-ops-intro by (metis append-assoc)
qed

lemma crdt-ops-rem-middle:
assumes crdt-ops (xs @ [(oid , ref)] @ ys) deps

and
∧

op2 r . op2 ∈ snd ‘ set ys =⇒ r ∈ deps op2 =⇒ r 6= oid
shows crdt-ops (xs @ ys) deps
using assms crdt-ops-rem-last crdt-ops-reorder append-assoc by metis

lemma crdt-ops-independent-suf :
assumes spec-ops (xs @ [(oid , oper)]) deps

and crdt-ops (ys @ [(oid , oper)] @ zs) deps
and set (xs @ [(oid , oper)]) = set (ys @ [(oid , oper)] @ zs)

shows
∧

op2 r . op2 ∈ snd ‘ set zs =⇒ r ∈ deps op2 =⇒ r 6= oid
proof −

have
∧

op2 r . op2 ∈ snd ‘ set xs =⇒ r ∈ deps op2 =⇒ r < oid
proof −

from assms(1) have
∧

i . i ∈ fst ‘ set xs =⇒ i < oid
using spec-ops-id-inc by fastforce

moreover have
∧

i2 op2 r . (i2 , op2) ∈ set xs =⇒ r ∈ deps op2 =⇒ r < i2
using assms(1) spec-ops-ref-less spec-ops-rem-last by fastforce

ultimately show
∧

op2 r . op2 ∈ snd ‘ set xs =⇒ r ∈ deps op2 =⇒ r < oid
by fastforce

qed
moreover have set zs ⊆ set xs
proof −

have distinct (xs @ [(oid , oper)]) and distinct (ys @ [(oid , oper)] @ zs)
using assms spec-ops-distinct crdt-ops-distinct by blast+

hence set xs = set (ys @ zs)
by (meson append-set-rem-last assms(3))

then show set zs ⊆ set xs
using append-subset(2) by simp

qed
ultimately show

∧
op2 r . op2 ∈ snd ‘ set zs =⇒ r ∈ deps op2 =⇒ r 6= oid

by fastforce
qed

lemma crdt-ops-reorder-spec:
assumes spec-ops (xs @ [x]) deps

and crdt-ops (ys @ [x] @ zs) deps
and set (xs @ [x]) = set (ys @ [x] @ zs)

shows crdt-ops (ys @ zs @ [x]) deps
using assms proof −
obtain oid oper where x-pair : x = (oid , oper) by force
hence

∧
op2 r . op2 ∈ snd ‘ set zs =⇒ r ∈ deps op2 =⇒ r 6= oid

using assms crdt-ops-independent-suf by fastforce
thus crdt-ops (ys @ zs @ [x]) deps

16

using assms(2) crdt-ops-reorder x-pair by metis
qed

lemma crdt-ops-rem-spec:
assumes spec-ops (xs @ [x]) deps

and crdt-ops (ys @ [x] @ zs) deps
and set (xs @ [x]) = set (ys @ [x] @ zs)

shows crdt-ops (ys @ zs) deps
using assms crdt-ops-rem-last crdt-ops-reorder-spec append-assoc by metis

lemma crdt-ops-rem-penultimate:
assumes crdt-ops (xs @ [(i1 , r1)] @ [(i2 , r2)]) deps

and
∧

r . r ∈ deps r2 =⇒ r 6= i1
shows crdt-ops (xs @ [(i2 , r2)]) deps

proof −
have crdt-ops (xs @ [(i1 , r1)]) deps

using assms(1) crdt-ops-rem-last by force
hence crdt-ops xs deps

using crdt-ops-rem-last by force
moreover have distinct (map fst (xs @ [(i1 , r1)] @ [(i2 , r2)]))

using assms(1) crdt-ops-distinct-fst by blast
hence i2 /∈ set (map fst xs)

by auto
moreover have crdt-ops ((xs @ [(i1 , r1)]) @ [(i2 , r2)]) deps

using assms(1) by auto
hence

∧
r . r ∈ deps r2 =⇒ r ∈ fst ‘ set (xs @ [(i1 , r1)])

using crdt-ops-ref-exists by metis
hence

∧
r . r ∈ deps r2 =⇒ r ∈ set (map fst xs)

using assms(2) by auto
moreover have

∧
r . r ∈ deps r2 =⇒ r < i2

using assms(1) crdt-ops-ref-less by fastforce
ultimately show crdt-ops (xs @ [(i2 , r2)]) deps

by (simp add : crdt-ops-intro)
qed

lemma crdt-ops-spec-ops-exist :
assumes crdt-ops xs deps
shows ∃ ys. set xs = set ys ∧ spec-ops ys deps
using assms proof(induction xs rule: List .rev-induct)
case Nil
then show ∃ ys. set [] = set ys ∧ spec-ops ys deps

by (simp add : spec-ops-empty)
next

case (snoc x xs)
hence IH : ∃ ys. set xs = set ys ∧ spec-ops ys deps

using crdt-ops-rem-last by blast
then obtain ys oid ref

where set xs = set ys and spec-ops ys deps and x = (oid , ref)
by force

17

moreover have ∃ pre suf . ys = pre@suf ∧
(∀ i ∈ set (map fst pre). i < oid) ∧
(∀ i ∈ set (map fst suf). oid < i)

proof −
have oid /∈ set (map fst xs)

using calculation(3) crdt-ops-unique-last snoc.prems by force
hence oid /∈ set (map fst ys)

by (simp add : calculation(1))
thus ?thesis

using spec-ops-split 〈spec-ops ys deps〉 by blast
qed
from this obtain pre suf where ys = pre @ suf and
∀ i ∈ set (map fst pre). i < oid and
∀ i ∈ set (map fst suf). oid < i by force

moreover have set (xs @ [(oid , ref)]) = set (pre @ [(oid , ref)] @ suf)
using crdt-ops-distinct calculation snoc.prems by simp

moreover have spec-ops (pre @ [(oid , ref)] @ suf) deps
proof −

have ∀ r ∈ deps ref . r < oid
using calculation(3) crdt-ops-ref-less-last snoc.prems by fastforce

hence spec-ops (pre @ [(oid , ref)] @ suf) deps
using spec-ops-add-any calculation by metis

thus ?thesis by simp
qed
ultimately show ∃ ys. set (xs @ [x]) = set ys ∧ spec-ops ys deps

by blast
qed

end

2 Specifying list insertion

theory Insert-Spec
imports OpSet

begin

In this section we consider only list insertion. We model an insertion opera-
tion as a pair (ID, ref), where ref is either None (signifying an insertion at
the head of the list) or Some r (an insertion immediately after a reference
element with ID r). If the reference element does not exist, the operation
does nothing.

We provide two different definitions of the interpretation function for list
insertion: insert-spec and insert-alt. The insert-alt definition matches the
paper, while insert-spec uses the Isabelle/HOL list datatype, making it more
suitable for formal reasoning. In a later subsection we prove that the two
definitions are in fact equivalent.

fun insert-spec :: ′oid list ⇒ (′oid × ′oid option) ⇒ ′oid list where

18

insert-spec xs (oid , None) = oid#xs |
insert-spec [] (oid , -) = [] |
insert-spec (x#xs) (oid , Some ref) =

(if x = ref then x # oid # xs
else x # (insert-spec xs (oid , Some ref)))

fun insert-alt :: (′oid × ′oid option) set ⇒ (′oid × ′oid) ⇒ (′oid × ′oid option)
set where

insert-alt list-rel (oid , ref) = (
if ∃n. (ref , n) ∈ list-rel
then {(p, n) ∈ list-rel . p 6= ref } ∪ {(ref , Some oid)} ∪
{(i , n). i = oid ∧ (ref , n) ∈ list-rel}

else list-rel)

interp-ins is the sequential interpretation of a set of insertion operations. It
starts with an empty list as initial state, and then applies the operations
from left to right.

definition interp-ins :: (′oid × ′oid option) list ⇒ ′oid list where
interp-ins ops ≡ foldl insert-spec [] ops

2.1 The insert-ops predicate

We now specialise the definitions from the abstract OpSet section for list
insertion. insert-opset is an opset consisting only of insertion operations,
and insert-ops is the specialisation of the spec-ops predicate for insertion
operations. We prove several useful lemmas about insert-ops.

locale insert-opset = opset opset set-option
for opset :: (′oid ::{linorder} × ′oid option) set

definition insert-ops :: (′oid ::{linorder} × ′oid option) list ⇒ bool where
insert-ops list ≡ spec-ops list set-option

lemma insert-ops-NilI [intro!]:
shows insert-ops []
by (auto simp add : insert-ops-def spec-ops-def)

lemma insert-ops-rem-last [dest]:
assumes insert-ops (xs @ [x])
shows insert-ops xs
using assms insert-ops-def spec-ops-rem-last by blast

lemma insert-ops-rem-cons:
assumes insert-ops (x # xs)
shows insert-ops xs
using assms insert-ops-def spec-ops-rem-cons by blast

lemma insert-ops-appendD :
assumes insert-ops (xs @ ys)

19

shows insert-ops xs
using assms by (induction ys rule: List .rev-induct ,

auto, metis insert-ops-rem-last append-assoc)

lemma insert-ops-rem-prefix :
assumes insert-ops (pre @ suf)
shows insert-ops suf
using assms proof(induction pre)
case Nil
then show insert-ops ([] @ suf) =⇒ insert-ops suf

by auto
next

case (Cons a pre)
have sorted (map fst suf)

using assms by (simp add : insert-ops-def sorted-append spec-ops-def)
moreover have distinct (map fst suf)

using assms by (simp add : insert-ops-def spec-ops-def)
ultimately show insert-ops ((a # pre) @ suf) =⇒ insert-ops suf

by (simp add : insert-ops-def spec-ops-def)
qed

lemma insert-ops-remove1 :
assumes insert-ops xs
shows insert-ops (remove1 x xs)
using assms insert-ops-def spec-ops-remove1 by blast

lemma last-op-greatest :
assumes insert-ops (op-list @ [(oid , oper)])

and x ∈ set (map fst op-list)
shows x < oid
using assms spec-ops-id-inc insert-ops-def by metis

lemma insert-ops-ref-older :
assumes insert-ops (pre @ [(oid , Some ref)] @ suf)
shows ref < oid
using assms by (auto simp add : insert-ops-def spec-ops-def)

lemma insert-ops-memb-ref-older :
assumes insert-ops op-list

and (oid , Some ref) ∈ set op-list
shows ref < oid
using assms insert-ops-ref-older split-list-first by fastforce

2.2 Properties of the insert-spec function

lemma insert-spec-none [simp]:
shows set (insert-spec xs (oid , None)) = set xs ∪ {oid}
by (induction xs, auto simp add : insert-commute sup-commute)

20

lemma insert-spec-set [simp]:
assumes ref ∈ set xs
shows set (insert-spec xs (oid , Some ref)) = set xs ∪ {oid}
using assms proof(induction xs)
assume ref ∈ set []
thus set (insert-spec [] (oid , Some ref)) = set [] ∪ {oid}

by auto
next

fix a xs
assume ref ∈ set xs =⇒ set (insert-spec xs (oid , Some ref)) = set xs ∪ {oid}

and ref ∈ set (a#xs)
thus set (insert-spec (a#xs) (oid , Some ref)) = set (a#xs) ∪ {oid}

by(cases a = ref , auto simp add : insert-commute sup-commute)
qed

lemma insert-spec-nonex [simp]:
assumes ref /∈ set xs
shows insert-spec xs (oid , Some ref) = xs
using assms proof(induction xs)
show insert-spec [] (oid , Some ref) = []

by simp
next

fix a xs
assume ref /∈ set xs =⇒ insert-spec xs (oid , Some ref) = xs

and ref /∈ set (a#xs)
thus insert-spec (a#xs) (oid , Some ref) = a#xs

by(cases a = ref , auto simp add : insert-commute sup-commute)
qed

lemma list-greater-non-memb:
fixes oid :: ′oid ::{linorder}
assumes

∧
x . x ∈ set xs =⇒ x < oid

and oid ∈ set xs
shows False
using assms by blast

lemma inserted-item-ident :
assumes a ∈ set (insert-spec xs (e, i))

and a /∈ set xs
shows a = e
using assms proof(induction xs)
case Nil
then show a = e by (cases i , auto)

next
case (Cons x xs)
then show a = e
proof(cases i)

case None
then show a = e using assms by auto

21

next
case (Some ref)
then show a = e using Cons by (case-tac x = ref , auto)

qed
qed

lemma insert-spec-distinct [intro]:
fixes oid :: ′oid ::{linorder}
assumes distinct xs

and
∧

x . x ∈ set xs =⇒ x < oid
and ref = Some r −→ r < oid

shows distinct (insert-spec xs (oid , ref))
using assms(1) assms(2) proof(induction xs)
show distinct (insert-spec [] (oid , ref))

by(cases ref , auto)
next

fix a xs
assume IH : distinct xs =⇒ (

∧
x . x ∈ set xs =⇒ x < oid) =⇒ distinct (insert-spec

xs (oid , ref))
and D : distinct (a#xs)
and L:

∧
x . x ∈ set (a#xs) =⇒ x < oid

show distinct (insert-spec (a#xs) (oid , ref))
proof(cases ref)

assume ref = None
thus distinct (insert-spec (a#xs) (oid , ref))

using D L by auto
next

fix id
assume S : ref = Some id
{

assume EQ : a = id
hence id 6= oid

using D L by auto
moreover have id /∈ set xs

using D EQ by auto
moreover have oid /∈ set xs

using L by auto
ultimately have id 6= oid ∧ id /∈ set xs ∧ oid /∈ set xs ∧ distinct xs

using D by auto
}
note T = this
{

assume NEQ : a 6= id
have 0 : a /∈ set (insert-spec xs (oid , Some id))

using D L by(metis distinct .simps(2) insert-spec.simps(1) insert-spec-none
insert-spec-nonex

insert-spec-set insert-iff list .set(2) not-less-iff-gr-or-eq)
have 1 : distinct xs

using D by auto

22

have
∧

x . x ∈ set xs =⇒ x < oid
using L by auto

hence distinct (insert-spec xs (oid , Some id))
using S IH [OF 1] by blast

hence a /∈ set (insert-spec xs (oid , Some id)) ∧ distinct (insert-spec xs (oid ,
Some id))

using 0 by auto
}
from this S T show distinct (insert-spec (a # xs) (oid , ref))

by clarsimp
qed

qed

lemma insert-after-ref :
assumes distinct (xs @ ref # ys)
shows insert-spec (xs @ ref # ys) (oid , Some ref) = xs @ ref # oid # ys
using assms by (induction xs, auto)

lemma insert-somewhere:
assumes ref = None ∨ (ref = Some r ∧ r ∈ set list)
shows ∃ xs ys. list = xs @ ys ∧ insert-spec list (oid , ref) = xs @ oid # ys
using assms proof(induction list)
assume ref = None ∨ ref = Some r ∧ r ∈ set []
thus ∃ xs ys. [] = xs @ ys ∧ insert-spec [] (oid , ref) = xs @ oid # ys
proof

assume ref = None
thus ∃ xs ys. [] = xs @ ys ∧ insert-spec [] (oid , ref) = xs @ oid # ys

by auto
next

assume ref = Some r ∧ r ∈ set []
thus ∃ xs ys. [] = xs @ ys ∧ insert-spec [] (oid , ref) = xs @ oid # ys

by auto
qed

next
fix a list
assume 1 : ref = None ∨ ref = Some r ∧ r ∈ set (a#list)

and IH : ref = None ∨ ref = Some r ∧ r ∈ set list =⇒
∃ xs ys. list = xs @ ys ∧ insert-spec list (oid , ref) = xs @ oid # ys

show ∃ xs ys. a # list = xs @ ys ∧ insert-spec (a # list) (oid , ref) = xs @ oid
ys

proof(rule disjE [OF 1])
assume ref = None
thus ∃ xs ys. a # list = xs @ ys ∧ insert-spec (a # list) (oid , ref) = xs @ oid

ys
by force

next
assume ref = Some r ∧ r ∈ set (a # list)
hence 2 : r = a ∨ r ∈ set list and 3 : ref = Some r

by auto

23

show ∃ xs ys. a # list = xs @ ys ∧ insert-spec (a # list) (oid , ref) = xs @ oid
ys

proof(rule disjE [OF 2])
assume r = a
thus ∃ xs ys. a # list = xs @ ys ∧ insert-spec (a # list) (oid , ref) = xs @

oid # ys
using 3 by(metis append-Cons append-Nil insert-spec.simps(3))

next
assume r ∈ set list
from this obtain xs ys

where list = xs @ ys ∧ insert-spec list (oid , ref) = xs @ oid # ys
using IH 3 by auto

thus ∃ xs ys. a # list = xs @ ys ∧ insert-spec (a # list) (oid , ref) = xs @
oid # ys

using 3 by clarsimp (metis append-Cons append-Nil)
qed

qed
qed

lemma insert-first-part :
assumes ref = None ∨ (ref = Some r ∧ r ∈ set xs)
shows insert-spec (xs @ ys) (oid , ref) = (insert-spec xs (oid , ref)) @ ys
using assms proof(induction ys rule: rev-induct)
assume ref = None ∨ ref = Some r ∧ r ∈ set xs
thus insert-spec (xs @ []) (oid , ref) = insert-spec xs (oid , ref) @ []

by auto
next

fix x xsa
assume IH : ref = None ∨ ref = Some r ∧ r ∈ set xs =⇒ insert-spec (xs @ xsa)

(oid , ref) = insert-spec xs (oid , ref) @ xsa
and ref = None ∨ ref = Some r ∧ r ∈ set xs

thus insert-spec (xs @ xsa @ [x]) (oid , ref) = insert-spec xs (oid , ref) @ xsa @
[x]

proof(induction xs)
assume ref = None ∨ ref = Some r ∧ r ∈ set []
thus insert-spec ([] @ xsa @ [x]) (oid , ref) = insert-spec [] (oid , ref) @ xsa @

[x]
by auto

next
fix a xs
assume 1 : ref = None ∨ ref = Some r ∧ r ∈ set (a # xs)
and 2 : ((ref = None ∨ ref = Some r ∧ r ∈ set xs =⇒ insert-spec (xs @ xsa)

(oid , ref) = insert-spec xs (oid , ref) @ xsa) =⇒
ref = None ∨ ref = Some r ∧ r ∈ set xs =⇒ insert-spec (xs @ xsa @

[x]) (oid , ref) = insert-spec xs (oid , ref) @ xsa @ [x])
and 3 : (ref = None ∨ ref = Some r ∧ r ∈ set (a # xs) =⇒ insert-spec ((a

xs) @ xsa) (oid , ref) = insert-spec (a # xs) (oid , ref) @ xsa)
show insert-spec ((a # xs) @ xsa @ [x]) (oid , ref) = insert-spec (a # xs) (oid ,

ref) @ xsa @ [x]

24

proof(rule disjE [OF 1])
assume ref = None
thus insert-spec ((a # xs) @ xsa @ [x]) (oid , ref) = insert-spec (a # xs) (oid ,

ref) @ xsa @ [x]
by auto

next
assume ref = Some r ∧ r ∈ set (a # xs)
thus insert-spec ((a # xs) @ xsa @ [x]) (oid , ref) = insert-spec (a # xs) (oid ,

ref) @ xsa @ [x]
using 2 3 by auto

qed
qed

qed

lemma insert-second-part :
assumes ref = Some r

and r /∈ set xs
and r ∈ set ys

shows insert-spec (xs @ ys) (oid , ref) = xs @ (insert-spec ys (oid , ref))
using assms proof(induction xs)
assume ref = Some r
thus insert-spec ([] @ ys) (oid , ref) = [] @ insert-spec ys (oid , ref)

by auto
next

fix a xs
assume ref = Some r and r /∈ set (a # xs) and r ∈ set ys
and ref = Some r =⇒ r /∈ set xs =⇒ r ∈ set ys =⇒ insert-spec (xs @ ys) (oid ,

ref) = xs @ insert-spec ys (oid , ref)
thus insert-spec ((a # xs) @ ys) (oid , ref) = (a # xs) @ insert-spec ys (oid , ref)

by auto
qed

2.3 Properties of the interp-ins function

lemma interp-ins-empty [simp]:
shows interp-ins [] = []
by (simp add : interp-ins-def)

lemma interp-ins-tail-unfold :
shows interp-ins (xs @ [x]) = insert-spec (interp-ins xs) x
by (clarsimp simp add : interp-ins-def)

lemma interp-ins-subset [simp]:
shows set (interp-ins op-list) ⊆ set (map fst op-list)

proof(induction op-list rule: List .rev-induct)
case Nil
then show set (interp-ins []) ⊆ set (map fst [])

by (simp add : interp-ins-def)
next

25

case (snoc x xs)
hence IH : set (interp-ins xs) ⊆ set (map fst xs)

using interp-ins-def by blast
obtain oid ref where x-pair : x = (oid , ref)

by fastforce
hence spec: interp-ins (xs @ [x]) = insert-spec (interp-ins xs) (oid , ref)

by (simp add : interp-ins-def)
then show set (interp-ins (xs @ [x])) ⊆ set (map fst (xs @ [x]))
proof(cases ref)

case None
then show set (interp-ins (xs @ [x])) ⊆ set (map fst (xs @ [x]))

using IH spec x-pair by auto
next

case (Some a)
then show set (interp-ins (xs @ [x])) ⊆ set (map fst (xs @ [x]))

using IH spec x-pair by (cases a ∈ set (interp-ins xs), auto)
qed

qed

lemma interp-ins-distinct :
assumes insert-ops op-list
shows distinct (interp-ins op-list)
using assms proof(induction op-list rule: rev-induct)
case Nil
then show distinct (interp-ins [])

by (simp add : interp-ins-def)
next

case (snoc x xs)
hence IH : distinct (interp-ins xs) by blast
obtain oid ref where x-pair : x = (oid , ref) by force
hence ∀ x ∈ set (map fst xs). x < oid

using last-op-greatest snoc.prems by blast
hence ∀ x ∈ set (interp-ins xs). x < oid

using interp-ins-subset by fastforce
hence distinct (insert-spec (interp-ins xs) (oid , ref))

using IH insert-spec-distinct insert-spec-nonex by metis
then show distinct (interp-ins (xs @ [x]))

by (simp add : x-pair interp-ins-tail-unfold)
qed

2.4 Equivalence of the two definitions of insertion

At the beginning of this section we gave two different definitions of interpre-
tation functions for list insertion: insert-spec and insert-alt. In this section
we prove that the two are equivalent.

We first define how to derive the successor relation from an Isabelle list. This
relation contains (id, None) if id is the last element of the list, and (id1, id2)
if id1 is immediately followed by id2 in the list.

26

fun succ-rel :: ′oid list ⇒ (′oid × ′oid option) set where
succ-rel [] = {} |
succ-rel [head] = {(head , None)} |
succ-rel (head#x#xs) = {(head , Some x)} ∪ succ-rel (x#xs)

interp-alt is the equivalent of interp-ins, but using insert-alt instead of insert-
spec. To match the paper, it uses a distinct head element to refer to the
beginning of the list.

definition interp-alt :: ′oid ⇒ (′oid × ′oid option) list ⇒ (′oid × ′oid option) set
where

interp-alt head ops ≡ foldl insert-alt {(head , None)}
(map (λx . case x of

(oid , None) ⇒ (oid , head) |
(oid , Some ref) ⇒ (oid , ref))

ops)

lemma succ-rel-set-fst :
shows fst ‘ (succ-rel xs) = set xs
by (induction xs rule: succ-rel .induct , auto)

lemma succ-rel-functional :
assumes (a, b1) ∈ succ-rel xs

and (a, b2) ∈ succ-rel xs
and distinct xs

shows b1 = b2
using assms proof(induction xs rule: succ-rel .induct)
case 1
then show ?case by simp

next
case (2 head)
then show ?case by simp

next
case (3 head x xs)
then show ?case
proof(cases a = head)

case True
hence a /∈ set (x#xs)

using 3 by auto
hence a /∈ fst ‘ (succ-rel (x#xs))

using succ-rel-set-fst by metis
then show b1 = b2

using 3 image-iff by fastforce
next

case False
hence {(a, b1), (a, b2)} ⊆ succ-rel (x#xs)

using 3 by auto
moreover have distinct (x#xs)

using 3 by auto
ultimately show b1 = b2

27

using 3 .IH by auto
qed

qed

lemma succ-rel-rem-head :
assumes distinct (x # xs)
shows {(p, n) ∈ succ-rel (x # xs). p 6= x} = succ-rel xs

proof −
have head-notin: x /∈ fst ‘ succ-rel xs

using assms by (simp add : succ-rel-set-fst)
moreover obtain y where (x , y) ∈ succ-rel (x # xs)

by (cases xs, auto)
moreover have succ-rel (x # xs) = {(x , y)} ∪ succ-rel xs

using calculation head-notin image-iff by (cases xs, fastforce+)
moreover from this have

∧
n. (x , n) ∈ succ-rel (x # xs) =⇒ n = y

by (metis Pair-inject fst-conv head-notin image-eqI insertE insert-is-Un)
hence {(p, n) ∈ succ-rel (x # xs). p 6= x} = succ-rel (x # xs) − {(x , y)}

by blast
moreover have succ-rel (x # xs) − {(x , y)} = succ-rel xs

using image-iff calculation by fastforce
ultimately show {(p, n) ∈ succ-rel (x # xs). p 6= x} = succ-rel xs

by simp
qed

lemma succ-rel-swap-head :
assumes distinct (ref # list)

and (ref , n) ∈ succ-rel (ref # list)
shows succ-rel (oid # list) = {(oid , n)} ∪ succ-rel list

proof(cases list)
case Nil
then show ?thesis using assms by auto

next
case (Cons a list)
moreover from this have n = Some a

by (metis Un-iff assms singletonI succ-rel .simps(3) succ-rel-functional)
ultimately show ?thesis by simp

qed

lemma succ-rel-insert-alt :
assumes a 6= ref

and distinct (oid # a # b # list)
shows insert-alt (succ-rel (a # b # list)) (oid , ref) =

{(a, Some b)} ∪ insert-alt (succ-rel (b # list)) (oid , ref)
proof(cases ∃n. (ref , n) ∈ succ-rel (a # b # list))

case True
hence insert-alt (succ-rel (a # b # list)) (oid , ref) =

{(p, n) ∈ succ-rel (a # b # list). p 6= ref } ∪ {(ref , Some oid)} ∪
{(i , n). i = oid ∧ (ref , n) ∈ succ-rel (a # b # list)}

by simp

28

moreover have {(p, n) ∈ succ-rel (a # b # list). p 6= ref } =
{(a, Some b)} ∪ {(p, n) ∈ succ-rel (b # list). p 6= ref }

using assms(1) by auto
moreover have insert-alt (succ-rel (b # list)) (oid , ref) =

{(p, n) ∈ succ-rel (b # list). p 6= ref } ∪ {(ref , Some oid)} ∪
{(i , n). i = oid ∧ (ref , n) ∈ succ-rel (b # list)}

proof −
have ∃n. (ref , n) ∈ succ-rel (b # list)

using assms(1) True by auto
thus ?thesis by simp

qed
moreover have {(i , n). i = oid ∧ (ref , n) ∈ succ-rel (a # b # list)} =

{(i , n). i = oid ∧ (ref , n) ∈ succ-rel (b # list)}
using assms(1) by auto

ultimately show ?thesis by simp
next

case False
then show ?thesis by auto

qed

lemma succ-rel-insert-head :
assumes distinct (ref # list)
shows succ-rel (insert-spec (ref # list) (oid , Some ref)) =

insert-alt (succ-rel (ref # list)) (oid , ref)
proof −

obtain n where ref-in-rel : (ref , n) ∈ succ-rel (ref # list)
by (cases list , auto)

moreover from this have {(p, n) ∈ succ-rel (ref # list). p 6= ref } = succ-rel
list

using assms succ-rel-rem-head by (metis (mono-tags, lifting))
moreover have {(i , n). i = oid ∧ (ref , n) ∈ succ-rel (ref # list)} = {(oid , n)}
proof −

have
∧

nx . (ref , nx) ∈ succ-rel (ref # list) =⇒ nx = n
using assms by (simp add : succ-rel-functional ref-in-rel)

hence {(i , n) ∈ succ-rel (ref # list). i = ref } ⊆ {(ref , n)}
by blast

moreover have {(ref , n)} ⊆ {(i , n) ∈ succ-rel (ref # list). i = ref }
by (simp add : ref-in-rel)

ultimately show ?thesis by blast
qed
moreover have insert-alt (succ-rel (ref # list)) (oid , ref) =

{(p, n) ∈ succ-rel (ref # list). p 6= ref } ∪ {(ref , Some oid)} ∪
{(i , n). i = oid ∧ (ref , n) ∈ succ-rel (ref # list)}

proof −
have ∃n. (ref , n) ∈ succ-rel (ref # list)

using ref-in-rel by blast
thus ?thesis by simp

qed
ultimately have insert-alt (succ-rel (ref # list)) (oid , ref) =

29

succ-rel list ∪ {(ref , Some oid)} ∪ {(oid , n)}
by simp

moreover have succ-rel (oid # list) = {(oid , n)} ∪ succ-rel list
using assms ref-in-rel succ-rel-swap-head by metis

hence succ-rel (ref # oid # list) = {(ref , Some oid), (oid , n)} ∪ succ-rel list
by auto

ultimately show succ-rel (insert-spec (ref # list) (oid , Some ref)) =
insert-alt (succ-rel (ref # list)) (oid , ref)

by auto
qed

lemma succ-rel-insert-later :
assumes succ-rel (insert-spec (b # list) (oid , Some ref)) =

insert-alt (succ-rel (b # list)) (oid , ref)
and a 6= ref
and distinct (a # b # list)

shows succ-rel (insert-spec (a # b # list) (oid , Some ref)) =
insert-alt (succ-rel (a # b # list)) (oid , ref)

proof −
have succ-rel (a # b # list) = {(a, Some b)} ∪ succ-rel (b # list)

by simp
moreover have insert-spec (a # b # list) (oid , Some ref) =

a # (insert-spec (b # list) (oid , Some ref))
using assms(2) by simp

hence succ-rel (insert-spec (a # b # list) (oid , Some ref)) =
{(a, Some b)} ∪ succ-rel (insert-spec (b # list) (oid , Some ref))

by auto
hence succ-rel (insert-spec (a # b # list) (oid , Some ref)) =

{(a, Some b)} ∪ insert-alt (succ-rel (b # list)) (oid , ref)
using assms(1) by auto

moreover have insert-alt (succ-rel (a # b # list)) (oid , ref) =
{(a, Some b)} ∪ insert-alt (succ-rel (b # list)) (oid , ref)

using succ-rel-insert-alt assms(2) by auto
ultimately show ?thesis by blast

qed

lemma succ-rel-insert-Some:
assumes distinct list
shows succ-rel (insert-spec list (oid , Some ref)) = insert-alt (succ-rel list) (oid ,

ref)
using assms proof(induction list)
case Nil
then show succ-rel (insert-spec [] (oid , Some ref)) = insert-alt (succ-rel []) (oid ,

ref)
by simp

next
case (Cons a list)
hence distinct (a # list)

by simp

30

then show succ-rel (insert-spec (a # list) (oid , Some ref)) =
insert-alt (succ-rel (a # list)) (oid , ref)

proof(cases a = ref)
case True
then show ?thesis

using succ-rel-insert-head 〈distinct (a # list)〉 by metis
next

case False
hence a 6= ref by simp
moreover have succ-rel (insert-spec list (oid , Some ref)) =

insert-alt (succ-rel list) (oid , ref)
using Cons.IH Cons.prems by auto

ultimately show succ-rel (insert-spec (a # list) (oid , Some ref)) =
insert-alt (succ-rel (a # list)) (oid , ref)

by (cases list , force, metis Cons.prems succ-rel-insert-later)
qed

qed

The main result of this section, that insert-spec and insert-alt are equivalent.

theorem insert-alt-equivalent :
assumes insert-ops ops

and head /∈ fst ‘ set ops
and

∧
r . Some r ∈ snd ‘ set ops =⇒ r 6= head

shows succ-rel (head # interp-ins ops) = interp-alt head ops
using assms proof(induction ops rule: List .rev-induct)
case Nil
then show succ-rel (head # interp-ins []) = interp-alt head []

by (simp add : interp-ins-def interp-alt-def)
next

case (snoc x xs)
have IH : succ-rel (head # interp-ins xs) = interp-alt head xs

using snoc by auto
have distinct-list : distinct (head # interp-ins xs)
proof −

have distinct (interp-ins xs)
using interp-ins-distinct snoc.prems(1) by blast

moreover have set (interp-ins xs) ⊆ fst ‘ set xs
using interp-ins-subset snoc.prems(1) by fastforce

ultimately show distinct (head # interp-ins xs)
using snoc.prems(2) by auto

qed
obtain oid r where x-pair : x = (oid , r) by force
then show succ-rel (head # interp-ins (xs @ [x])) = interp-alt head (xs @ [x])
proof(cases r)

case None
have interp-alt head (xs @ [x]) = insert-alt (interp-alt head xs) (oid , head)

by (simp add : interp-alt-def None x-pair)
moreover have ... = insert-alt (succ-rel (head # interp-ins xs)) (oid , head)

by (simp add : IH)

31

moreover have ... = succ-rel (insert-spec (head # interp-ins xs) (oid , Some
head))

using distinct-list succ-rel-insert-Some by metis
moreover have ... = succ-rel (head # (insert-spec (interp-ins xs) (oid , None)))

by auto
moreover have ... = succ-rel (head # (interp-ins (xs @ [x])))

by (simp add : interp-ins-tail-unfold None x-pair)
ultimately show ?thesis by simp

next
case (Some ref)
have ref 6= head

by (simp add : Some snoc.prems(3) x-pair)
have interp-alt head (xs @ [x]) = insert-alt (interp-alt head xs) (oid , ref)

by (simp add : interp-alt-def Some x-pair)
moreover have ... = insert-alt (succ-rel (head # interp-ins xs)) (oid , ref)

by (simp add : IH)
moreover have ... = succ-rel (insert-spec (head # interp-ins xs) (oid , Some

ref))
using distinct-list succ-rel-insert-Some by metis

moreover have ... = succ-rel (head # (insert-spec (interp-ins xs) (oid , Some
ref)))

using 〈ref 6= head 〉 by auto
moreover have ... = succ-rel (head # (interp-ins (xs @ [x])))

by (simp add : interp-ins-tail-unfold Some x-pair)
ultimately show ?thesis by simp

qed
qed

2.5 The list-order predicate

list-order ops x y holds iff, after interpreting the list of insertion operations
ops, the list element with ID x appears before the list element with ID y in the
resulting list. We prove several lemmas about this predicate; in particular,
that executing additional insertion operations does not change the relative
ordering of existing list elements.

definition list-order :: (′oid ::{linorder} × ′oid option) list ⇒ ′oid ⇒ ′oid ⇒ bool
where

list-order ops x y ≡ ∃ xs ys zs. interp-ins ops = xs @ [x] @ ys @ [y] @ zs

lemma list-orderI :
assumes interp-ins ops = xs @ [x] @ ys @ [y] @ zs
shows list-order ops x y
using assms by (auto simp add : list-order-def)

lemma list-orderE :
assumes list-order ops x y
shows ∃ xs ys zs. interp-ins ops = xs @ [x] @ ys @ [y] @ zs
using assms by (auto simp add : list-order-def)

32

lemma list-order-memb1 :
assumes list-order ops x y
shows x ∈ set (interp-ins ops)
using assms by (auto simp add : list-order-def)

lemma list-order-memb2 :
assumes list-order ops x y
shows y ∈ set (interp-ins ops)
using assms by (auto simp add : list-order-def)

lemma list-order-trans:
assumes insert-ops op-list

and list-order op-list x y
and list-order op-list y z

shows list-order op-list x z
proof −

obtain xxs xys xzs where 1 : interp-ins op-list = (xxs@[x]@xys)@(y#xzs)
using assms by (auto simp add : list-order-def interp-ins-def)

obtain yxs yys yzs where 2 : interp-ins op-list = yxs@y#(yys@[z]@yzs)
using assms by (auto simp add : list-order-def interp-ins-def)

have 3 : distinct (interp-ins op-list)
using assms interp-ins-distinct by blast

hence xzs = yys@[z]@yzs
using distinct-list-split [OF 3 , OF 2 , OF 1] by auto

hence interp-ins op-list = xxs@[x]@xys@[y]@yys@[z]@yzs
using 1 2 3 by clarsimp

thus list-order op-list x z
using assms by (metis append .assoc list-orderI)

qed

lemma insert-preserves-order :
assumes insert-ops ops and insert-ops rest

and rest = before @ after
and ops = before @ (oid , ref) # after

shows ∃ xs ys zs. interp-ins rest = xs @ zs ∧ interp-ins ops = xs @ ys @ zs
using assms proof(induction after arbitrary : rest ops rule: List .rev-induct)
case Nil
then have 1 : interp-ins ops = insert-spec (interp-ins before) (oid , ref)

by (simp add : interp-ins-tail-unfold)
then show ∃ xs ys zs. interp-ins rest = xs @ zs ∧ interp-ins ops = xs @ ys @ zs
proof(cases ref)

case None
hence interp-ins rest = [] @ (interp-ins before) ∧

interp-ins ops = [] @ [oid] @ (interp-ins before)
using 1 Nil .prems(3) by simp

then show ?thesis by blast
next

case (Some a)

33

then show ?thesis
proof(cases a ∈ set (interp-ins before))

case True
then obtain xs ys where interp-ins before = xs @ ys ∧

insert-spec (interp-ins before) (oid , ref) = xs @ oid # ys
using insert-somewhere Some by metis

hence interp-ins rest = xs @ ys ∧ interp-ins ops = xs @ [oid] @ ys
using 1 Nil .prems(3) by auto

then show ?thesis by blast
next

case False
hence interp-ins ops = (interp-ins rest) @ [] @ []

using insert-spec-nonex 1 Nil .prems(3) Some by simp
then show ?thesis by blast

qed
qed

next
case (snoc oper op-list)
then have insert-ops ((before @ (oid , ref) # op-list) @ [oper])

and insert-ops ((before @ op-list) @ [oper])
by auto

then have ops1 : insert-ops (before @ op-list)
and ops2 : insert-ops (before @ (oid , ref) # op-list)
using insert-ops-appendD by blast+

then obtain xs ys zs where IH1 : interp-ins (before @ op-list) = xs @ zs
and IH2 : interp-ins (before @ (oid , ref) # op-list) = xs @ ys @ zs
using snoc.IH by blast

obtain i2 r2 where oper = (i2 , r2) by force
then show ∃ xs ys zs. interp-ins rest = xs @ zs ∧ interp-ins ops = xs @ ys @ zs
proof(cases r2)

case None
hence interp-ins (before @ op-list @ [oper]) = (i2 # xs) @ zs
by (metis IH1 〈oper = (i2 , r2)〉 append .assoc append-Cons insert-spec.simps(1)

interp-ins-tail-unfold)
moreover have interp-ins (before @ (oid , ref) # op-list @ [oper]) = (i2 # xs)

@ ys @ zs
by (metis IH2 None 〈oper = (i2 , r2)〉 append .assoc append-Cons insert-spec.simps(1)

interp-ins-tail-unfold)
ultimately show ?thesis

using snoc.prems(3) snoc.prems(4) by blast
next

case (Some r)
then have 1 : interp-ins (before @ (oid , ref) # op-list @ [(i2 , r2)]) =

insert-spec (xs @ ys @ zs) (i2 , Some r)
by (metis IH2 append .assoc append-Cons interp-ins-tail-unfold)

have 2 : interp-ins (before @ op-list @ [(i2 , r2)]) = insert-spec (xs @ zs) (i2 ,
Some r)

by (metis IH1 append .assoc interp-ins-tail-unfold Some)
consider (r-xs) r ∈ set xs | (r-ys) r ∈ set ys | (r-zs) r ∈ set zs |

34

(r-nonex) r /∈ set (xs @ ys @ zs)
by auto

then show ∃ xs ys zs. interp-ins rest = xs @ zs ∧ interp-ins ops = xs @ ys @
zs

proof(cases)
case r-xs
from this have insert-spec (xs @ ys @ zs) (i2 , Some r) =

(insert-spec xs (i2 , Some r)) @ ys @ zs
by (meson insert-first-part)

moreover have insert-spec (xs @ zs) (i2 , Some r) = (insert-spec xs (i2 , Some
r)) @ zs

by (meson r-xs insert-first-part)
ultimately show ?thesis

using 1 2 〈oper = (i2 , r2)〉 snoc.prems by auto
next

case r-ys
hence r /∈ set xs and r /∈ set zs

using IH2 ops2 interp-ins-distinct by force+
moreover from this have insert-spec (xs @ ys @ zs) (i2 , Some r) =

xs @ (insert-spec ys (i2 , Some r)) @ zs
using insert-first-part insert-second-part insert-spec-nonex
by (metis Some UnE r-ys set-append)

moreover have insert-spec (xs @ zs) (i2 , Some r) = xs @ zs
by (simp add : Some calculation(1) calculation(2))

ultimately show ?thesis
using 1 2 〈oper = (i2 , r2)〉 snoc.prems by auto

next
case r-zs
hence r /∈ set xs and r /∈ set ys

using IH2 ops2 interp-ins-distinct by force+
moreover from this have insert-spec (xs @ ys @ zs) (i2 , Some r) =

xs @ ys @ (insert-spec zs (i2 , Some r))
by (metis Some UnE insert-second-part insert-spec-nonex set-append)

moreover have insert-spec (xs @ zs) (i2 , Some r) = xs @ (insert-spec zs (i2 ,
Some r))

by (simp add : r-zs calculation(1) insert-second-part)
ultimately show ?thesis

using 1 2 〈oper = (i2 , r2)〉 snoc.prems by auto
next

case r-nonex
then have insert-spec (xs @ ys @ zs) (i2 , Some r) = xs @ ys @ zs

by simp
moreover have insert-spec (xs @ zs) (i2 , Some r) = xs @ zs

using r-nonex by simp
ultimately show ?thesis

using 1 2 〈oper = (i2 , r2)〉 snoc.prems by auto
qed

qed
qed

35

lemma distinct-fst :
assumes distinct (map fst A)
shows distinct A
using assms by (induction A) auto

lemma subset-distinct-le:
assumes set A ⊆ set B and distinct A and distinct B
shows length A ≤ length B
using assms proof(induction B arbitrary : A)
case Nil
then show length A ≤ length [] by simp

next
case (Cons a B)
then show length A ≤ length (a # B)
proof(cases a ∈ set A)

case True
have set (remove1 a A) ⊆ set B

using Cons.prems by auto
hence length (remove1 a A) ≤ length B

using Cons.IH Cons.prems by auto
then show length A ≤ length (a # B)

by (simp add : True length-remove1)
next

case False
hence set A ⊆ set B

using Cons.prems by auto
hence length A ≤ length B

using Cons.IH Cons.prems by auto
then show length A ≤ length (a # B)

by simp
qed

qed

lemma set-subset-length-eq :
assumes set A ⊆ set B and length B ≤ length A

and distinct A and distinct B
shows set A = set B

proof −
have length A ≤ length B

using assms by (simp add : subset-distinct-le)
moreover from this have card (set A) = card (set B)

using assms by (simp add : distinct-card le-antisym)
ultimately show set A = set B

using assms(1) by (simp add : card-subset-eq)
qed

lemma length-diff-Suc-exists:
assumes length xs − length ys = Suc m

36

and set ys ⊆ set xs
and distinct ys and distinct xs

shows ∃ e. e ∈ set xs ∧ e /∈ set ys
using assms proof(induction xs arbitrary : ys)
case Nil
then show ∃ e. e ∈ set [] ∧ e /∈ set ys

by simp
next

case (Cons a xs)
then show ∃ e. e ∈ set (a # xs) ∧ e /∈ set ys
proof(cases a ∈ set ys)

case True
have IH : ∃ e. e ∈ set xs ∧ e /∈ set (remove1 a ys)
proof −

have length xs − length (remove1 a ys) = Suc m
by (metis Cons.prems(1) One-nat-def Suc-pred True diff-Suc-Suc length-Cons

length-pos-if-in-set length-remove1)
moreover have set (remove1 a ys) ⊆ set xs

using Cons.prems by auto
ultimately show ?thesis

by (meson Cons.IH Cons.prems distinct .simps(2) distinct-remove1)
qed
moreover have set ys − {a} ⊆ set xs

using Cons.prems(2) by auto
ultimately show ∃ e. e ∈ set (a # xs) ∧ e /∈ set ys

by (metis Cons.prems(4) distinct .simps(2) in-set-remove1 set-subset-Cons
subsetCE)

next
case False
then show ∃ e. e ∈ set (a # xs) ∧ e /∈ set ys

by auto
qed

qed

lemma app-length-lt-exists:
assumes xsa @ zsa = xs @ ys

and length xsa ≤ length xs
shows xsa @ (drop (length xsa) xs) = xs
using assms by (induction xsa arbitrary : xs zsa ys, simp,

metis append-eq-append-conv-if append-take-drop-id)

lemma list-order-monotonic:
assumes insert-ops A and insert-ops B

and set A ⊆ set B
and list-order A x y

shows list-order B x y
using assms proof(induction rule: measure-induct-rule[where f =λx . (length x
− length A)])

case (less xa)

37

have distinct (map fst A) and distinct (map fst xa) and
sorted (map fst A) and sorted (map fst xa)
using less.prems by (auto simp add : insert-ops-def spec-ops-def)

hence distinct A and distinct xa
by (auto simp add : distinct-fst)

then show list-order xa x y
proof(cases length xa − length A)

case 0
hence set A = set xa

using set-subset-length-eq less.prems(3) 〈distinct A〉 〈distinct xa〉 diff-is-0-eq
by blast

hence A = xa
using 〈distinct (map fst A)〉 〈distinct (map fst xa)〉

〈sorted (map fst A)〉 〈sorted (map fst xa)〉 map-sorted-distinct-set-unique
by (metis distinct-map less.prems(3) subset-Un-eq)

then show list-order xa x y
using less.prems(4) by blast

next
case (Suc nat)
then obtain e where e ∈ set xa and e /∈ set A

using length-diff-Suc-exists 〈distinct A〉 〈distinct xa〉 less.prems(3) by blast
hence IH : list-order (remove1 e xa) x y
proof −

have length (remove1 e xa) − length A < Suc nat
using diff-Suc-1 diff-commute length-remove1 less-Suc-eq Suc 〈e ∈ set xa〉

by metis
moreover have insert-ops (remove1 e xa)

by (simp add : insert-ops-remove1 less.prems(2))
moreover have set A ⊆ set (remove1 e xa)

by (metis (no-types, lifting) 〈e /∈ set A〉 in-set-remove1 less.prems(3)
set-rev-mp subsetI)

ultimately show ?thesis
by (simp add : Suc less.IH less.prems(1) less.prems(4))

qed
then obtain xs ys zs where interp-ins (remove1 e xa) = xs @ x # ys @ y #

zs
using list-order-def by fastforce

moreover obtain oid ref where e-pair : e = (oid , ref)
by fastforce

moreover obtain ps ss where xa-split : xa = ps @ [e] @ ss and e /∈ set ps
using split-list-first 〈e ∈ set xa〉 by fastforce

hence remove1 e (ps @ e # ss) = ps @ ss
by (simp add : remove1-append)

moreover from this have insert-ops (ps @ ss) and insert-ops (ps @ e # ss)
using xa-split less.prems(2) by (metis append-Cons append-Nil insert-ops-remove1 ,

auto)
then obtain xsa ysa zsa where interp-ins (ps @ ss) = xsa @ zsa

and interp-xa: interp-ins (ps @ (oid , ref) # ss) = xsa @ ysa @ zsa
using insert-preserves-order e-pair by metis

38

moreover have xsa-zsa: xsa @ zsa = xs @ x # ys @ y # zs
using interp-ins-def remove1-append calculation xa-split by auto

then show list-order xa x y
proof(cases length xsa ≤ length xs)

case True
then obtain ts where xsa@ts = xs

using app-length-lt-exists xsa-zsa by blast
hence interp-ins xa = (xsa @ ysa @ ts) @ [x] @ ys @ [y] @ zs

using calculation xa-split by auto
then show list-order xa x y

using list-order-def by blast
next

case False
then show list-order xa x y
proof(cases length xsa ≤ length (xs @ x # ys))

case True
have xsa-zsa1 : xsa @ zsa = (xs @ x # ys) @ (y # zs)

by (simp add : xsa-zsa)
then obtain us where xsa @ us = xs @ x # ys

using app-length-lt-exists True by blast
moreover from this have xs @ x # (drop (Suc (length xs)) xsa) = xsa

using append-eq-append-conv-if id-take-nth-drop linorder-not-less
nth-append nth-append-length False by metis

moreover have us @ y # zs = zsa
by (metis True xsa-zsa1 append-eq-append-conv-if append-eq-conv-conj

calculation(1))
ultimately have interp-ins xa = xs @ [x] @

((drop (Suc (length xs)) xsa) @ ysa @ us) @ [y] @ zs
by (simp add : e-pair interp-xa xa-split)

then show list-order xa x y
using list-order-def by blast

next
case False
hence length (xs @ x # ys) < length xsa

using not-less by blast
hence length (xs @ x # ys @ [y]) ≤ length xsa

by simp
moreover have (xs @ x # ys @ [y]) @ zs = xsa @ zsa

by (simp add : xsa-zsa)
ultimately obtain vs where (xs @ x # ys @ [y]) @ vs = xsa

using app-length-lt-exists by blast
hence xsa @ ysa @ zsa = xs @ [x] @ ys @ [y] @ vs @ ysa @ zsa

by simp
hence interp-ins xa = xs @ [x] @ ys @ [y] @ (vs @ ysa @ zsa)

using e-pair interp-xa xa-split by auto
then show list-order xa x y

using list-order-def by blast
qed

qed

39

qed
qed

end

3 Relationship to Strong List Specification

In this section we show that our list specification is stronger than the Astrong
specification of collaborative text editing by Attiya et al. [1]. We do this by
showing that the OpSet interpretation of any set of insertion and deletion
operations satisfies all of the consistency criteria that constitute the Astrong
specification.

Attiya et al.’s specification is as follows [1]:

An abstract execution A = (H, vis) belongs to the strong list spec-
ification Astrong if and only if there is a relation lo ⊆ elems(A)×
elems(A), called the list order, such that:

1. Each event e = do(op, w) ∈ H returns a sequence of elements
w = a0 . . . an−1, where ai ∈ elems(A), such that

(a) w contains exactly the elements visible to e that have been
inserted, but not deleted:

∀a. a ∈ w ⇐⇒ (do(ins(a,),) ≤vis e) ∧ ¬(do(del(a),) ≤vis e).

(b) The order of the elements is consistent with the list order:

∀i, j. (i < j) =⇒ (ai, aj) ∈ lo.

(c) Elements are inserted at the specified position: if op =
ins(a, k), then a = amin{k, n−1}.

2. The list order lo is transitive, irreflexive and total, and thus
determines the order of all insert operations in the execution.

This specification considers only insertion and deletion operations, but no
assignment. Moreover, it considers only a single list object, not a graph of
composable objects like in our paper. Thus, we prove the relationship to
Astrong using a simplified interpretation function that defines only insertion
and deletion on a single list.

theory List-Spec
imports Insert-Spec

begin

We first define a datatype for list operations, with two constructors: Insert
ref val, and Delete ref. For insertion, the ref argument is the ID of the

40

existing element after which we want to insert, or None to insert at the head
of the list. The val argument is an arbitrary value to associate with the list
element. For deletion, the ref argument is the ID of the existing list element
to delete.

datatype (′oid , ′val) list-op =
Insert ′oid option ′val |
Delete ′oid

When interpreting operations, the result is a pair (list, vals). The list con-
tains the IDs of list elements in the correct order (equivalent to the list
relation in the paper), and vals is a mapping from list element IDs to values
(equivalent to the element relation in the paper).

Insertion delegates to the previously defined insert-spec interpretation func-
tion. Deleting a list element removes it from vals.

fun interp-op :: (′oid list × (′oid ⇀ ′val)) ⇒ (′oid × (′oid , ′val) list-op)
⇒ (′oid list × (′oid ⇀ ′val)) where

interp-op (list , vals) (oid , Insert ref val) = (insert-spec list (oid , ref), vals(oid 7→
val)) |

interp-op (list , vals) (oid , Delete ref) = (list , vals(ref := None))

definition interp-ops :: (′oid × (′oid , ′val) list-op) list ⇒ (′oid list × (′oid ⇀
′val)) where

interp-ops ops ≡ foldl interp-op ([], Map.empty) ops

list-order ops x y holds iff, after interpreting the list of operations ops, the list
element with ID x appears before the list element with ID y in the resulting
list.

definition list-order :: (′oid × (′oid , ′val) list-op) list ⇒ ′oid ⇒ ′oid ⇒ bool where
list-order ops x y ≡ ∃ xs ys zs. fst (interp-ops ops) = xs @ [x] @ ys @ [y] @ zs

The make-insert function generates a new operation for insertion into a given
index in a given list. The exclamation mark is Isabelle’s list subscript oper-
ator.

fun make-insert :: ′oid list ⇒ ′val ⇒ nat ⇒ (′oid , ′val) list-op where
make-insert list val 0 = Insert None val |
make-insert [] val k = Insert None val |
make-insert list val (Suc k) = Insert (Some (list ! (min k (length list − 1)))) val

The list-ops predicate is a specialisation of spec-ops to the list-op datatype:
it describes a list of (ID, operation) pairs that is sorted by ID, and can thus
be used for the sequential interpretation of the OpSet.

fun list-op-deps :: (′oid , ′val) list-op ⇒ ′oid set where
list-op-deps (Insert (Some ref) -) = {ref } |
list-op-deps (Insert None -) = {} |
list-op-deps (Delete ref) = {ref }

41

locale list-opset = opset opset list-op-deps
for opset :: (′oid ::{linorder} × (′oid , ′val) list-op) set

definition list-ops :: (′oid ::{linorder} × (′oid , ′val) list-op) list ⇒ bool where
list-ops ops ≡ spec-ops ops list-op-deps

3.1 Lemmas about insertion and deletion

definition insertions :: (′oid ::{linorder} × (′oid , ′val) list-op) list ⇒ (′oid × ′oid
option) list where

insertions ops ≡ List .map-filter (λoper .
case oper of (oid , Insert ref val) ⇒ Some (oid , ref) |

(oid , Delete ref) ⇒ None) ops

definition inserted-ids :: (′oid ::{linorder} × (′oid , ′val) list-op) list ⇒ ′oid list
where

inserted-ids ops ≡ List .map-filter (λoper .
case oper of (oid , Insert ref val) ⇒ Some oid |

(oid , Delete ref) ⇒ None) ops

definition deleted-ids :: (′oid ::{linorder} × (′oid , ′val) list-op) list ⇒ ′oid list
where

deleted-ids ops ≡ List .map-filter (λoper .
case oper of (oid , Insert ref val) ⇒ None |

(oid , Delete ref) ⇒ Some ref) ops

lemma interp-ops-unfold-last :
shows interp-ops (xs @ [x]) = interp-op (interp-ops xs) x
by (simp add : interp-ops-def)

lemma map-filter-append :
shows List .map-filter P (xs @ ys) = List .map-filter P xs @ List .map-filter P ys
by (auto simp add : List .map-filter-def)

lemma map-filter-Some:
assumes P x = Some y
shows List .map-filter P [x] = [y]
by (simp add : assms map-filter-simps(1) map-filter-simps(2))

lemma map-filter-None:
assumes P x = None
shows List .map-filter P [x] = []
by (simp add : assms map-filter-simps(1) map-filter-simps(2))

lemma insertions-last-ins:
shows insertions (xs @ [(oid , Insert ref val)]) = insertions xs @ [(oid , ref)]
by (simp add : insertions-def map-filter-Some map-filter-append)

lemma insertions-last-del :

42

shows insertions (xs @ [(oid , Delete ref)]) = insertions xs
by (simp add : insertions-def map-filter-None map-filter-append)

lemma insertions-fst-subset :
shows set (map fst (insertions ops)) ⊆ set (map fst ops)

proof(induction ops rule: List .rev-induct)
case Nil
then show set (map fst (insertions [])) ⊆ set (map fst [])

by (simp add : insert-ops-def spec-ops-def insertions-def map-filter-def)
next

case (snoc a ops)
obtain oid oper where a-pair : a = (oid , oper)

by fastforce
then show set (map fst (insertions (ops @ [a]))) ⊆ set (map fst (ops @ [a]))
proof(cases oper)

case (Insert ref val)
hence insertions (ops @ [a]) = insertions ops @ [(oid , ref)]

by (simp add : a-pair insertions-last-ins)
then show ?thesis using snoc.IH a-pair by auto

next
case (Delete ref)
hence insertions (ops @ [a]) = insertions ops

by (simp add : a-pair insertions-last-del)
then show ?thesis using snoc.IH by auto

qed
qed

lemma insertions-subset :
assumes list-ops A and list-ops B

and set A ⊆ set B
shows set (insertions A) ⊆ set (insertions B)
using assms proof(induction B arbitrary : A rule: List .rev-induct)
case Nil
then show set (insertions A) ⊆ set (insertions [])

by (simp add : insertions-def map-filter-simps(2))
next

case (snoc a ops)
obtain oid oper where a-pair : a = (oid , oper)

by fastforce
have list-ops ops

using list-ops-def spec-ops-rem-last snoc.prems(2) by blast
then show set (insertions A) ⊆ set (insertions (ops @ [a]))
proof(cases a ∈ set A)

case True
then obtain as bs where A-split : A = as @ a # bs ∧ a /∈ set as

by (meson split-list-first)
hence remove1 a A = as @ bs

by (simp add : remove1-append)
hence as-bs: insertions (remove1 a A) = insertions as @ insertions bs

43

by (simp add : insertions-def map-filter-append)
moreover have A = as @ [a] @ bs

by (simp add : A-split)
hence as-a-bs: insertions A = insertions as @ insertions [a] @ insertions bs

by (metis insertions-def map-filter-append)
moreover have IH : set (insertions (remove1 a A)) ⊆ set (insertions ops)
proof −

have list-ops (remove1 a A)
using snoc.prems(1) list-ops-def spec-ops-remove1 by blast

moreover have set (remove1 a A) ⊆ set ops
proof −

have distinct A
using snoc.prems(1) list-ops-def spec-ops-distinct by blast

hence a /∈ set (remove1 a A)
by auto

moreover have set (ops @ [a]) = set ops ∪ {a}
by auto

moreover have set (remove1 a A) ⊆ set A
by (simp add : set-remove1-subset)

ultimately show set (remove1 a A) ⊆ set ops
using snoc.prems(3) by blast

qed
ultimately show ?thesis

by (simp add : 〈list-ops ops〉 snoc.IH)
qed
ultimately show ?thesis
proof(cases oper)

case (Insert ref val)
hence insertions [a] = [(oid , ref)]

by (simp add : insertions-def map-filter-Some a-pair)
hence set (insertions A) = set (insertions (remove1 a A)) ∪ {(oid , ref)}

using as-a-bs as-bs by auto
moreover have set (insertions (ops @ [a])) = set (insertions ops) ∪ {(oid ,

ref)}
by (simp add : Insert a-pair insertions-last-ins)

ultimately show ?thesis
using IH by auto

next
case (Delete ref)
hence insertions [a] = []

by (simp add : insertions-def map-filter-None a-pair)
hence set (insertions A) = set (insertions (remove1 a A))

using as-a-bs as-bs by auto
moreover have set (insertions (ops @ [a])) = set (insertions ops)

by (simp add : Delete a-pair insertions-last-del)
ultimately show ?thesis

using IH by auto
qed

next

44

case False
hence set A ⊆ set ops

using DiffE snoc.prems by auto
hence set (insertions A) ⊆ set (insertions ops)

using snoc.IH snoc.prems(1) 〈list-ops ops〉 by blast
moreover have set (insertions ops) ⊆ set (insertions (ops @ [a]))

by (simp add : insertions-def map-filter-append)
ultimately show ?thesis

by blast
qed

qed

lemma list-ops-insertions:
assumes list-ops ops
shows insert-ops (insertions ops)
using assms proof(induction ops rule: List .rev-induct)
case Nil
then show insert-ops (insertions [])

by (simp add : insert-ops-def spec-ops-def insertions-def map-filter-def)
next

case (snoc a ops)
hence IH : insert-ops (insertions ops)

using list-ops-def spec-ops-rem-last by blast
obtain oid oper where a-pair : a = (oid , oper)

by fastforce
then show insert-ops (insertions (ops @ [a]))
proof(cases oper)

case (Insert ref val)
hence insertions (ops @ [a]) = insertions ops @ [(oid , ref)]

by (simp add : a-pair insertions-last-ins)
moreover have

∧
i . i ∈ set (map fst ops) =⇒ i < oid

using a-pair list-ops-def snoc.prems spec-ops-id-inc by fastforce
hence

∧
i . i ∈ set (map fst (insertions ops)) =⇒ i < oid

using insertions-fst-subset by blast
moreover have list-op-deps oper = set-option ref

using Insert by (cases ref , auto)
hence

∧
r . r ∈ set-option ref =⇒ r < oid

using list-ops-def spec-ops-ref-less
by (metis a-pair last-in-set snoc.prems snoc-eq-iff-butlast)

ultimately show ?thesis
using IH insert-ops-def spec-ops-add-last by metis

next
case (Delete ref)
hence insertions (ops @ [a]) = insertions ops

by (simp add : a-pair insertions-last-del)
then show ?thesis by (simp add : IH)

qed
qed

45

lemma inserted-ids-last-ins:
shows inserted-ids (xs @ [(oid , Insert ref val)]) = inserted-ids xs @ [oid]
by (simp add : inserted-ids-def map-filter-Some map-filter-append)

lemma inserted-ids-last-del :
shows inserted-ids (xs @ [(oid , Delete ref)]) = inserted-ids xs
by (simp add : inserted-ids-def map-filter-None map-filter-append)

lemma inserted-ids-exist :
shows oid ∈ set (inserted-ids ops) ←→ (∃ ref val . (oid , Insert ref val) ∈ set ops)

proof(induction ops rule: List .rev-induct)
case Nil
then show oid ∈ set (inserted-ids []) ←→ (∃ ref val . (oid , Insert ref val) ∈ set

[])
by (simp add : inserted-ids-def List .map-filter-def)

next
case (snoc a ops)
obtain i oper where a-pair : a = (i , oper)

by fastforce
then show oid ∈ set (inserted-ids (ops @ [a])) ←→

(∃ ref val . (oid , Insert ref val) ∈ set (ops @ [a]))
proof(cases oper)

case (Insert r v)
moreover from this have inserted-ids (ops @ [a]) = inserted-ids ops @ [i]

by (simp add : a-pair inserted-ids-last-ins)
ultimately show ?thesis

using snoc.IH a-pair by auto
next

case (Delete r)
moreover from this have inserted-ids (ops @ [a]) = inserted-ids ops

by (simp add : a-pair inserted-ids-last-del)
ultimately show ?thesis

by (simp add : a-pair snoc.IH)
qed

qed

lemma deleted-ids-last-ins:
shows deleted-ids (xs @ [(oid , Insert ref val)]) = deleted-ids xs
by (simp add : deleted-ids-def map-filter-None map-filter-append)

lemma deleted-ids-last-del :
shows deleted-ids (xs @ [(oid , Delete ref)]) = deleted-ids xs @ [ref]
by (simp add : deleted-ids-def map-filter-Some map-filter-append)

lemma deleted-ids-exist :
shows ref ∈ set (deleted-ids ops) ←→ (∃ i . (i , Delete ref) ∈ set ops)

proof(induction ops rule: List .rev-induct)
case Nil
then show ref ∈ set (deleted-ids []) ←→ (∃ i . (i , Delete ref) ∈ set [])

46

by (simp add : deleted-ids-def List .map-filter-def)
next

case (snoc a ops)
obtain oid oper where a-pair : a = (oid , oper)

by fastforce
then show ref ∈ set (deleted-ids (ops @ [a])) ←→ (∃ i . (i , Delete ref) ∈ set (ops

@ [a]))
proof(cases oper)

case (Insert r v)
moreover from this have deleted-ids (ops @ [a]) = deleted-ids ops

by (simp add : a-pair deleted-ids-last-ins)
ultimately show ?thesis

using a-pair snoc.IH by auto
next

case (Delete r)
moreover from this have deleted-ids (ops @ [a]) = deleted-ids ops @ [r]

by (simp add : a-pair deleted-ids-last-del)
ultimately show ?thesis

using a-pair snoc.IH by auto
qed

qed

lemma deleted-ids-refs-older :
assumes list-ops (ops @ [(oid , oper)])
shows

∧
ref . ref ∈ set (deleted-ids ops) =⇒ ref < oid

proof −
fix ref
assume ref ∈ set (deleted-ids ops)
then obtain i where in-ops: (i , Delete ref) ∈ set ops

using deleted-ids-exist by blast
have ref < i
proof −

have
∧

i oper r . (i , oper) ∈ set ops =⇒ r ∈ list-op-deps oper =⇒ r < i
by (meson assms list-ops-def spec-ops-ref-less spec-ops-rem-last)

thus ref < i
using in-ops by auto

qed
moreover have i < oid
proof −

have
∧

i . i ∈ set (map fst ops) =⇒ i < oid
using assms by (simp add : list-ops-def spec-ops-id-inc)

thus ?thesis
by (metis in-ops in-set-zipE zip-map-fst-snd)

qed
ultimately show ref < oid

using order .strict-trans by blast
qed

47

3.2 Lemmas about interpreting operations

lemma interp-ops-list-equiv :
shows fst (interp-ops ops) = interp-ins (insertions ops)

proof(induction ops rule: List .rev-induct)
case Nil
have 1 : fst (interp-ops []) = []

by (simp add : interp-ops-def)
have 2 : interp-ins (insertions []) = []

by (simp add : insertions-def map-filter-def interp-ins-def)
show fst (interp-ops []) = interp-ins (insertions [])

by (simp add : 1 2)
next

case (snoc a ops)
obtain oid oper where a-pair : a = (oid , oper)

by fastforce
then show fst (interp-ops (ops @ [a])) = interp-ins (insertions (ops @ [a]))
proof(cases oper)

case (Insert ref val)
hence insertions (ops @ [a]) = insertions ops @ [(oid , ref)]

by (simp add : a-pair insertions-last-ins)
hence interp-ins (insertions (ops @ [a])) = insert-spec (interp-ins (insertions

ops)) (oid , ref)
by (simp add : interp-ins-tail-unfold)

moreover have fst (interp-ops (ops @ [a])) = insert-spec (fst (interp-ops ops))
(oid , ref)

by (metis Insert a-pair fst-conv interp-op.simps(1) interp-ops-unfold-last
prod .collapse)

ultimately show ?thesis
using snoc.IH by auto

next
case (Delete ref)
hence insertions (ops @ [a]) = insertions ops

by (simp add : a-pair insertions-last-del)
moreover have fst (interp-ops (ops @ [a])) = fst (interp-ops ops)

by (metis Delete a-pair eq-fst-iff interp-op.simps(2) interp-ops-unfold-last)
ultimately show ?thesis

using snoc.IH by auto
qed

qed

lemma interp-ops-distinct :
assumes list-ops ops
shows distinct (fst (interp-ops ops))
by (simp add : assms interp-ins-distinct interp-ops-list-equiv list-ops-insertions)

lemma list-order-equiv :
shows list-order ops x y ←→ Insert-Spec.list-order (insertions ops) x y
by (simp add : Insert-Spec.list-order-def List-Spec.list-order-def interp-ops-list-equiv)

48

lemma interp-ops-vals-domain:
assumes list-ops ops
shows dom (snd (interp-ops ops)) = set (inserted-ids ops) − set (deleted-ids ops)
using assms proof(induction ops rule: List .rev-induct)
case Nil
have 1 : interp-ops [] = ([], Map.empty)

by (simp add : interp-ops-def)
moreover have 2 : inserted-ids [] = [] and deleted-ids [] = []

by (auto simp add : inserted-ids-def deleted-ids-def map-filter-simps(2))
ultimately show dom (snd (interp-ops [])) = set (inserted-ids []) − set (deleted-ids

[])
by (simp add : 1 2)

next
case (snoc x xs)
hence IH : dom (snd (interp-ops xs)) = set (inserted-ids xs) − set (deleted-ids

xs)
using list-ops-def spec-ops-rem-last by blast

obtain oid oper where x-pair : x = (oid , oper)
by fastforce

obtain list vals where interp-xs: interp-ops xs = (list , vals)
by fastforce

then show dom (snd (interp-ops (xs @ [x]))) =
set (inserted-ids (xs @ [x])) − set (deleted-ids (xs @ [x]))

proof(cases oper)
case (Insert ref val)
hence interp-ops (xs @ [x]) = (insert-spec list (oid , ref), vals(oid 7→ val))

by (simp add : interp-ops-unfold-last interp-xs x-pair)
hence dom (snd (interp-ops (xs @ [x]))) = (dom vals) ∪ {oid}

by simp
moreover have set (inserted-ids xs) − set (deleted-ids xs) = dom vals

using IH interp-xs by auto
moreover have inserted-ids (xs @ [x]) = inserted-ids xs @ [oid]

by (simp add : Insert inserted-ids-last-ins x-pair)
moreover have deleted-ids (xs @ [x]) = deleted-ids xs

by (simp add : Insert deleted-ids-last-ins x-pair)
hence set (inserted-ids (xs @ [x])) − set (deleted-ids (xs @ [x])) =

{oid} ∪ set (inserted-ids xs) − set (deleted-ids xs)
using calculation(3) by auto

moreover have ... = {oid} ∪ (set (inserted-ids xs) − set (deleted-ids xs))
using deleted-ids-refs-older snoc.prems x-pair by blast

ultimately show ?thesis by auto
next

case (Delete ref)
hence interp-ops (xs @ [x]) = (list , vals(ref := None))

by (simp add : interp-ops-unfold-last interp-xs x-pair)
hence dom (snd (interp-ops (xs @ [x]))) = (dom vals) − {ref }

by simp
moreover have set (inserted-ids xs) − set (deleted-ids xs) = dom vals

49

using IH interp-xs by auto
moreover have inserted-ids (xs @ [x]) = inserted-ids xs

by (simp add : Delete inserted-ids-last-del x-pair)
moreover have deleted-ids (xs @ [x]) = deleted-ids xs @ [ref]

by (simp add : Delete deleted-ids-last-del x-pair)
hence set (inserted-ids (xs @ [x])) − set (deleted-ids (xs @ [x])) =

set (inserted-ids xs) − (set (deleted-ids xs) ∪ {ref })
using calculation(3) by auto

moreover have ... = set (inserted-ids xs) − set (deleted-ids xs) − {ref }
by blast

ultimately show ?thesis by auto
qed

qed

lemma insert-spec-nth-oid :
assumes distinct xs

and n < length xs
shows insert-spec xs (oid , Some (xs ! n)) ! Suc n = oid
using assms proof(induction xs arbitrary : n)
case Nil
then show insert-spec [] (oid , Some ([] ! n)) ! Suc n = oid

by simp
next

case (Cons a xs)
have distinct (a # xs)

using Cons.prems(1) by auto
then show insert-spec (a # xs) (oid , Some ((a # xs) ! n)) ! Suc n = oid
proof(cases a = (a # xs) ! n)

case True
then have n = 0

using 〈distinct (a # xs)〉 Cons.prems(2) gr-implies-not-zero by force
then show insert-spec (a # xs) (oid , Some ((a # xs) ! n)) ! Suc n = oid

by auto
next

case False
then have n > 0

using 〈distinct (a # xs)〉 Cons.prems(2) gr-implies-not-zero by force
then obtain m where n = Suc m

using Suc-pred ′ by blast
then show insert-spec (a # xs) (oid , Some ((a # xs) ! n)) ! Suc n = oid

using Cons.IH Cons.prems by auto
qed

qed

lemma insert-spec-inc-length:
assumes distinct xs

and n < length xs
shows length (insert-spec xs (oid , Some (xs ! n))) = Suc (length xs)
using assms proof(induction xs arbitrary : n, simp)

50

case (Cons a xs)
have distinct (a # xs)

using Cons.prems(1) by auto
then show length (insert-spec (a # xs) (oid , Some ((a # xs) ! n))) = Suc (length

(a # xs))
proof(cases n)

case 0
hence insert-spec (a # xs) (oid , Some ((a # xs) ! n)) = a # oid # xs

by simp
then show ?thesis

by simp
next

case (Suc nat)
hence nat < length xs

using Cons.prems(2) by auto
hence length (insert-spec xs (oid , Some (xs ! nat))) = Suc (length xs)

using Cons.IH Cons.prems(1) by auto
then show ?thesis

by (simp add : Suc)
qed

qed

lemma list-split-two-elems:
assumes distinct xs

and x ∈ set xs and y ∈ set xs
and x 6= y

shows ∃ pre mid suf . xs = pre @ x # mid @ y # suf ∨ xs = pre @ y # mid @
x # suf
proof −

obtain as bs where as-bs: xs = as @ [x] @ bs
using assms(2) split-list-first by fastforce

show ?thesis
proof(cases y ∈ set as)

case True
then obtain cs ds where as = cs @ [y] @ ds

using assms(3) split-list-first by fastforce
then show ?thesis

by (auto simp add : as-bs)
next

case False
then have y ∈ set bs

using as-bs assms(3) assms(4) by auto
then obtain cs ds where bs = cs @ [y] @ ds

using assms(3) split-list-first by fastforce
then show ?thesis

by (auto simp add : as-bs)
qed

qed

51

3.3 Satisfying all conditions of Astrong
Part 1(a) of Attiya et al.’s specification states that whenever the list is ob-
served, the elements of the list are exactly those that have been inserted but
not deleted. Astrong uses the visibility relation ≤vis to capture the opera-
tions known to a node at some arbitrary point in the execution; in the OpSet
model, we can simply prove the theorem for an arbitrary OpSet, since the
contents of the OpSet at a particular time on a particular node correspond
exactly to the set of operations known to that node at that time.

theorem inserted-but-not-deleted :
assumes list-ops ops

and interp-ops ops = (list , vals)
shows a ∈ dom (vals) ←→ (∃ ref val . (a, Insert ref val) ∈ set ops) ∧

(@ i . (i , Delete a) ∈ set ops)
using assms deleted-ids-exist inserted-ids-exist interp-ops-vals-domain
by (metis Diff-iff snd-conv)

Part 1(b) states that whenever the list is observed, the order of list elements
is consistent with the global list order. We can define the global list order
simply as the list order that arises from interpreting the OpSet containing
all operations in the entire execution. Then, at any point in the execution,
the OpSet is some subset of the set of all operations.

We can then rephrase condition 1(b) as follows: whenever list element x
appears before list element y in the interpretation of some-ops, then for any
OpSet all-ops that is a superset of some-ops, x must also appear before y in
the interpretation of all-ops. In other words, adding more operations to the
OpSet does not change the relative order of any existing list elements.

theorem list-order-consistent :
assumes list-ops some-ops and list-ops all-ops

and set some-ops ⊆ set all-ops
and list-order some-ops x y

shows list-order all-ops x y
using assms list-order-monotonic list-ops-insertions insertions-subset list-order-equiv

by metis

Part 1(c) states that inserted elements appear at the specified position: that
is, immediately after an insertion of oid at index k, the list index k does
indeed contain oid (provided that k is less than the length of the list). We
prove this property below.

theorem correct-position-insert :
assumes list-ops (ops @ [(oid , ins)])

and ins = make-insert (fst (interp-ops ops)) val k
and list = fst (interp-ops (ops @ [(oid , ins)]))

shows list ! (min k (length list − 1)) = oid
proof(cases k = 0 ∨ fst (interp-ops ops) = [])

case True

52

moreover from this
have make-insert (fst (interp-ops ops)) val k = Insert None val

and min-k : min k (length (fst (interp-ops ops))) = 0
by (cases k , auto)

hence fst (interp-ops (ops @ [(oid , ins)])) = oid # fst (interp-ops ops)
using assms(2) interp-ops-unfold-last
by (metis fst-conv insert-spec.simps(1) interp-op.simps(1) prod .collapse)

ultimately show ?thesis
by (simp add : min-k assms(3))

next
case False
moreover from this have k > 0 and fst (interp-ops ops) 6= []

using neq0-conv by blast+
from this obtain nat where k = Suc nat

using gr0-implies-Suc by blast
hence make-insert (fst (interp-ops ops)) val k =

Insert (Some ((fst (interp-ops ops)) ! (min nat (length (fst (interp-ops ops))
− 1)))) val

using False by (cases fst (interp-ops ops), auto)
hence fst (interp-ops (ops @ [(oid , ins)])) =

insert-spec (fst (interp-ops ops)) (oid , Some ((fst (interp-ops ops)) ! (min
nat (length (fst (interp-ops ops)) − 1))))

by (metis assms(2) fst-conv interp-op.simps(1) interp-ops-unfold-last prod .collapse)
moreover have min nat (length (fst (interp-ops ops)) − 1) < length (fst (interp-ops

ops))
by (simp add : 〈fst (interp-ops ops) 6= []〉 min.strict-coboundedI2)

moreover have distinct (fst (interp-ops ops))
using interp-ops-distinct list-ops-def spec-ops-rem-last assms(1) by blast

moreover have length list = Suc (length (fst (interp-ops ops)))
using assms(3) calculation by (simp add : insert-spec-inc-length)

ultimately show ?thesis
using assms insert-spec-nth-oid
by (metis Suc-diff-1 〈k = Suc nat 〉 diff-Suc-1 length-greater-0-conv min-Suc-Suc)

qed

Part 2 states that the list order relation must be transitive, irreflexive, and to-
tal. These three properties are straightforward to prove, using our definition
of the list-order predicate.

theorem list-order-trans:
assumes list-ops ops

and list-order ops x y
and list-order ops y z

shows list-order ops x z
using assms list-order-trans list-ops-insertions list-order-equiv by blast

theorem list-order-irrefl :
assumes list-ops ops
shows ¬ list-order ops x x

proof −

53

have list-order ops x x =⇒ False
proof −

assume list-order ops x x
then obtain xs ys zs where split : fst (interp-ops ops) = xs @ [x] @ ys @ [x]

@ zs
by (meson List-Spec.list-order-def)

moreover have distinct (fst (interp-ops ops))
by (simp add : assms interp-ops-distinct)

ultimately show False
by (simp add : split)

qed
thus ¬ list-order ops x x

by blast
qed

theorem list-order-total :
assumes list-ops ops

and x ∈ set (fst (interp-ops ops))
and y ∈ set (fst (interp-ops ops))
and x 6= y

shows list-order ops x y ∨ list-order ops y x
proof −

have distinct (fst (interp-ops ops))
using assms(1) by (simp add : interp-ops-distinct)

then obtain pre mid suf
where fst (interp-ops ops) = pre @ x # mid @ y # suf ∨

fst (interp-ops ops) = pre @ y # mid @ x # suf
using list-split-two-elems assms by metis

then show list-order ops x y ∨ list-order ops y x
by (simp add : list-order-def , blast)

qed

end

4 Interleaving of concurrent insertions

In this section we prove that our list specification rules out interleaving of
concurrent insertion sequences starting at the same position.

theory Interleaving
imports Insert-Spec

begin

4.1 Lemmas about insert-ops

lemma map-fst-append1 :
assumes ∀ i ∈ set (map fst xs). P i

and P x
shows ∀ i ∈ set (map fst (xs @ [(x , y)])). P i

54

using assms by (induction xs, auto)

lemma insert-ops-split :
assumes insert-ops ops

and (oid , ref) ∈ set ops
shows ∃ pre suf . ops = pre @ [(oid , ref)] @ suf ∧

(∀ i ∈ set (map fst pre). i < oid) ∧
(∀ i ∈ set (map fst suf). oid < i)

using assms proof(induction ops rule: List .rev-induct)
case Nil
then show ?case by auto

next
case (snoc x xs)
then show ?case
proof(cases x = (oid , ref))

case True
moreover from this have ∀ i ∈ set (map fst xs). i < oid

using last-op-greatest snoc.prems(1) by blast
ultimately have xs @ [x] = xs @ [(oid , ref)] @ [] ∧

(∀ i ∈ set (map fst xs). i < oid) ∧
(∀ i ∈ set (map fst []). oid < i)

by auto
then show ?thesis by force

next
case False
hence (oid , ref) ∈ set xs

using snoc.prems(2) by auto
from this obtain pre suf where IH : xs = pre @ [(oid , ref)] @ suf ∧

(∀ i ∈ set (map fst pre). i < oid) ∧
(∀ i ∈ set (map fst suf). oid < i)

using snoc.IH snoc.prems(1) by blast
obtain xi xr where x-pair : x = (xi , xr)

by force
hence distinct (map fst (pre @ [(oid , ref)] @ suf @ [(xi , xr)]))

by (metis IH append .assoc insert-ops-def spec-ops-def snoc.prems(1))
hence xi 6= oid

by auto
have xi-max : ∀ x ∈ set (map fst (pre @ [(oid , ref)] @ suf)). x < xi

using IH last-op-greatest snoc.prems(1) x-pair by blast
then show ?thesis
proof(cases xi < oid)

case True
moreover from this have ∀ x ∈ set suf . fst x < oid

using xi-max by auto
hence suf = []

using IH last-in-set by fastforce
ultimately have xs @ [x] = (pre @ [(xi , xr)]) @ [] ∧

(∀ i ∈ set (map fst ((pre @ [(xi , xr)]))). i < oid) ∧
(∀ i ∈ set (map fst []). oid < i)

55

using dual-order .asym xi-max by auto
then show ?thesis by (simp add : IH)

next
case False
hence oid < xi

using 〈xi 6= oid 〉 by auto
hence ∀ i ∈ set (map fst (suf @ [(xi , xr)])). oid < i

using IH map-fst-append1 by auto
hence xs @ [x] = pre @ [(oid , ref)] @ (suf @ [(xi , xr)]) ∧

(∀ i ∈ set (map fst pre). i < oid) ∧
(∀ i ∈ set (map fst (suf @ [(xi , xr)])). oid < i)

by (simp add : IH x-pair)
then show ?thesis by blast

qed
qed

qed

lemma insert-ops-split-2 :
assumes insert-ops ops

and (xid , xr) ∈ set ops
and (yid , yr) ∈ set ops
and xid < yid

shows ∃ as bs cs. ops = as @ [(xid , xr)] @ bs @ [(yid , yr)] @ cs ∧
(∀ i ∈ set (map fst as). i < xid) ∧
(∀ i ∈ set (map fst bs). xid < i ∧ i < yid) ∧
(∀ i ∈ set (map fst cs). yid < i)

proof −
obtain as as1 where x-split : ops = as @ [(xid , xr)] @ as1 ∧

(∀ i ∈ set (map fst as). i < xid) ∧ (∀ i ∈ set (map fst as1). xid < i)
using assms insert-ops-split by blast

hence insert-ops ((as @ [(xid , xr)]) @ as1)
using assms(1) by auto

hence insert-ops as1
using assms(1) insert-ops-rem-prefix by blast

have (yid , yr) ∈ set as1
using x-split assms by auto

from this obtain bs cs where y-split : as1 = bs @ [(yid , yr)] @ cs ∧
(∀ i ∈ set (map fst bs). i < yid) ∧ (∀ i ∈ set (map fst cs). yid < i)

using assms insert-ops-split 〈insert-ops as1 〉 by blast
hence ops = as @ [(xid , xr)] @ bs @ [(yid , yr)] @ cs

using x-split by blast
moreover have ∀ i ∈ set (map fst bs). xid < i ∧ i < yid

by (simp add : x-split y-split)
ultimately show ?thesis

using x-split y-split by blast
qed

lemma insert-ops-sorted-oids:
assumes insert-ops (xs @ [(i1 , r1)] @ ys @ [(i2 , r2)])

56

shows i1 < i2
proof −

have
∧

i . i ∈ set (map fst (xs @ [(i1 , r1)] @ ys)) =⇒ i < i2
by (metis append .assoc assms last-op-greatest)

moreover have i1 ∈ set (map fst (xs @ [(i1 , r1)] @ ys))
by auto

ultimately show i1 < i2
by blast

qed

lemma insert-ops-subset-last :
assumes insert-ops (xs @ [x])

and insert-ops ys
and set ys ⊆ set (xs @ [x])
and x ∈ set ys

shows x = last ys
using assms proof(induction ys, simp)
case (Cons y ys)
then show x = last (y # ys)
proof(cases ys = [])

case True
then show x = last (y # ys)

using Cons.prems(4) by auto
next

case ys-nonempty : False
have x 6= y
proof −

obtain mid l where ys = mid @ [l]
using append-butlast-last-id ys-nonempty by metis

moreover obtain li lr where l = (li , lr)
by force

moreover have
∧

i . i ∈ set (map fst (y # mid)) =⇒ i < li
by (metis last-op-greatest Cons.prems(2) calculation append-Cons)

hence fst y < li
by simp

moreover have
∧

i . i ∈ set (map fst xs) =⇒ i < fst x
using assms(1) last-op-greatest by (metis prod .collapse)

hence
∧

i . i ∈ set (map fst (y # ys)) =⇒ i ≤ fst x
using Cons.prems(3) by fastforce

ultimately show x 6= y
by fastforce

qed
then show x = last (y # ys)

using Cons.IH Cons.prems insert-ops-rem-cons ys-nonempty
by (metis dual-order .trans last-ConsR set-ConsD set-subset-Cons)

qed
qed

lemma subset-butlast :

57

assumes set xs ⊆ set (ys @ [y])
and last xs = y
and distinct xs

shows set (butlast xs) ⊆ set ys
using assms by (induction xs, auto)

lemma distinct-append-butlast1 :
assumes distinct (map fst xs @ map fst ys)
shows distinct (map fst (butlast xs) @ map fst ys)
using assms proof(induction xs, simp)
case (Cons a xs)
have fst a /∈ set (map fst xs @ map fst ys)

using Cons.prems by auto
moreover have set (map fst (butlast xs)) ⊆ set (map fst xs)

by (metis in-set-butlastD map-butlast subsetI)
hence set (map fst (butlast xs) @ map fst ys) ⊆ set (map fst xs @ map fst ys)

by auto
ultimately have fst a /∈ set (map fst (butlast xs) @ map fst ys)

by blast
then show distinct (map fst (butlast (a # xs)) @ map fst ys)

using Cons.IH Cons.prems by auto
qed

lemma distinct-append-butlast2 :
assumes distinct (map fst xs @ map fst ys)
shows distinct (map fst xs @ map fst (butlast ys))
using assms proof(induction xs)
case Nil
then show distinct (map fst [] @ map fst (butlast ys))

by (simp add : distinct-butlast map-butlast)
next

case (Cons a xs)
have fst a /∈ set (map fst xs @ map fst ys)

using Cons.prems by auto
moreover have set (map fst (butlast ys)) ⊆ set (map fst ys)

by (metis in-set-butlastD map-butlast subsetI)
hence set (map fst xs @ map fst (butlast ys)) ⊆ set (map fst xs @ map fst ys)

by auto
ultimately have fst a /∈ set (map fst xs @ map fst (butlast ys))

by blast
then show ?case

using Cons.IH Cons.prems by auto
qed

4.2 Lemmas about interp-ins

lemma interp-ins-maybe-grow :
assumes insert-ops (xs @ [(oid , ref)])
shows set (interp-ins (xs @ [(oid , ref)])) = set (interp-ins xs) ∨

58

set (interp-ins (xs @ [(oid , ref)])) = (set (interp-ins xs) ∪ {oid})
by (cases ref , simp add : interp-ins-tail-unfold ,

metis insert-spec-nonex insert-spec-set interp-ins-tail-unfold)

lemma interp-ins-maybe-grow2 :
assumes insert-ops (xs @ [x])
shows set (interp-ins (xs @ [x])) = set (interp-ins xs) ∨

set (interp-ins (xs @ [x])) = (set (interp-ins xs) ∪ {fst x})
using assms interp-ins-maybe-grow by (cases x , auto)

lemma interp-ins-maybe-grow3 :
assumes insert-ops (xs @ ys)
shows ∃A. A ⊆ set (map fst ys) ∧ set (interp-ins (xs @ ys)) = set (interp-ins

xs) ∪ A
using assms proof(induction ys rule: List .rev-induct)
case Nil
then show ?case by simp

next
case (snoc x ys)
then have insert-ops (xs @ ys)

by (metis append-assoc insert-ops-rem-last)
then obtain A where IH : A ⊆ set (map fst ys) ∧

set (interp-ins (xs @ ys)) = set (interp-ins xs) ∪ A
using snoc.IH by blast

then show ?case
proof(cases set (interp-ins (xs @ ys @ [x])) = set (interp-ins (xs @ ys)))

case True
moreover have A ⊆ set (map fst (ys @ [x]))

using IH by auto
ultimately show ?thesis

using IH by auto
next

case False
then have set (interp-ins (xs @ ys @ [x])) = set (interp-ins (xs @ ys)) ∪ {fst

x}
by (metis append-assoc interp-ins-maybe-grow2 snoc.prems)

moreover have A ∪ {fst x} ⊆ set (map fst (ys @ [x]))
using IH by auto

ultimately show ?thesis
using IH Un-assoc by metis

qed
qed

lemma interp-ins-ref-nonex :
assumes insert-ops ops

and ops = xs @ [(oid , Some ref)] @ ys
and ref /∈ set (interp-ins xs)

shows oid /∈ set (interp-ins ops)
using assms proof(induction ys arbitrary : ops rule: List .rev-induct)

59

case Nil
then have interp-ins ops = insert-spec (interp-ins xs) (oid , Some ref)

by (simp add : interp-ins-tail-unfold)
moreover have

∧
i . i ∈ set (map fst xs) =⇒ i < oid

using Nil .prems last-op-greatest by fastforce
hence

∧
i . i ∈ set (interp-ins xs) =⇒ i < oid

by (meson interp-ins-subset subsetCE)
ultimately show oid /∈ set (interp-ins ops)

using assms(3) by auto
next

case (snoc x ys)
then have insert-ops (xs @ (oid , Some ref) # ys)

by (metis append .assoc append .simps(1) append-Cons insert-ops-appendD)
hence IH : oid /∈ set (interp-ins (xs @ (oid , Some ref) # ys))

by (simp add : snoc.IH snoc.prems(3))
moreover have distinct (map fst (xs @ (oid , Some ref) # ys @ [x]))
using snoc.prems by (metis append-Cons append-self-conv2 insert-ops-def spec-ops-def)
hence fst x 6= oid

using empty-iff by auto
moreover have insert-ops ((xs @ (oid , Some ref) # ys) @ [x])

using snoc.prems by auto
hence set (interp-ins ((xs @ (oid , Some ref) # ys) @ [x])) =

set (interp-ins (xs @ (oid , Some ref) # ys)) ∨
set (interp-ins ((xs @ (oid , Some ref) # ys) @ [x])) =
set (interp-ins (xs @ (oid , Some ref) # ys)) ∪ {fst x}

using interp-ins-maybe-grow2 by blast
ultimately show oid /∈ set (interp-ins ops)

using snoc.prems(2) by auto
qed

lemma interp-ins-last-None:
shows oid ∈ set (interp-ins (ops @ [(oid , None)]))
by (simp add : interp-ins-tail-unfold)

lemma interp-ins-monotonic:
assumes insert-ops (pre @ suf)

and oid ∈ set (interp-ins pre)
shows oid ∈ set (interp-ins (pre @ suf))
using assms interp-ins-maybe-grow3 by auto

lemma interp-ins-append-non-memb:
assumes insert-ops (pre @ [(oid , Some ref)] @ suf)

and ref /∈ set (interp-ins pre)
shows ref /∈ set (interp-ins (pre @ [(oid , Some ref)] @ suf))
using assms proof(induction suf rule: List .rev-induct)
case Nil
then show ref /∈ set (interp-ins (pre @ [(oid , Some ref)] @ []))

by (metis append-Nil2 insert-spec-nonex interp-ins-tail-unfold)
next

60

case (snoc x xs)
hence IH : ref /∈ set (interp-ins (pre @ [(oid , Some ref)] @ xs))

by (metis append-assoc insert-ops-rem-last)
moreover have ref < oid

using insert-ops-ref-older snoc.prems(1) by auto
moreover have oid < fst x

using insert-ops-sorted-oids by (metis prod .collapse snoc.prems(1))
have set (interp-ins ((pre @ [(oid , Some ref)] @ xs) @ [x])) =

set (interp-ins (pre @ [(oid , Some ref)] @ xs)) ∨
set (interp-ins ((pre @ [(oid , Some ref)] @ xs) @ [x])) =
set (interp-ins (pre @ [(oid , Some ref)] @ xs)) ∪ {fst x}

by (metis (full-types) append .assoc interp-ins-maybe-grow2 snoc.prems(1))
ultimately show ref /∈ set (interp-ins (pre @ [(oid , Some ref)] @ xs @ [x]))

using 〈oid < fst x 〉 by auto
qed

lemma interp-ins-append-memb:
assumes insert-ops (pre @ [(oid , Some ref)] @ suf)

and ref ∈ set (interp-ins pre)
shows oid ∈ set (interp-ins (pre @ [(oid , Some ref)] @ suf))
using assms by (metis UnCI append-assoc insert-spec-set interp-ins-monotonic

interp-ins-tail-unfold singletonI)

lemma interp-ins-append-forward :
assumes insert-ops (xs @ ys)

and oid ∈ set (interp-ins (xs @ ys))
and oid ∈ set (map fst xs)

shows oid ∈ set (interp-ins xs)
using assms proof(induction ys rule: List .rev-induct , simp)
case (snoc y ys)
obtain cs ds ref where xs = cs @ (oid , ref) # ds
by (metis (no-types, lifting) imageE prod .collapse set-map snoc.prems(3) split-list-last)
hence insert-ops (cs @ [(oid , ref)] @ (ds @ ys) @ [y])

using snoc.prems(1) by auto
hence oid < fst y

using insert-ops-sorted-oids by (metis prod .collapse)
hence oid 6= fst y

by blast
then show ?case

using snoc.IH snoc.prems(1) snoc.prems(2) assms(3) inserted-item-ident
by (metis append-assoc insert-ops-appendD interp-ins-tail-unfold prod .collapse)

qed

lemma interp-ins-find-ref :
assumes insert-ops (xs @ [(oid , Some ref)] @ ys)

and ref ∈ set (interp-ins (xs @ [(oid , Some ref)] @ ys))
shows ∃ r . (ref , r) ∈ set xs

proof −
have ref < oid

61

using assms(1) insert-ops-ref-older by blast
have ref ∈ set (map fst (xs @ [(oid , Some ref)] @ ys))

by (meson assms(2) interp-ins-subset subsetCE)
then obtain x where x-prop: x ∈ set (xs @ [(oid , Some ref)] @ ys) ∧ fst x =

ref
by fastforce

obtain xr where x-pair : x = (ref , xr)
using prod .exhaust-sel x-prop by blast

show ∃ r . (ref , r) ∈ set xs
proof(cases x ∈ set xs)

case True
then show ∃ r . (ref , r) ∈ set xs

by (metis x-prop prod .collapse)
next

case False
hence (ref , xr) ∈ set ([(oid , Some ref)] @ ys)

using x-prop x-pair by auto
hence (ref , xr) ∈ set ys

using 〈ref < oid 〉 x-prop
by (metis append-Cons append-self-conv2 fst-conv min.strict-order-iff set-ConsD)
then obtain as bs where ys = as @ (ref , xr) # bs

by (meson split-list)
hence insert-ops ((xs @ [(oid , Some ref)] @ as @ [(ref , xr)]) @ bs)

using assms(1) by auto
hence insert-ops (xs @ [(oid , Some ref)] @ as @ [(ref , xr)])

using insert-ops-appendD by blast
hence oid < ref

using insert-ops-sorted-oids by auto
then show ?thesis

using 〈ref < oid 〉 by force
qed

qed

4.3 Lemmas about list-order

lemma list-order-append :
assumes insert-ops (pre @ suf)

and list-order pre x y
shows list-order (pre @ suf) x y
by (metis Un-iff assms list-order-monotonic insert-ops-appendD set-append subset-code(1))

lemma list-order-insert-ref :
assumes insert-ops (ops @ [(oid , Some ref)])

and ref ∈ set (interp-ins ops)
shows list-order (ops @ [(oid , Some ref)]) ref oid

proof −
have interp-ins (ops @ [(oid , Some ref)]) = insert-spec (interp-ins ops) (oid ,

Some ref)
by (simp add : interp-ins-tail-unfold)

62

moreover obtain xs ys where interp-ins ops = xs @ [ref] @ ys
using assms(2) split-list-first by fastforce

hence insert-spec (interp-ins ops) (oid , Some ref) = xs @ [ref] @ [] @ [oid] @ ys
using assms(1) insert-after-ref interp-ins-distinct by fastforce

ultimately show list-order (ops @ [(oid , Some ref)]) ref oid
using assms(1) list-orderI by metis

qed

lemma list-order-insert-none:
assumes insert-ops (ops @ [(oid , None)])

and x ∈ set (interp-ins ops)
shows list-order (ops @ [(oid , None)]) oid x

proof −
have interp-ins (ops @ [(oid , None)]) = insert-spec (interp-ins ops) (oid , None)

by (simp add : interp-ins-tail-unfold)
moreover obtain xs ys where interp-ins ops = xs @ [x] @ ys

using assms(2) split-list-first by fastforce
hence insert-spec (interp-ins ops) (oid , None) = [] @ [oid] @ xs @ [x] @ ys

by simp
ultimately show list-order (ops @ [(oid , None)]) oid x

using assms(1) list-orderI by metis
qed

lemma list-order-insert-between:
assumes insert-ops (ops @ [(oid , Some ref)])

and list-order ops ref x
shows list-order (ops @ [(oid , Some ref)]) oid x

proof −
have interp-ins (ops @ [(oid , Some ref)]) = insert-spec (interp-ins ops) (oid ,

Some ref)
by (simp add : interp-ins-tail-unfold)

moreover obtain xs ys zs where interp-ins ops = xs @ [ref] @ ys @ [x] @ zs
using assms list-orderE by blast

moreover have ... = xs @ ref # (ys @ [x] @ zs)
by simp

moreover have distinct (xs @ ref # (ys @ [x] @ zs))
using assms(1) calculation by (metis interp-ins-distinct insert-ops-rem-last)

hence insert-spec (xs @ ref # (ys @ [x] @ zs)) (oid , Some ref) = xs @ ref #
oid # (ys @ [x] @ zs)

using assms(1) calculation by (simp add : insert-after-ref)
moreover have ... = (xs @ [ref]) @ [oid] @ ys @ [x] @ zs

by simp
ultimately show list-order (ops @ [(oid , Some ref)]) oid x

using assms(1) list-orderI by metis
qed

63

4.4 The insert-seq predicate

The predicate insert-seq start ops is true iff ops is a list of insertion opera-
tions that begins by inserting after start, and then continues by placing each
subsequent insertion directly after its predecessor. This definition models the
sequential insertion of text at a particular place in a text document.

inductive insert-seq :: ′oid option ⇒ (′oid × ′oid option) list ⇒ bool where
insert-seq start [(oid , start)] |
[[insert-seq start (list @ [(prev , ref)])]]

=⇒ insert-seq start (list @ [(prev , ref), (oid , Some prev)])

lemma insert-seq-nonempty :
assumes insert-seq start xs
shows xs 6= []
using assms by (induction rule: insert-seq .induct , auto)

lemma insert-seq-hd :
assumes insert-seq start xs
shows ∃ oid . hd xs = (oid , start)
using assms by (induction rule: insert-seq .induct , simp,

metis append-self-conv2 hd-append2 list .sel(1))

lemma insert-seq-rem-last :
assumes insert-seq start (xs @ [x])

and xs 6= []
shows insert-seq start xs
using assms insert-seq .cases by fastforce

lemma insert-seq-butlast :
assumes insert-seq start xs

and xs 6= [] and xs 6= [last xs]
shows insert-seq start (butlast xs)

proof −
have length xs > 1
by (metis One-nat-def Suc-lessI add-0-left append-butlast-last-id append-eq-append-conv

append-self-conv2 assms(2) assms(3) length-greater-0-conv list .size(3) list .size(4))
hence butlast xs 6= []

by (metis length-butlast less-numeral-extra(3) list .size(3) zero-less-diff)
then show insert-seq start (butlast xs)

using assms by (metis append-butlast-last-id insert-seq-rem-last)
qed

lemma insert-seq-last-ref :
assumes insert-seq start (xs @ [(xi , xr), (yi , yr)])
shows yr = Some xi
using assms insert-seq .cases by fastforce

lemma insert-seq-start-none:

64

assumes insert-ops ops
and insert-seq None xs and insert-ops xs
and set xs ⊆ set ops

shows ∀ i ∈ set (map fst xs). i ∈ set (interp-ins ops)
using assms proof(induction xs rule: List .rev-induct , simp)
case (snoc x xs)
then have IH : ∀ i ∈ set (map fst xs). i ∈ set (interp-ins ops)
by (metis Nil-is-map-conv append-is-Nil-conv insert-ops-appendD insert-seq-rem-last

le-supE list .simps(3) set-append split-list)
then show ∀ i ∈ set (map fst (xs @ [x])). i ∈ set (interp-ins ops)
proof(cases xs = [])

case True
then obtain oid where xs @ [x] = [(oid , None)]

using insert-seq-hd snoc.prems(2) by fastforce
hence (oid , None) ∈ set ops

using snoc.prems(4) by auto
then obtain as bs where ops = as @ (oid , None) # bs

by (meson split-list)
hence ops = (as @ [(oid , None)]) @ bs

by (simp add : 〈ops = as @ (oid , None) # bs〉)
moreover have oid ∈ set (interp-ins (as @ [(oid , None)]))

by (simp add : interp-ins-last-None)
ultimately have oid ∈ set (interp-ins ops)

using interp-ins-monotonic snoc.prems(1) by blast
then show ∀ i ∈ set (map fst (xs @ [x])). i ∈ set (interp-ins ops)

using 〈xs @ [x] = [(oid , None)]〉 by auto
next

case False
then obtain rest y where snoc-y : xs = rest @ [y]

using append-butlast-last-id by metis
obtain yi yr xi xr where yx-pairs: y = (yi , yr) ∧ x = (xi , xr)

by force
then have xr = Some yi

using insert-seq-last-ref snoc.prems(2) snoc-y by fastforce
have yi < xi

using insert-ops-sorted-oids snoc-y yx-pairs snoc.prems(3)
by (metis (no-types, lifting) append-eq-append-conv2)

have (yi , yr) ∈ set ops and (xi , Some yi) ∈ set ops
using snoc.prems(4) snoc-y yx-pairs 〈xr = Some yi 〉 by auto

then obtain as bs cs where ops-split : ops = as @ [(yi , yr)] @ bs @ [(xi , Some
yi)] @ cs

using insert-ops-split-2 〈yi < xi 〉 snoc.prems(1) by blast
hence yi ∈ set (interp-ins (as @ [(yi , yr)] @ bs))
proof −

have yi ∈ set (interp-ins ops)
by (simp add : IH snoc-y yx-pairs)

moreover have ops = (as @ [(yi , yr)] @ bs) @ ([(xi , Some yi)] @ cs)
using ops-split by simp

moreover have yi ∈ set (map fst (as @ [(yi , yr)] @ bs))

65

by simp
ultimately show ?thesis

using snoc.prems(1) interp-ins-append-forward by blast
qed
hence xi ∈ set (interp-ins ((as @ [(yi , yr)] @ bs) @ [(xi , Some yi)] @ cs))

using snoc.prems(1) interp-ins-append-memb ops-split by force
hence xi ∈ set (interp-ins ops)

by (simp add : ops-split)
then show ∀ i ∈ set (map fst (xs @ [x])). i ∈ set (interp-ins ops)

using IH yx-pairs by auto
qed

qed

lemma insert-seq-after-start :
assumes insert-ops ops

and insert-seq (Some ref) xs and insert-ops xs
and set xs ⊆ set ops
and ref ∈ set (interp-ins ops)

shows ∀ i ∈ set (map fst xs). list-order ops ref i
using assms proof(induction xs rule: List .rev-induct , simp)
case (snoc x xs)
have IH : ∀ i ∈ set (map fst xs). list-order ops ref i

using snoc.IH snoc.prems insert-seq-rem-last insert-ops-appendD
by (metis Nil-is-map-conv Un-subset-iff empty-set equals0D set-append)

moreover have list-order ops ref (fst x)
proof(cases xs = [])

case True
hence snd x = Some ref

using insert-seq-hd snoc.prems(2) by fastforce
moreover have x ∈ set ops

using snoc.prems(4) by auto
then obtain cs ds where x-split : ops = cs @ x # ds

by (meson split-list)
have list-order (cs @ [(fst x , Some ref)]) ref (fst x)
proof −

have insert-ops (cs @ [(fst x , Some ref)] @ ds)
using x-split 〈snd x = Some ref 〉

by (metis append-Cons append-self-conv2 prod .collapse snoc.prems(1))
moreover from this obtain rr where (ref , rr) ∈ set cs

using interp-ins-find-ref x-split 〈snd x = Some ref 〉 assms(5)
by (metis (no-types, lifting) append-Cons append-self-conv2 prod .collapse)

hence ref ∈ set (interp-ins cs)
proof −

have ops = cs @ ([(fst x , Some ref)] @ ds)
by (metis x-split 〈snd x = Some ref 〉 append-Cons append-self-conv2

prod .collapse)
thus ref ∈ set (interp-ins cs)
using assms(5) calculation interp-ins-append-forward interp-ins-append-non-memb

by blast

66

qed
ultimately show list-order (cs @ [(fst x , Some ref)]) ref (fst x)

using list-order-insert-ref by (metis append .assoc insert-ops-appendD)
qed
moreover have ops = (cs @ [(fst x , Some ref)]) @ ds

using calculation x-split
by (metis append-eq-Cons-conv append-eq-append-conv2 append-self-conv2

prod .collapse)
ultimately show list-order ops ref (fst x)

using list-order-append snoc.prems(1) by blast
next

case False
then obtain rest y where snoc-y : xs = rest @ [y]

using append-butlast-last-id by metis
obtain yi yr xi xr where yx-pairs: y = (yi , yr) ∧ x = (xi , xr)

by force
then have xr = Some yi

using insert-seq-last-ref snoc.prems(2) snoc-y by fastforce
have yi < xi

using insert-ops-sorted-oids snoc-y yx-pairs snoc.prems(3)
by (metis (no-types, lifting) append-eq-append-conv2)

have (yi , yr) ∈ set ops and (xi , Some yi) ∈ set ops
using snoc.prems(4) snoc-y yx-pairs 〈xr = Some yi 〉 by auto

then obtain as bs cs where ops-split : ops = as @ [(yi , yr)] @ bs @ [(xi , Some
yi)] @ cs

using insert-ops-split-2 〈yi < xi 〉 snoc.prems(1) by blast
have list-order ops ref yi

by (simp add : IH snoc-y yx-pairs)
moreover have list-order (as @ [(yi , yr)] @ bs @ [(xi , Some yi)]) yi xi
proof −

have insert-ops ((as @ [(yi , yr)] @ bs @ [(xi , Some yi)]) @ cs)
using ops-split snoc.prems(1) by auto

hence insert-ops ((as @ [(yi , yr)] @ bs) @ [(xi , Some yi)])
using insert-ops-appendD by fastforce

moreover have yi ∈ set (interp-ins ops)
using 〈list-order ops ref yi 〉 list-order-memb2 by auto

hence yi ∈ set (interp-ins (as @ [(yi , yr)] @ bs))
using interp-ins-append-non-memb ops-split snoc.prems(1) by force

ultimately show ?thesis
using list-order-insert-ref by force

qed
hence list-order ops yi xi

by (metis append-assoc list-order-append ops-split snoc.prems(1))
ultimately show list-order ops ref (fst x)

using list-order-trans snoc.prems(1) yx-pairs by auto
qed
ultimately show ∀ i ∈ set (map fst (xs @ [x])). list-order ops ref i

by auto
qed

67

lemma insert-seq-no-start :
assumes insert-ops ops

and insert-seq (Some ref) xs and insert-ops xs
and set xs ⊆ set ops
and ref /∈ set (interp-ins ops)

shows ∀ i ∈ set (map fst xs). i /∈ set (interp-ins ops)
using assms proof(induction xs rule: List .rev-induct , simp)
case (snoc x xs)
have IH : ∀ i ∈ set (map fst xs). i /∈ set (interp-ins ops)

using snoc.IH snoc.prems insert-seq-rem-last insert-ops-appendD
by (metis append-is-Nil-conv le-sup-iff list .map-disc-iff set-append split-list-first)

obtain as bs where ops = as @ x # bs
using snoc.prems(4) by (metis split-list last-in-set snoc-eq-iff-butlast subset-code(1))
have fst x /∈ set (interp-ins ops)
proof(cases xs = [])

case True
then obtain xi where x = (xi , Some ref)

using insert-seq-hd snoc.prems(2) by force
moreover have ref /∈ set (interp-ins as)

using interp-ins-monotonic snoc.prems(1) snoc.prems(5) 〈ops = as @ x #
bs〉 by blast

ultimately have xi /∈ set (interp-ins (as @ [x] @ bs))
using snoc.prems(1) by (simp add : interp-ins-ref-nonex 〈ops = as @ x # bs〉)

then show fst x /∈ set (interp-ins ops)
by (simp add : 〈ops = as @ x # bs〉 〈x = (xi , Some ref)〉)

next
case xs-nonempty : False
then obtain y where xs = (butlast xs) @ [y]

by (metis append-butlast-last-id)
moreover from this obtain yi yr xi xr where y = (yi , yr) ∧ x = (xi , xr)

by fastforce
moreover from this have xr = Some yi

using insert-seq .cases snoc.prems(2) calculation by fastforce
moreover have yi /∈ set (interp-ins ops)

using IH calculation
by (metis Nil-is-map-conv fst-conv last-in-set last-map snoc-eq-iff-butlast)

hence yi /∈ set (interp-ins as)
using 〈ops = as @ x # bs〉 interp-ins-monotonic snoc.prems(1) by blast

ultimately have xi /∈ set (interp-ins (as @ [x] @ bs))
using interp-ins-ref-nonex snoc.prems(1) 〈ops = as @ x # bs〉 by fastforce

then show fst x /∈ set (interp-ins ops)
by (simp add : 〈ops = as @ x # bs〉 〈y = (yi , yr) ∧ x = (xi , xr)〉)

qed
then show ∀ i ∈ set (map fst (xs @ [x])). i /∈ set (interp-ins ops)

using IH by auto
qed

68

4.5 The proof of no interleaving

lemma no-interleaving-ordered :
assumes insert-ops ops

and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and distinct (map fst xs @ map fst ys)
and fst (hd xs) < fst (hd ys)
and

∧
r . start = Some r =⇒ r ∈ set (interp-ins ops)

shows (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops y x) ∧
(∀ r . start = Some r −→ (∀ x ∈ set (map fst xs). list-order ops r x) ∧

(∀ y ∈ set (map fst ys). list-order ops r y))
using assms proof(induction ops arbitrary : xs ys rule: List .rev-induct , simp)
case (snoc a ops)
then have insert-ops ops

using insert-ops-rem-last by auto
consider (a-in-xs) a ∈ set xs | (a-in-ys) a ∈ set ys | (neither) a /∈ set xs ∧ a /∈

set ys
by blast

then show ?case
proof(cases)

case a-in-xs
then have a /∈ set ys

using snoc.prems(8) by auto
hence set ys ⊆ set ops

using snoc.prems(7) DiffE by auto
from a-in-xs have a = last xs

using insert-ops-subset-last snoc.prems by blast
have IH : (∀ x ∈ set (map fst (butlast xs)). ∀ y ∈ set (map fst ys). list-order

ops y x) ∧
(∀ r . start = Some r −→ (∀ x ∈ set (map fst (butlast xs)). list-order ops

r x) ∧
(∀ y ∈ set (map fst ys). list-order ops r y))

proof(cases xs = [a])
case True
moreover have ∀ r . start = Some r −→ (∀ y ∈ set (map fst ys). list-order

ops r y)
using insert-seq-after-start 〈insert-ops ops〉 〈set ys ⊆ set ops〉 snoc.prems
by (metis append-Nil2 calculation insert-seq-hd interp-ins-append-non-memb

list .sel(1))
ultimately show ?thesis by auto

next
case xs-longer : False
from 〈a = last xs〉 have set (butlast xs) ⊆ set ops

using snoc.prems by (simp add : distinct-fst subset-butlast)
moreover have insert-seq start (butlast xs)
using insert-seq-butlast insert-seq-nonempty xs-longer 〈a = last xs〉 snoc.prems(2)

by blast

69

moreover have insert-ops (butlast xs)
using snoc.prems(2) snoc.prems(3) insert-ops-appendD
by (metis append-butlast-last-id insert-seq-nonempty)

moreover have distinct (map fst (butlast xs) @ map fst ys)
using distinct-append-butlast1 snoc.prems(8) by blast

moreover have set ys ⊆ set ops
using 〈a /∈ set ys〉 〈set ys ⊆ set ops〉 by blast

moreover have hd (butlast xs) = hd xs
by (metis append-butlast-last-id calculation(2) hd-append2 insert-seq-nonempty

snoc.prems(2))
hence fst (hd (butlast xs)) < fst (hd ys)

by (simp add : snoc.prems(9))
moreover have

∧
r . start = Some r =⇒ r ∈ set (interp-ins ops)

proof −
fix r
assume start = Some r
then obtain xid where hd xs = (xid , Some r)

using insert-seq-hd snoc.prems(2) by auto
hence r < xid
by (metis hd-in-set insert-ops-memb-ref-older insert-seq-nonempty snoc.prems(2)

snoc.prems(3))
moreover have xid < fst a
proof −

have xs = (butlast xs) @ [a]
using snoc.prems(2) insert-seq-nonempty 〈a = last xs〉 by fastforce

moreover have (xid , Some r) ∈ set (butlast xs)
using 〈hd xs = (xid , Some r)〉 insert-seq-nonempty list .set-sel(1)

snoc.prems(2)
by (metis 〈hd (butlast xs) = hd xs〉 〈insert-seq start (butlast xs)〉)

hence xid ∈ set (map fst (butlast xs))
by (metis in-set-zipE zip-map-fst-snd)

ultimately show ?thesis
using snoc.prems(3) last-op-greatest by (metis prod .collapse)

qed
ultimately have r 6= fst a

using dual-order .asym by blast
thus r ∈ set (interp-ins ops)
using snoc.prems(1) snoc.prems(10) interp-ins-maybe-grow2 〈start = Some

r 〉 by blast
qed
ultimately show ?thesis

using 〈insert-ops ops〉 snoc.IH snoc.prems(4) snoc.prems(5) by blast
qed
moreover have x-exists: ∀ x ∈ set (map fst (butlast xs)). x ∈ set (interp-ins

ops)
proof(cases start)

case None
moreover have set (butlast xs) ⊆ set ops
using 〈a = last xs〉 distinct-map snoc.prems(6) snoc.prems(8) subset-butlast

70

by fastforce
ultimately show ?thesis

using insert-seq-start-none 〈insert-ops ops〉 snoc.prems
by (metis append-butlast-last-id butlast .simps(2) empty-iff empty-set

insert-ops-rem-last insert-seq-butlast insert-seq-nonempty list .simps(8))
next

case (Some a)
then show ?thesis

using IH list-order-memb2 by blast
qed
moreover have ∀ y ∈ set (map fst ys). list-order (ops @ [a]) y (fst a)
proof(cases xs = [a])

case xs-a: True
have ys 6= [] =⇒ False
proof −

assume ys 6= []
then obtain yi where yi-def : ys = (yi , start) # (tl ys)

by (metis hd-Cons-tl insert-seq-hd snoc.prems(4))
hence (yi , start) ∈ set ops

by (metis 〈set ys ⊆ set ops〉 list .set-intros(1) subsetCE)
hence yi ∈ set (map fst ops)

by force
hence yi < fst a

using snoc.prems(1) last-op-greatest by (metis prod .collapse)
moreover have fst a < yi

by (metis yi-def xs-a fst-conv list .sel(1) snoc.prems(9))
ultimately show False

using less-not-sym by blast
qed
then show ∀ y ∈ set (map fst ys). list-order (ops @ [a]) y (fst a)

using insert-seq-nonempty snoc.prems(4) by blast
next

case xs-longer : False
hence butlast-split : butlast xs = (butlast (butlast xs)) @ [last (butlast xs)]

using 〈a = last xs〉 insert-seq-butlast insert-seq-nonempty snoc.prems(2) by
fastforce

hence ref-exists: fst (last (butlast xs)) ∈ set (interp-ins ops)
using x-exists by (metis last-in-set last-map map-is-Nil-conv snoc-eq-iff-butlast)
moreover from butlast-split have xs = (butlast (butlast xs)) @ [last (butlast

xs), a]
by (metis 〈a = last xs〉 append .assoc append-butlast-last-id butlast .simps(2)

insert-seq-nonempty last-ConsL last-ConsR list .simps(3) snoc.prems(2))
hence snd a = Some (fst (last (butlast xs)))

using snoc.prems(2) insert-seq-last-ref by (metis prod .collapse)
hence list-order (ops @ [a]) (fst (last (butlast xs))) (fst a)

using list-order-insert-ref ref-exists snoc.prems(1) by (metis prod .collapse)
moreover have ∀ y ∈ set (map fst ys). list-order ops y (fst (last (butlast xs)))
by (metis IH butlast-split last-in-set last-map map-is-Nil-conv snoc-eq-iff-butlast)
hence ∀ y ∈ set (map fst ys). list-order (ops @ [a]) y (fst (last (butlast xs)))

71

using list-order-append snoc.prems(1) by blast
ultimately show ∀ y ∈ set (map fst ys). list-order (ops @ [a]) y (fst a)

using list-order-trans snoc.prems(1) by blast
qed
moreover have map-fst-xs: map fst xs = map fst (butlast xs) @ map fst [last

xs]
by (metis append-butlast-last-id insert-seq-nonempty map-append snoc.prems(2))
hence set (map fst xs) = set (map fst (butlast xs)) ∪ {fst a}

by (simp add : 〈a = last xs〉)
moreover have ∀ r . start = Some r −→ list-order (ops @ [a]) r (fst a)

using snoc.prems by (cases start , auto simp add : insert-seq-after-start 〈a =
last xs〉 map-fst-xs)

ultimately show (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order (ops
@ [a]) y x) ∧

(∀ r . start = Some r −→ (∀ x ∈ set (map fst xs). list-order (ops @ [a]) r
x) ∧

(∀ y ∈ set (map fst ys). list-order (ops @ [a]) r y))
using snoc.prems(1) by (simp add : list-order-append)

next
case a-in-ys
then have a /∈ set xs

using snoc.prems(8) by auto
hence set xs ⊆ set ops

using snoc.prems(6) DiffE by auto
from a-in-ys have a = last ys

using insert-ops-subset-last snoc.prems by blast
have IH : (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst (butlast ys)). list-order

ops y x) ∧
(∀ r . start = Some r −→ (∀ x ∈ set (map fst xs). list-order ops

r x) ∧
(∀ y ∈ set (map fst (butlast ys)). list-order ops r y))

proof(cases ys = [a])
case True
moreover have ∀ r . start = Some r −→ (∀ y ∈ set (map fst xs). list-order

ops r y)
using insert-seq-after-start 〈insert-ops ops〉 〈set xs ⊆ set ops〉 snoc.prems
by (metis append-Nil2 calculation insert-seq-hd interp-ins-append-non-memb

list .sel(1))
ultimately show ?thesis by auto

next
case ys-longer : False
from 〈a = last ys〉 have set (butlast ys) ⊆ set ops

using snoc.prems by (simp add : distinct-fst subset-butlast)
moreover have insert-seq start (butlast ys)
using insert-seq-butlast insert-seq-nonempty ys-longer 〈a = last ys〉 snoc.prems(4)

by blast
moreover have insert-ops (butlast ys)

using snoc.prems(4) snoc.prems(5) insert-ops-appendD
by (metis append-butlast-last-id insert-seq-nonempty)

72

moreover have distinct (map fst xs @ map fst (butlast ys))
using distinct-append-butlast2 snoc.prems(8) by blast

moreover have set xs ⊆ set ops
using 〈a /∈ set xs〉 〈set xs ⊆ set ops〉 by blast

moreover have hd (butlast ys) = hd ys
by (metis append-butlast-last-id calculation(2) hd-append2 insert-seq-nonempty

snoc.prems(4))
hence fst (hd xs) < fst (hd (butlast ys))

by (simp add : snoc.prems(9))
moreover have

∧
r . start = Some r =⇒ r ∈ set (interp-ins ops)

proof −
fix r
assume start = Some r
then obtain yid where hd ys = (yid , Some r)

using insert-seq-hd snoc.prems(4) by auto
hence r < yid
by (metis hd-in-set insert-ops-memb-ref-older insert-seq-nonempty snoc.prems(4)

snoc.prems(5))
moreover have yid < fst a
proof −

have ys = (butlast ys) @ [a]
using snoc.prems(4) insert-seq-nonempty 〈a = last ys〉 by fastforce

moreover have (yid , Some r) ∈ set (butlast ys)
using 〈hd ys = (yid , Some r)〉 insert-seq-nonempty list .set-sel(1)

snoc.prems(2)
by (metis 〈hd (butlast ys) = hd ys〉 〈insert-seq start (butlast ys)〉)

hence yid ∈ set (map fst (butlast ys))
by (metis in-set-zipE zip-map-fst-snd)

ultimately show ?thesis
using snoc.prems(5) last-op-greatest by (metis prod .collapse)

qed
ultimately have r 6= fst a

using dual-order .asym by blast
thus r ∈ set (interp-ins ops)
using snoc.prems(1) snoc.prems(10) interp-ins-maybe-grow2 〈start = Some

r 〉 by blast
qed
ultimately show ?thesis

using 〈insert-ops ops〉 snoc.IH snoc.prems(2) snoc.prems(3) by blast
qed
moreover have ∀ x ∈ set (map fst xs). list-order (ops @ [a]) (fst a) x
proof(cases ys = [a])

case ys-a: True
then show ∀ x ∈ set (map fst xs). list-order (ops @ [a]) (fst a) x
proof(cases start)

case None
then show ?thesis

using insert-seq-start-none list-order-insert-none snoc.prems
by (metis 〈insert-ops ops〉 〈set xs ⊆ set ops〉 fst-conv insert-seq-hd list .sel(1)

73

ys-a)
next

case (Some r)
moreover from this have ∀ x ∈ set (map fst xs). list-order ops r x

using IH by blast
ultimately show ?thesis

using snoc.prems(1) snoc.prems(4) list-order-insert-between
by (metis fst-conv insert-seq-hd list .sel(1) ys-a)

qed
next

case ys-longer : False
hence butlast-split : butlast ys = (butlast (butlast ys)) @ [last (butlast ys)]

using 〈a = last ys〉 insert-seq-butlast insert-seq-nonempty snoc.prems(4) by
fastforce

moreover from this have ys = (butlast (butlast ys)) @ [last (butlast ys), a]
by (metis 〈a = last ys〉 append .assoc append-butlast-last-id butlast .simps(2)

insert-seq-nonempty last-ConsL last-ConsR list .simps(3) snoc.prems(4))
hence snd a = Some (fst (last (butlast ys)))

using snoc.prems(4) insert-seq-last-ref by (metis prod .collapse)
moreover have ∀ x ∈ set (map fst xs). list-order ops (fst (last (butlast ys))) x
by (metis IH butlast-split last-in-set last-map map-is-Nil-conv snoc-eq-iff-butlast)
ultimately show ∀ x ∈ set (map fst xs). list-order (ops @ [a]) (fst a) x

using list-order-insert-between snoc.prems(1) by (metis prod .collapse)
qed
moreover have map-fst-xs: map fst ys = map fst (butlast ys) @ map fst [last

ys]
by (metis append-butlast-last-id insert-seq-nonempty map-append snoc.prems(4))
hence set (map fst ys) = set (map fst (butlast ys)) ∪ {fst a}

by (simp add : 〈a = last ys〉)
moreover have ∀ r . start = Some r −→ list-order (ops @ [a]) r (fst a)

using snoc.prems by (cases start , auto simp add : insert-seq-after-start 〈a =
last ys〉 map-fst-xs)

ultimately show (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order (ops
@ [a]) y x) ∧

(∀ r . start = Some r −→ (∀ x ∈ set (map fst xs). list-order (ops @ [a]) r
x) ∧

(∀ y ∈ set (map fst ys). list-order (ops @ [a]) r y))
using snoc.prems(1) by (simp add : list-order-append)

next
case neither
hence set xs ⊆ set ops and set ys ⊆ set ops

using snoc.prems(6) snoc.prems(7) DiffE by auto
have (∀ r . start = Some r −→ r ∈ set (interp-ins ops)) ∨ (xs = [] ∧ ys = [])
proof(cases xs)

case Nil
then show ?thesis using insert-seq-nonempty snoc.prems(2) by blast

next
case xs-nonempty : (Cons x xsa)
have

∧
r . start = Some r =⇒ r ∈ set (interp-ins ops)

74

proof −
fix r
assume start = Some r
then obtain xi where x = (xi , Some r)

using insert-seq-hd xs-nonempty snoc.prems(2) by fastforce
hence (xi , Some r) ∈ set ops

using 〈set xs ⊆ set ops〉 xs-nonempty by auto
hence r < xi

using 〈insert-ops ops〉 insert-ops-memb-ref-older by blast
moreover have xi ∈ set (map fst ops)

using 〈(xi , Some r) ∈ set ops〉 by force
hence xi < fst a

using last-op-greatest snoc.prems(1) by (metis prod .collapse)
ultimately have fst a 6= r

using order .asym by blast
then show r ∈ set (interp-ins ops)
using snoc.prems(1) snoc.prems(10) interp-ins-maybe-grow2 〈start = Some

r 〉 by blast
qed
then show ?thesis by blast

qed
hence (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops y x) ∧

(∀ r . start = Some r −→ (∀ x ∈ set (map fst xs). list-order ops r x) ∧
(∀ y ∈ set (map fst ys). list-order ops r y))

using snoc.prems snoc.IH 〈set xs ⊆ set ops〉 〈set ys ⊆ set ops〉 by blast
then show (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order (ops @

[a]) y x) ∧
(∀ r . start = Some r −→ (∀ x ∈ set (map fst xs). list-order (ops @ [a]) r

x) ∧
(∀ y ∈ set (map fst ys). list-order (ops @ [a]) r y))

using snoc.prems(1) by (simp add : list-order-append)
qed

qed

Consider an execution that contains two distinct insertion sequences, xs and
ys, that both begin at the same initial position start. We prove that, provided
the starting element exists, the two insertion sequences are not interleaved.
That is, in the final list order, either all insertions by xs appear before all
insertions by ys, or vice versa.

theorem no-interleaving :
assumes insert-ops ops

and insert-seq start xs and insert-ops xs
and insert-seq start ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and distinct (map fst xs @ map fst ys)
and start = None ∨ (∃ r . start = Some r ∧ r ∈ set (interp-ins ops))

shows (∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops x y) ∨
(∀ x ∈ set (map fst xs). ∀ y ∈ set (map fst ys). list-order ops y x)

75

proof(cases fst (hd xs) < fst (hd ys))
case True
moreover have

∧
r . start = Some r =⇒ r ∈ set (interp-ins ops)

using assms(9) by blast
ultimately have ∀ x∈set (map fst xs). ∀ y∈set (map fst ys). list-order ops y x

using assms no-interleaving-ordered by blast
then show ?thesis by blast

next
case False
hence fst (hd ys) < fst (hd xs)

using assms(2) assms(4) assms(8) insert-seq-nonempty distinct-fst-append
by (metis (no-types, lifting) hd-in-set hd-map list .map-disc-iff map-append neqE)

moreover have distinct (map fst ys @ map fst xs)
using assms(8) distinct-append-swap by blast

moreover have
∧

r . start = Some r =⇒ r ∈ set (interp-ins ops)
using assms(9) by blast

ultimately have ∀ x∈set (map fst ys). ∀ y∈set (map fst xs). list-order ops y x
using assms no-interleaving-ordered by blast

then show ?thesis by blast
qed

For completeness, we also prove what happens if there are two insertion
sequences, xs and ys, but their initial position start does not exist. In that
case, none of the insertions in xs or ys take effect.

theorem missing-start-no-insertion:
assumes insert-ops ops

and insert-seq (Some start) xs and insert-ops xs
and insert-seq (Some start) ys and insert-ops ys
and set xs ⊆ set ops and set ys ⊆ set ops
and start /∈ set (interp-ins ops)

shows ∀ x ∈ set (map fst xs) ∪ set (map fst ys). x /∈ set (interp-ins ops)
using assms insert-seq-no-start by (metis UnE)

end

5 The Replicated Growable Array (RGA)

The RGA algorithm [4] is a replicated list (or collaborative text-editing)
algorithm. In this section we prove that RGA satisfies our list specification.
The Isabelle/HOL definition of RGA in this section is based on our prior
work on formally verifying CRDTs [3, 2].

theory RGA
imports Insert-Spec

begin

fun insert-body :: ′oid ::{linorder} list ⇒ ′oid ⇒ ′oid list where
insert-body [] e = [e] |

76

insert-body (x # xs) e =
(if x < e then e # x # xs

else x # insert-body xs e)

fun insert-rga :: ′oid ::{linorder} list ⇒ (′oid × ′oid option) ⇒ ′oid list where
insert-rga xs (e, None) = insert-body xs e |
insert-rga [] (e, Some i) = [] |
insert-rga (x # xs) (e, Some i) =

(if x = i then
x # insert-body xs e

else
x # insert-rga xs (e, Some i))

definition interp-rga :: (′oid ::{linorder} × ′oid option) list ⇒ ′oid list where
interp-rga ops ≡ foldl insert-rga [] ops

5.1 Commutativity of insert-rga

lemma insert-body-set-ins [simp]:
shows set (insert-body xs e) = insert e (set xs)
by (induction xs, auto)

lemma insert-rga-set-ins:
assumes i ∈ set xs
shows set (insert-rga xs (oid , Some i)) = insert oid (set xs)
using assms by (induction xs, auto)

lemma insert-body-commutes:
shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1
by (induction xs, auto)

lemma insert-rga-insert-body-commute:
assumes i2 6= Some e1
shows insert-rga (insert-body xs e1) (e2 , i2) = insert-body (insert-rga xs (e2 ,

i2)) e1
using assms by (induction xs; cases i2) (auto simp add : insert-body-commutes)

lemma insert-rga-None-commutes:
assumes i2 6= Some e1
shows insert-rga (insert-rga xs (e1 , None)) (e2 , i2) =

insert-rga (insert-rga xs (e2 , i2)) (e1 , None)
using assms by (induction xs; cases i2) (auto simp add : insert-body-commutes)

lemma insert-rga-nonexistent :
assumes i /∈ set xs
shows insert-rga xs (e, Some i) = xs
using assms by (induction xs, auto)

lemma insert-rga-Some-commutes:

77

assumes i1 ∈ set xs and i2 ∈ set xs
and e1 6= i2 and e2 6= i1

shows insert-rga (insert-rga xs (e1 , Some i1)) (e2 , Some i2) =
insert-rga (insert-rga xs (e2 , Some i2)) (e1 , Some i1)

using assms proof (induction xs, simp)
case (Cons a xs)
then show ?case

by (cases a = i1 ; cases a = i2 ;
auto simp add : insert-body-commutes insert-rga-insert-body-commute)

qed

lemma insert-rga-commutes:
assumes i2 6= Some e1 and i1 6= Some e2
shows insert-rga (insert-rga xs (e1 , i1)) (e2 , i2) =

insert-rga (insert-rga xs (e2 , i2)) (e1 , i1)
proof(cases i1)

case None
then show ?thesis

using assms(1) insert-rga-None-commutes by (cases i2 , fastforce, blast)
next

case some-r1 : (Some r1)
then show ?thesis
proof(cases i2)

case None
then show ?thesis

using assms(2) insert-rga-None-commutes by fastforce
next

case some-r2 : (Some r2)
then show ?thesis
proof(cases r1 ∈ set xs ∧ r2 ∈ set xs)

case True
then show ?thesis

using assms some-r1 some-r2 by (simp add : insert-rga-Some-commutes)
next

case False
then show ?thesis

using assms some-r1 some-r2
by (metis insert-iff insert-rga-nonexistent insert-rga-set-ins)

qed
qed

qed

lemma insert-body-split :
shows ∃ p s. xs = p @ s ∧ insert-body xs e = p @ e # s

proof(induction xs, force)
case (Cons a xs)
then obtain p s where IH : xs = p @ s ∧ insert-body xs e = p @ e # s

by blast
then show ∃ p s. a # xs = p @ s ∧ insert-body (a # xs) e = p @ e # s

78

proof(cases a < e)
case True
then have a # xs = [] @ (a # p @ s) ∧ insert-body (a # xs) e = [] @ e # (a

p @ s)
by (simp add : IH)

then show ?thesis by blast
next

case False
then have a # xs = (a # p) @ s ∧ insert-body (a # xs) e = (a # p) @ e # s

using IH by auto
then show ?thesis by blast

qed
qed

lemma insert-between-elements:
assumes xs = pre @ ref # suf

and distinct xs
and

∧
i . i ∈ set xs =⇒ i < e

shows insert-rga xs (e, Some ref) = pre @ ref # e # suf
using assms proof(induction xs arbitrary : pre, force)
case (Cons a xs)
then show insert-rga (a # xs) (e, Some ref) = pre @ ref # e # suf
proof(cases pre)

case pre-nil : Nil
then have a = ref

using Cons.prems(1) by auto
then show ?thesis

using Cons.prems pre-nil by (cases suf , auto)
next

case (Cons b pre ′)
then have insert-rga xs (e, Some ref) = pre ′ @ ref # e # suf

using Cons.IH Cons.prems by auto
then show ?thesis

using Cons.prems(1) Cons.prems(2) local .Cons by auto
qed

qed

lemma insert-rga-after-ref :
assumes ∀ x∈set as. a 6= x

and insert-body (cs @ ds) e = cs @ e # ds
shows insert-rga (as @ a # cs @ ds) (e, Some a) = as @ a # cs @ e # ds
using assms by (induction as; auto)

lemma insert-rga-preserves-order :
assumes i = None ∨ (∃ i ′. i = Some i ′ ∧ i ′ ∈ set xs)

and distinct xs
shows ∃ pre suf . xs = pre @ suf ∧ insert-rga xs (e, i) = pre @ e # suf

proof(cases i)
case None

79

then show ∃ pre suf . xs = pre @ suf ∧ insert-rga xs (e, i) = pre @ e # suf
using insert-body-split by auto

next
case (Some r)
moreover from this obtain as bs where xs = as @ r # bs ∧ (∀ x ∈ set as. x
6= r)

using assms(1) split-list-first by fastforce
moreover have ∃ cs ds. bs = cs @ ds ∧ insert-body bs e = cs @ e # ds

by (simp add : insert-body-split)
then obtain cs ds where bs = cs @ ds ∧ insert-body bs e = cs @ e # ds

by blast
ultimately have xs = (as @ r # cs) @ ds ∧ insert-rga xs (e, i) = (as @ r #

cs) @ e # ds
using insert-rga-after-ref by fastforce

then show ?thesis by blast
qed

5.2 Lemmas about the rga-ops predicate

definition rga-ops :: (′oid ::{linorder} × ′oid option) list ⇒ bool where
rga-ops list ≡ crdt-ops list set-option

lemma rga-ops-rem-last :
assumes rga-ops (xs @ [x])
shows rga-ops xs
using assms crdt-ops-rem-last rga-ops-def by blast

lemma rga-ops-rem-penultimate:
assumes rga-ops (xs @ [(i1 , r1), (i2 , r2)])

and
∧

r . r2 = Some r =⇒ r 6= i1
shows rga-ops (xs @ [(i2 , r2)])
using assms proof −
have crdt-ops (xs @ [(i2 , r2)]) set-option

using assms crdt-ops-rem-penultimate rga-ops-def by fastforce
thus rga-ops (xs @ [(i2 , r2)])

by (simp add : rga-ops-def)
qed

lemma rga-ops-ref-exists:
assumes rga-ops (pre @ (oid , Some ref) # suf)
shows ref ∈ fst ‘ set pre

proof −
from assms have crdt-ops (pre @ (oid , Some ref) # suf) set-option

by (simp add : rga-ops-def)
moreover have set-option (Some ref) = {ref }

by simp
ultimately show ref ∈ fst ‘ set pre

using crdt-ops-ref-exists by fastforce
qed

80

5.3 Lemmas about the interp-rga function

lemma interp-rga-tail-unfold :
shows interp-rga (xs@[x]) = insert-rga (interp-rga (xs)) x
by (clarsimp simp add : interp-rga-def)

lemma interp-rga-ids:
assumes rga-ops xs
shows set (interp-rga xs) = set (map fst xs)
using assms proof(induction xs rule: List .rev-induct)
case Nil
then show set (interp-rga []) = set (map fst [])

by (simp add : interp-rga-def)
next

case (snoc x xs)
hence IH : set (interp-rga xs) = set (map fst xs)

using rga-ops-rem-last by blast
obtain xi xr where x-pair : x = (xi , xr) by force
then show set (interp-rga (xs @ [x])) = set (map fst (xs @ [x]))
proof(cases xr)

case None
then show ?thesis

using IH x-pair by (clarsimp simp add : interp-rga-def)
next

case (Some r)
moreover from this have r ∈ set (interp-rga xs)

using IH rga-ops-ref-exists by (metis x-pair list .set-map snoc.prems)
ultimately have set (interp-rga (xs @ [(xi , xr)])) = insert xi (set (interp-rga

xs))
by (simp add : insert-rga-set-ins interp-rga-tail-unfold)

then show set (interp-rga (xs @ [x])) = set (map fst (xs @ [x]))
using IH x-pair by auto

qed
qed

lemma interp-rga-distinct :
assumes rga-ops xs
shows distinct (interp-rga xs)
using assms proof(induction xs rule: List .rev-induct)
case Nil
then show distinct (interp-rga []) by (simp add : interp-rga-def)

next
case (snoc x xs)
hence IH : distinct (interp-rga xs)

using rga-ops-rem-last by blast
moreover obtain xi xr where x-pair : x = (xi , xr)

by force
moreover from this have xi /∈ set (interp-rga xs)

using interp-rga-ids crdt-ops-unique-last rga-ops-rem-last

81

by (metis rga-ops-def snoc.prems)
moreover have ∃ pre suf . interp-rga xs = pre@suf ∧

insert-rga (interp-rga xs) (xi , xr) = pre @ xi # suf
proof −

have
∧

r . r ∈ set-option xr =⇒ r ∈ set (map fst xs)
using crdt-ops-ref-exists rga-ops-def snoc.prems x-pair by fastforce

hence xr = None ∨ (∃ r . xr = Some r ∧ r ∈ set (map fst xs))
using option.set-sel by blast

hence xr = None ∨ (∃ r . xr = Some r ∧ r ∈ set (interp-rga xs))
using interp-rga-ids rga-ops-rem-last snoc.prems by blast

thus ?thesis
using IH insert-rga-preserves-order by blast

qed
ultimately show distinct (interp-rga (xs @ [x]))

by (metis Un-iff disjoint-insert(1) distinct .simps(2) distinct-append
interp-rga-tail-unfold list .simps(15) set-append)

qed

5.4 Proof that RGA satisfies the list specification

lemma final-insert :
assumes set (xs @ [x]) = set (ys @ [x])

and rga-ops (xs @ [x])
and insert-ops (ys @ [x])
and interp-rga xs = interp-ins ys

shows interp-rga (xs @ [x]) = interp-ins (ys @ [x])
proof −

obtain oid ref where x-pair : x = (oid , ref) by force
have distinct (xs @ [x]) and distinct (ys @ [x])

using assms crdt-ops-distinct spec-ops-distinct rga-ops-def insert-ops-def by
blast+

then have set xs = set ys
using assms(1) by force

have oid-greatest :
∧

i . i ∈ set (interp-rga xs) =⇒ i < oid
proof −

have
∧

i . i ∈ set (map fst ys) =⇒ i < oid
using assms(3) by (simp add : spec-ops-id-inc x-pair insert-ops-def)

hence
∧

i . i ∈ set (map fst xs) =⇒ i < oid
using 〈set xs = set ys〉 by auto

thus
∧

i . i ∈ set (interp-rga xs) =⇒ i < oid
using assms(2) interp-rga-ids rga-ops-rem-last by blast

qed
thus interp-rga (xs @ [x]) = interp-ins (ys @ [x])
proof(cases ref)

case None
moreover from this have insert-rga (interp-rga xs) (oid , ref) = oid #

interp-rga xs
using oid-greatest hd-in-set insert-body .elims insert-body .simps(1)

insert-rga.simps(1) list .sel(1) by metis

82

ultimately show interp-rga (xs @ [x]) = interp-ins (ys @ [x])
using assms(4) by (simp add : interp-ins-tail-unfold interp-rga-tail-unfold

x-pair)
next

case (Some r)
have ∃ as bs. interp-rga xs = as @ r # bs
proof −

have r ∈ set (map fst xs)
using assms(2) Some by (simp add : rga-ops-ref-exists x-pair)

hence r ∈ set (interp-rga xs)
using assms(2) interp-rga-ids rga-ops-rem-last by blast

thus ?thesis by (simp add : split-list)
qed
from this obtain as bs where as-bs: interp-rga xs = as @ r # bs by force
hence distinct (as @ r # bs)

by (metis assms(2) interp-rga-distinct rga-ops-rem-last)
hence insert-rga (as @ r # bs) (oid , Some r) = as @ r # oid # bs

by (metis as-bs insert-between-elements oid-greatest)
moreover have insert-spec (as @ r # bs) (oid , Some r) = as @ r # oid # bs

by (meson 〈distinct (as @ r # bs)〉 insert-after-ref)
ultimately show interp-rga (xs @ [x]) = interp-ins (ys @ [x])

by (metis assms(4) Some as-bs interp-ins-tail-unfold interp-rga-tail-unfold
x-pair)

qed
qed

lemma interp-rga-reorder :
assumes rga-ops (pre @ suf @ [(oid , ref)])

and
∧

i r . (i , Some r) ∈ set suf =⇒ r 6= oid
and

∧
r . ref = Some r =⇒ r /∈ fst ‘ set suf

shows interp-rga (pre @ (oid , ref) # suf) = interp-rga (pre @ suf @ [(oid , ref)])
using assms proof(induction suf rule: List .rev-induct)
case Nil
then show ?case by simp

next
case (snoc x xs)
have ref-not-x :

∧
r . ref = Some r =⇒ r 6= fst x using snoc.prems(3) by auto

have IH : interp-rga (pre @ (oid , ref) # xs) = interp-rga (pre @ xs @ [(oid , ref)])
proof −

have rga-ops ((pre @ xs) @ [x] @ [(oid , ref)])
using snoc.prems(1) by auto

moreover have
∧

r . ref = Some r =⇒ r 6= fst x
by (simp add : ref-not-x)

ultimately have rga-ops ((pre @ xs) @ [(oid , ref)])
using rga-ops-rem-penultimate
by (metis (no-types, lifting) Cons-eq-append-conv prod .collapse)

thus ?thesis using snoc by force
qed
obtain xi xr where x-pair : x = (xi , xr) by force

83

have interp-rga (pre @ (oid , ref) # xs @ [(xi , xr)]) =
insert-rga (interp-rga (pre @ xs @ [(oid , ref)])) (xi , xr)

using IH interp-rga-tail-unfold by (metis append .assoc append-Cons)
moreover have ... = insert-rga (insert-rga (interp-rga (pre @ xs)) (oid , ref))

(xi , xr)
using interp-rga-tail-unfold by (metis append-assoc)

moreover have ... = insert-rga (insert-rga (interp-rga (pre @ xs)) (xi , xr)) (oid ,
ref)

proof −
have

∧
xrr . xr = Some xrr =⇒ xrr 6= oid

using x-pair snoc.prems(2) by auto
thus ?thesis

using insert-rga-commutes ref-not-x by (metis fst-conv x-pair)
qed
moreover have ... = interp-rga (pre @ xs @ [x] @ [(oid , ref)])

by (metis append-assoc interp-rga-tail-unfold x-pair)
ultimately show interp-rga (pre @ (oid , ref) # xs @ [x]) =

interp-rga (pre @ (xs @ [x]) @ [(oid , ref)])
by (simp add : x-pair)

qed

lemma rga-spec-equal :
assumes set xs = set ys

and insert-ops xs
and rga-ops ys

shows interp-ins xs = interp-rga ys
using assms proof(induction xs arbitrary : ys rule: rev-induct)
case Nil
then show ?case by (simp add : interp-rga-def interp-ins-def)

next
case (snoc x xs)
hence x ∈ set ys

by (metis last-in-set snoc-eq-iff-butlast)
from this obtain pre suf where ys-split : ys = pre @ [x] @ suf

using split-list-first by fastforce
have IH : interp-ins xs = interp-rga (pre @ suf)
proof −

have crdt-ops (pre @ suf) set-option
proof −

have crdt-ops (pre @ [x] @ suf) set-option
using rga-ops-def snoc.prems(3) ys-split by blast

thus crdt-ops (pre @ suf) set-option
using crdt-ops-rem-spec snoc.prems ys-split insert-ops-def by blast

qed
hence rga-ops (pre @ suf)

using rga-ops-def by blast
moreover have set xs = set (pre @ suf)

by (metis append-set-rem-last crdt-ops-distinct insert-ops-def rga-ops-def
snoc.prems spec-ops-distinct ys-split)

84

ultimately show ?thesis
using insert-ops-rem-last ys-split snoc by metis

qed
have valid-rga: rga-ops (pre @ suf @ [x])
proof −

have crdt-ops (pre @ suf @ [x]) set-option
using snoc.prems ys-split
by (simp add : crdt-ops-reorder-spec insert-ops-def rga-ops-def)

thus rga-ops (pre @ suf @ [x])
by (simp add : rga-ops-def)

qed
have interp-ins (xs @ [x]) = interp-rga (pre @ suf @ [x])
proof −

have set (xs @ [x]) = set (pre @ suf @ [x])
using snoc.prems(1) ys-split by auto

thus ?thesis
using IH snoc.prems(2) valid-rga final-insert append-assoc by metis

qed
moreover have ... = interp-rga (pre @ [x] @ suf)
proof −

obtain oid ref where x-pair : x = (oid , ref)
by force

have
∧

op2 r . op2 ∈ snd ‘ set suf =⇒ r ∈ set-option op2 =⇒ r 6= oid
using snoc.prems

by (simp add : crdt-ops-independent-suf insert-ops-def rga-ops-def x-pair ys-split)
hence

∧
i r . (i , Some r) ∈ set suf =⇒ r 6= oid

by fastforce
moreover have

∧
r . ref = Some r =⇒ r /∈ fst ‘ set suf

using crdt-ops-no-future-ref snoc.prems(3) x-pair ys-split
by (metis option.set-intros rga-ops-def)

ultimately show interp-rga (pre @ suf @ [x]) = interp-rga (pre @ [x] @ suf)
using interp-rga-reorder valid-rga x-pair by force

qed
ultimately show interp-ins (xs @ [x]) = interp-rga ys

by (simp add : ys-split)
qed

lemma insert-ops-exist :
assumes rga-ops xs
shows ∃ ys. set xs = set ys ∧ insert-ops ys
using assms by (simp add : crdt-ops-spec-ops-exist insert-ops-def rga-ops-def)

theorem rga-meets-spec:
assumes rga-ops xs
shows ∃ ys. set ys = set xs ∧ insert-ops ys ∧ interp-ins ys = interp-rga xs
using assms rga-spec-equal insert-ops-exist by metis

end

85

References

[1] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang, and M. Zawirski.
Specification and complexity of collaborative text editing. In ACM Symposium
on Principles of Distributed Computing (PODC), pages 259–268, July 2016.

[2] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. A frame-
work for establishing strong eventual consistency for conflict-free replicated data
types. Archive of Formal Proofs, July 2017.

[3] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. Verifying
strong eventual consistency in distributed systems. Proceedings of the ACM on
Programming Languages (PACMPL), 1(OOPSLA), Oct. 2017.

[4] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract data types:
Building blocks for collaborative applications. Journal of Parallel and Distributed
Computing, 71(3):354–368, 2011.

86

	Abstract OpSet
	OpSet definition
	Helper lemmas about lists
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 spec-ops predicate
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 crdt-ops predicate

	Specifying list insertion
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-ops predicate
	Properties of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-spec function
	Properties of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 interp-ins function
	Equivalence of the two definitions of insertion
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 list-order predicate

	Relationship to Strong List Specification
	Lemmas about insertion and deletion
	Lemmas about interpreting operations
	Satisfying all conditions of Astrong

	Interleaving of concurrent insertions
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-ops
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 interp-ins
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 list-order
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-seq predicate
	The proof of no interleaving

	The Replicated Growable Array (RGA)
	Commutativity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-rga
	Lemmas about the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 rga-ops predicate
	Lemmas about the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 interp-rga function
	Proof that RGA satisfies the list specification

