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Abstract

I describe the development of a program to simulate the dynamic behaviour of interacting
rigid bodies. Such a simulation may be used to generate animations of articulated characters
in 3D graphics applications. Bodies may have an arbitrary shape, defined by a triangle mesh,
and may be connected with a variety of different joints. Joints are represented by constraint
functions which are solved at run-time using Lagrange multipliers. The simulation performs
collision detection and prevents penetration of rigid bodies by applying impulses to colliding
bodies and reaction forces to bodies in resting contact.

The simulation is shown to be physically accurate and is tested on several different scenes,
including one of an articulated human character falling down a flight of stairs.

An appendix describes how to derive arbitrary constraint functions for the Lagrange
multiplier method. Collisions and joints are both represented as constraints, which allows
them to be handled with a unified algorithm. The report also includes some results relating
to the use of quaternions in dynamic simulations.
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Chapter 1

Introduction

This project is concerned with the dynamics, i.e. the behaviour over time, of a general class
of mechanical systems in three-dimensional space. In this report I describe the development
and evaluation of a program to simulate such physical systems. The primary domain of this
work is computer graphics, where physically-based modelling is a useful tool for creating realistic
animations, although a wider range of applications in robotics and engineering can be envisaged.

1.1 Motivation

3D animated graphics have become an everyday part of our lives through films, advertising and
computer games. Recent years have seen not only the production of feature-length animated
films, but also the widespread use of animation in combination with traditionally shot footage.
The techniques are now so refined that computer generated and recorded pictures are sometimes
indistinguishable even to experts, thus opening up many new artistic possibilities.

Currently computer animation still involves a large amount of manual effort, despite com-
monly being termed “computer generated”. It is said that in large-budget film productions
every single frame is edited by hand, and many animations are completely handcrafted. There
are artistic reasons for this (sometimes an animation is deliberately required to be physically
impossible to achieve a special effect), and also economic reasons (animators are cheaper to hire
than computer scientists). However, as the complexity of animated scenes increases, manual
animation becomes unfeasible. Large crowds, fluids, cloth and some types of deformable bodies
are therefore commonly animated using simulation techniques.

Unfortunately such scenes with an unbounded number of degrees of freedom are difficult to
simulate well. Fluid dynamics is very complicated and a subject of ongoing research; the physics
of deformable bodies (so-called “soft matter”) is not even completely understood. Graphical
simulations in these areas tend to resort to means which look good but are physically meaning-
less. This project aims to address the more well-defined subject of character animation, i.e. the
movement of humans, many species of animal, and some types of alien creatures. Their common
feature is that their bodies are deformable on the basis of a skeleton. Such bodies are called
articulated bodies in computer graphics, and it is usually assumed that this is the only type of
deformation – they do not have “soft flesh”. Skeleton is not used as an anatomically accurate
term, because more or fewer bones might be used, depending on the animation requirements.

Rigid body dynamics, which will form the basis for physically based character animation, is
well understood and has a solid theoretical underpinning against which the simulation results
can be checked. Hence physically-based modelling lends itself more to an objective evaluation
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than many other areas of computer graphics, making it well suited as a Part II project.
While a simulation of a single rigid body can be fairly simple, dealing with multiple non-

penetrating and interacting bodies is surprisingly difficult. In fact, creating such simulations was
a subject of PhD theses only 10–15 years ago [2, 15, 20] and the topic has not yet settled enough
to be described in textbooks1. This means that a project in this area will inevitably involve
a research component in addition to the software engineering. This constitutes an exciting
challenge.

1.2 Scope and requirements

Simulations of dynamic systems are employed in a wide range of environments:

1. games and related real-time applications, where fast computation is paramount and any-
thing which “looks good” is acceptable;

2. professional animation systems for high quality graphics, in which calculations are done
offline;

3. engineering and quantitative research, where accuracy and knowledge of errors are the
main concerns.

The project proposal identifies itself with the second area, a trade-off between accuracy
and speed. Once the scope was set, a more detailed analysis of the requirements had to be
undertaken. Based on the project proposal, the program must

• read several polygon meshes, with skeletons and physical properties, from a file;

• provide a general framework for handling interactions between objects;

• ensure, as a particular type of interaction, that rigid bodies do not penetrate each other;

• combine forces, torques and impulses from interactions and hence calculate the change to
the system over time;

• output the simulation state over time in rendered form on screen, and into a file such that
it can be processed by other applications.

With respect to physical laws, the simulation should include

• the momentary state of a rigid body (position and orientation) and its velocities (linear
and angular),

• changes to a body’s state through forces, torques, linear and angular impulses,

• inertial mass, gravity and collisions between bodies,

• appropriate handling for articulated bodies, including limits on the range of valid angles
for each joint.

This list of requirements differs slightly from those stated in the proposal:

1Some books [23, 6] give an introduction to the subject, but not in enough depth that the reader could actually
implement a simulation.
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• The simulation of friction forces was removed from the requirements, because the literature
suggested that it was a very difficult problem [2] and I decided it was beyond the scope of
a Part II project.

• Muscular forces are easy to implement but involve a large amount of manual effort to
control [10], so I shifted the emphasis towards “passive” systems with no external forces
apart from gravity.

• The requirements were extended from one body to multiple bodies – not many interesting
simulations involve just a single body.

• Output of the results to a file was added to ease evaluation.

1.3 Overview

The dynamics of rigid bodies are physically described by ordinary differential equations (ODEs),
and a simulation essentially comes down to numerically finding their solution, given a set of initial
conditions and a set of constraints. Hence this project can be broken into six components:

1. A numerical solver for ordinary differential equations. This is a well researched area, and
a range of good standard algorithms exist. This component is described in section 2.2.

2. An implementation of the equations of motion for rigid bodies. This is standard physics
but has some implementation quirks. See sections 2.1 and 2.3.

3. Algorithms to ensure the correct handling of articulated bodies. See section 2.4.

4. Detection of collision between bodies. A vast amount of research has been done in this
area, and most algorithms are concerned with speed. However, since run-time efficiency is
not my primary concern, this part was kept quite simple. See section 3.2.

5. Handling of collisions, that is computation of the correct impulses between colliding bodies.
This must also work in the context of articulated bodies! See section 3.3.3.

6. Handling of resting contact, that is the computation of forces between bodies which are in
contact but not colliding. This is probably the most challenging part of the project. See
section 3.3.2.
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Chapter 2

Preparation

The preparatory work for this project splits into two parts:

• Surveying literature, learning the theoretical background and understanding the existing
algorithms for my task. The outcome of this preparation is discussed in sections 2.1 to 2.4.

• Setting up and learning to use the software environment for development. This is described
in section 2.5.

2.1 Rigid body dynamics

On the most theoretical level, a rigid body is a collection of k point masses (k ≥ 3, can be
infinite) subject to the constraint that the distance between any pair of masses must remain
constant. More conveniently, we can regard a rigid body as an object with a three-dimensional
shape, a non-zero volume and some mass distribution, and assume that it does not change shape.

At a particular point in time, a rigid body is fully determined by four non-scalar quantities:
the position of its centre of mass, its orientation, and its linear and angular velocities. These
values usually change over time. Each of these can be easily represented as a three-component
vector, except for orientation, which is discussed in section 2.3. By convention a right-handed
Cartesian coordinate system is used.

To characterize the body’s dynamic behaviour, we also need to know its inertial mass, a
scalar quantity, and its moment of inertia, which is a rank-2 tensor (commonly written as
a 3 × 3 matrix). While the mass stays constant, the moment of inertia may depend on the
body’s orientation – it is, however, constant when expressed with respect to the body’s principal
axes [8, 9].

Angular velocity appears to be a straightforward way of describing the body’s rotation: the
direction of the vector gives the axis of rotation, while its magnitude is the rate of rotation
in radians per second. Unfortunately, in an asymmetric body, the angular velocity may vary
over time even if there are no external influences on the body, due to an effect known as free
precession or Poinsot motion [9, 12]. It is therefore more convenient to use angular momentum
instead, which is conserved in the absence of torques.

Forces and torques acting on a body may change the momenta of a body as described in
table 2.1. A force F may be applied to any point r′ of a body. We can treat this as if the force
had been applied to the centre of mass r, and add an additional torque given by τ = (r′−r)×F.
If multiple forces and torques are applied, all forces (applied to the centre of mass) may be added
into a single vector, and similarly all torques may be added.

9



Linear Angular

Resistance to change Mass m Moment of inertia I

Stationary state Centre of mass position r see section 2.3

Velocity Linear velocity v = ṙ Angular velocity ω

Momentum Linear momentum Angular momentum

p = mv L = Iω

External influence Force F = ṗ Torque τ = L̇

Table 2.1: Summary of the physical quantities describing a rigid body.

To solve the differential equations of motion, forces are integrated over time to find linear
momentum, and torques are integrated to find angular momentum. From each of these we
calculate linear and angular velocities, which are in turn integrated to find the position and
orientation over the course of time. It is important that we integrate over torques (and not
angular accelerations), otherwise the simulation will not correctly conserve angular momentum.

2.2 Solving ordinary differential equations (ODEs)

Undergraduate mathematics courses cover various methods for solving ODEs analytically. These
work well for simple systems and deliver an exact solution. For example, if a constant force is
applied to a body, its displacement is a quadratic (parabolic) function of time; if the force is
negatively proportional to the displacement, we observe simple harmonic oscillation. Unfortu-
nately, when systems become only slightly more complicated, the equations become intractable –
even a simple pendulum falls in this category. General solutions can then only be approximated
numerically.

The general scheme for numerical ODE solvers is to take the value of a function f(t′) and its
derivative df

dt
(t′) at some point in time t′. From these the algorithm extrapolates what the value

of the function is expected to be some time step h later. The simplest, most frequently-quoted
and worst algorithm for this purpose is Euler’s method,

f(t′ + h) = f(t′) + h
df

dt
(t′), (2.1)

which performs linear extrapolation. Figure 2.1 illustrates its operation and the errors introduced
in the solution.

A popular and robust alternative is given by the Runge-Kutta family of ODE solvers, which
evaluate df

dt
at different times and use these values to fit a polynomial curve to the exact solution

over the range of one time step. For example, fourth-order Runge-Kutta (RK4) [17] uses four
values of the derivative to fit a fourth-order polynomial – contrast this to the first-order polyno-
mial (linear function) used by Euler’s method. This amounts to using the first five terms of the
Taylor series of the exact solution, including the h4 term, so we expect the error in each time
step to be O(h5) – a minute error even if h is only moderately small. The step size can be much
longer than in Euler’s method while achieving the same accuracy, which makes Runge-Kutta
significantly more efficient.

Further improvements can be made by adapting the step size h to the situation. In this
project I chose to use the embedded Cash-Karp/Runge-Kutta method described in [17], which
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Figure 2.1: Demonstration of Euler’s method for solving the ODE of simple harmonic oscillation.
The broad grey line represents the exact solution. At each time step, the method takes the
derivative (gradient) of the function and uses it to extrapolate linearly.

uses six evaluations of the derivative to calculate both a fourth-order and a fifth-order extrapo-
lation. If the difference between them is small, the total error is likely to be small, and the next
step will be longer. If the absolute difference lies above some threshold, the current time step is
discarded and retried with a smaller h. Thus the ODE solver can rapidly skip over periods in
which there is little happening, without sacrificing accuracy in moments of sudden change.

2.3 Quaternions

2.3.1 The need for Quaternions

Besides its position, each rigid body in 3D space may have an orientation, in which there are
three degrees of freedom (three independent axes to rotate about). While the position of a body
can be neatly represented using Cartesian coordinates, there is no obvious best way of describing
an orientation. The most common schemes describe it in terms of a rotation operation which
transforms a vector in the body’s local coordinates into world coordinates (or vice versa). But
again, there are various different approaches to representing this rotation, all of which have
advantages and disadvantages.

Euler angles are probably the most intuitive representation of a 3D rotation, describing it as
a series of three rotations about different axes. These axes are fixed by convention, so it suffices
to specify the three angles of rotation. However, this scheme has a number of drawbacks [20,
24]: amongst other things, it is possible that rotation about one of the axes freezes during an
animation (“Gimbal lock”).

Rotation matrices are commonly used because they are well understood and allow efficient
combination with other linear transformations (scaling and shearing – also translation if ho-
mogeneous coordinates are employed). However, ODEs over rotation matrices are difficult to
implement correctly, since this representation uses nine numbers (a 3 × 3 matrix) to repre-
sent three degrees of freedom, thus introducing six additional side conditions which must be
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maintained. Not doing so causes skew through numerical drift [20].
Quaternions [24, 5, 27] are a popular alternative to the two previous schemes, and they are

used extensively in this project.

2.3.2 Definition and properties

Mathematically, quaternions can be regarded as numbers with one real part and three distinct
imaginary parts:

q = qw + qxi + qyj + qzk (2.2)

where qw, qx, qy and qz are real numbers and i, j and k satisfy

i2 = j2 = k2 = ijk = −1. (2.3)

From this follows that ij = −ji = k and jk = −kj = i and ki = −ik = j. Note that multiplication
is not commutative.

We will also need the conjugate and the inverse of a quaternion. In analogy to complex
numbers, these are given respectively by

q = qw − qxi − qyj − qzk (2.4)

q−1 =
q

|q|2
(2.5)

where |qw + qxi + qyj + qzk| =
√

q2
w + q2

x + q2
y + q2

z (2.6)

Sometimes we will need to relate a 3D vector to a quaternion with zero real part. For a
given vector u = (u1, u2, u3)

T we define the corresponding quaternion to be

ũ = u1i + u2j + u3k. (2.7)

The complex constants i, j and k are required for the algebra only, therefore we can represent a
quaternion as four numbers (qw, qx, qy, qz). It turns out that a quaternion with unit magnitude
(|q| = 1) neatly represents an arbitrary rotation in 3D space, similarly to the way that an
ordinary complex number represents a rotation in the 2D Argand diagram. The condition
|q| = 1 reduces the number of degrees of freedom to three, as required.

Every unit quaternion represents a rotation of angle θ about an arbitrary axis. If the axis
passes through the origin and has a direction given by the vector a with |a| = 1, the quaternion
describing this rotation is

q = cos

(
θ

2

)

+ ã sin

(
θ

2

)

. (2.8)

It can easily be verified that this quaternion always has unit magnitude. It shall be assumed
throughout this project that the rotation thus described is clockwise (as seen when looking in
the direction of the vector a) in a right-hand coordinate system, i.e. that it is given by the
“right-hand rule”.

Two rotations can be concatenated by multiplying their quaternions together. The order in
which these rotations are applied is significant, and quaternion multiplication is not commuta-
tive, so the semantics match. The operations are, however, associative. The quaternion product
is obtained simply by multiplying out the components, observing the rules for multiplying i, j

and k:

(pw + pxi + pyj + pzk)(qw + qxi + qyj + qzk) =

(pwqw − pxqx − pyqy − pzqz) + (pwqx + pxqw + pyqz − pzqy) i +

(pwqy + pyqw + pzqx − pxqz) j + (pwqz + pzqw + pxqy − pyqx) k (2.9)
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To rotate a vector v = (v1, v2, v3)
T by a quaternion q, we first convert it into its corresponding

quaternion ṽ as defined in equation 2.7 and then calculate the quaternion product

ṽ′ = qṽq−1 (2.10)

If we expand this formula, we find that the real part of the result is always zero, and that
the rotated vector v′ = (v′1, v

′
2, v

′
3)

T corresponds to ṽ′ (i.e. v′ is contained in the three complex
parts of the quaternion product).

Some authors, notably Shoemake [24], choose to define the product in equation 2.10 in
the reverse order. The choice is a matter of convention, since it merely changes the effect of
this operation from being a clockwise to a counter-clockwise rotation. I chose the clockwise
convention because it is consistent with the usual definition of the angular velocity vector in
physics.

Observe that under this convention, if q is itself a product of quaternions q = qnqn−1 · · · q1,
the result is that of first applying the q1 rotation, then q2 etc. In other words, the rotations in
a quaternion product are applied from right to left. To verify that this is the case, the identity
p q = q p is useful [27].

2.3.3 Quaternion integration

We have seen that given the torques on a body, a numerical ODE solver can treat each component
of the vector separately to obtain the new angular momentum. Now that we are representing
orientation as a quaternion, how do we compute the change in orientation given the body’s
angular velocity?

The instantaneous rate of change of a quaternion q over time is usually [4, 6, 20] given as

q̇(t) =
1

2
ω̃(t)q(t) (2.11)

where ω̃ is the quaternion corresponding to the angular velocity vector ω. The quaternion q̇

can be fed into an ODE solver which can handle its four components separately. However, when
this is done it is observed that the new orientation q′ no longer has unit magnitude. This is an
inherent property of the definition in equation 2.11, and not, as sometimes claimed [6], merely
a matter of numerical round-off (proof in appendix B.1.1). Usually this problem is ‘solved’ by
renormalizing the quaternion:

q(t + h) =
q′

|q′|
where q′ = q(t) + hq̇(t) (2.12)

(using Euler’s method for clarity; q′ would be appropriately redefined when using e.g. RK4).
This ‘solution’ seemed quite ad hoc to me, and I demonstrated that it returns erroneous results
if the angular velocity is large (see appendix B.1.2). I derive an exact algorithm for quaternion
integration in appendix B.1. Such an algorithm may be important in aerospace applications, as
the NASA patent [28] suggests.

2.4 Articulated bodies

2.4.1 Approaches to constraints

The methods developed so far allow the simulation of a single rigid body with forces acting on
it. Further challenges arise when we consider multibody systems in which there are conditions
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which must not be violated. In an articulated body, for example, each segment must be modelled
as an individual rigid body, under the condition that joints must not be pulled apart.

There are various strategies for simulating articulated bodies:

• Penalty methods conceptually join bodies together with springs so that when they begin
to separate, a restoring force causes them to move back together again. These methods are
simple to implement initially but hard to get right: if the springs are too weak, the bodies
will separate too far; if they are too stiff, very large forces can arise suddenly, causing the
simulation to become unstable.

• Mechanics formulations using generalized coordinates [11, 9, 7, 29] build constraints firmly
into the system: the number of generalized coordinates equals the actual number of degrees
of freedom after the constraints have been applied. The state of the system is specified
only in terms of these generalized coordinates, and they are chosen such that the system
will always be in a legal state, irrespective of what the values of the coordinates are.
These algorithms allow efficient and reliable computation. However, the equations are
only tractable for so-called holonomic constraints (definition in [11]), which excludes many
interesting systems.

• This project makes a compromise between the flexibility of penalty methods and the
stability of generalized coordinates. As in the penalty method, we initially treat each
segment of an articulated body separately. The constraints are then formulated in such a
way that we can not only tell whether the system is currently in an illegal state, but also
whether it is moving towards one, and even whether it is accelerating towards one. Using
the method of Lagrange multipliers we can determine what forces must be applied to the
bodies to nullify this unwanted acceleration before it ever occurs. This compromise comes
at the expense of higher computational cost, because simultaneous linear equations have
to be solved at run-time.

The mathematical formulation of Lagrange multipliers is derived in [4] and extended in [20]
(also see [3] for an optimized algorithm), and I only state the results here.

2.4.2 Lagrange multipliers

Each constraint effectively reduces the number of degrees of freedom by one, and is expressed
as a function c which is zero when the constraint is satisfied. (A ball-and-socket joint, which
allows three modes of rotation but no separation, reduces the number of d.o.f. by three and is
therefore expressed as a vector of three scalar constraint functions.) All constraint functions can
then be concatenated into a single constraint vector c.

The constraints can be satisfied by solving the equation1

−JM−1JT λ = J̇ẋ + JM−1(Φ + Φp) + kc + dċ. (2.13)

The values of all variables except for the vector λ in this equation are known, and they are
explained in appendix B.3.1. In brief, they are:

1Here the sign convention of [4] is adopted, which is the opposite of [20].
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Figure 2.2: Two bones connected by a revolute joint, e.g. a knee. Rotation is constrained to be
possible only about the local x axis of the knee, but not the local y axis (the lower leg itself) or
the local z axis (sideways).

c, ċ Constraint vector and its first derivative w.r.t. time.

J, J̇ Jacobian matrices derived from c (see appendix B.3.3).
M Mass-inertia matrix combining the masses and moments of inertia

of all bodies in the scene.
ẋ Combined linear and angular velocity vector of all bodies.
Φ Combined forces and torque vectors acting on all bodies.
Φp Effects of free precession.
k, d Scalar constants regulating error compensation, discussed in [4].

For us it will suffice to consider this equation to be a ‘black box’ which can be given to a
linear equation solver to obtain λ.

λ is an m-row vector of so-called Lagrange multipliers (after which this algorithm is named),
where m is the number of constraints. Once we have solved for it, we can compute the expression

Φc = JT λ. (2.14)

Φc is the vector of constraint restoring forces and torques for all bodies. Speaking in physical
terms, these are the reaction forces which balance the action Φ. All we therefore need to do is
to compute Φ + Φc and to feed the result into our ODE solver, and the motion which ensues
will satisfy the constraints. Φp must not be added to this term2.

2.4.3 Modelling the human body

The human body’s selection of joint types is quite limited compared to the range of connectors
found in machines [13]: for example, there are no sliding joints or screws. The simple types of
joint found in human bodies are ball-and-socket joints allowing rotation about three axes (like
shoulders and hips), and revolute joints limited to a single axis (like knees and elbows). The
issue is made more complicated by compound joints like the spine, and motion which occurs
along the length of a segment rather than at a joint (like rotating the wrist about the axis of
the lower arm, which occurs through a relative shift of the ulna and radius bones [1]).

To make the model manageable, I chose to be anatomically ignorant and assumed that two
adjacent segments of an articulated body are connected by a single joint, and that rotation
occurs only about this joint. Each bone has a local coordinate system whose origin lies at the
joint to the parent bone. This is illustrated in figure 2.2.

There are different ways of formulating this model. My approach is to assume initially that
every joint is a ball-and-socket type. For those joints which are not, additional constraints are
added to restrict the permitted axes of rotation.

2provided the moments of inertia are recalculated based on the bodies’ orientation at every time step.
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Figure 2.3: A valid ball-and-socket joint configuration. s is constant in body A’s frame, while
t is constant in the frame of body B. In the world frame, these two vectors therefore rotate
according to their respective body’s orientation.

2.4.4 Ball-and-socket joints

The position of a joint is a particular offset from the centre of mass in one body’s frame, and a
different offset from the other body’s centre of mass. While the bodies may move around, these
offsets stay constant (as seen in the body’s frame).

Figure 2.3 gives an example: here, the configuration of bodies satisfies the ball-and-socket
constraint iff a + s = b + t, i.e. if the joint has not separated. We can rewrite this to give the
constraint function

c = a + s − b − t (2.15)

which equals 0, the three-dimensional null vector, iff the constraint is satisfied.

2.4.5 Rotation constraints

In the case of an elbow or a knee, we also need to prohibit the rotation about particular axes.
After some thought I came up with the constraint function

c = ℜ(ñp−1q) (2.16)

in which p is the quaternion of orientation for body A, q the quaternion for body B, and n

a vector pointing along the prohibited axis in body A’s frame. Setting c to zero ensures that
no rotation occurs about the axis n. If two different axes are prohibited with two separate
constraints, then rotation is only possible about a single axis orthogonal to the two prohibited
axes. Further details on this constraint are given in appendix B.4.3.

2.4.6 Angle limitation

The constraints described so far capture most of the features of the human skeleton, with
one exception: if rotation is permitted about some axis, there is no limit to the amount of
rotation that can occur. For example, permitting a human to look left and right would allow the
simulation to rotate his head by an arbitrary amount. Imposing limits on the angle of rotation
as well as the axis is possible but more complicated, and will be explained in section 3.3.4. It is
worth noting that this is our first example of a non-holonomic constraint, and thus lies beyond
the capabilities of generalized-coordinate approaches.
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Figure 2.4: Structure of the input data to a simulation, using UML syntax.

2.5 Software preparation

2.5.1 Data structures and file formats

Two types of data files are mainly used in this project: an input file, specifying the bodies, their
geometry and initial configuration in a scene, and an output file for the simulation results.

Input data

The input data has a graph structure which is visually represented in figure 2.4. Geometric
objects are represented as meshes of triangles. (Polygons with a larger number of sides must
first be split into triangles; this is always possible [25].) Each triangle (or face) of the object’s
surface is delimited by three vertices. Non-manifold or open meshes are not permitted because
they would cause difficulties with the geometric algorithms and generally do not represent ‘real’
objects. Thus the mesh describes the surface of a polyhedron. This simple structure is sufficient
to represent a great variety of shapes, and although a large number of vertices is necessary
to adequately approximate curved surfaces, the ease of handling this data outweighs the costs
caused by its quantity.

Several bodies in the scene may share the same mesh if they are identical up to rotation and
translation. A mesh is also associated with a material which is used to determine the visual
rendering (colour) and the physical behaviour (density, elasticity).

If the scene contains articulated bodies, skeletons must be defined in the file. A skeleton is
a tree of bones in which each bone has an offset and a rotation relative to its parent. If one
bone – say an upper arm – in this structure moves, all children of this bone – up to the tip
of the little finger – will be rotated equally. This matches the natural behaviour of a skeleton.
There can also be limits on the maximum angles of rotation for each joint; these are discussed
in section 3.3.4.

In an articulated mesh, each vertex is associated with one or more bones of a particular
skeleton. Normally it will be associated with one bone, but a weighted sum of several adjacent
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bones’ transformations may be used to create the illusion of smoothly deforming joints.

Since this data structure is designed to be very general-purpose, I wanted to use a file format
which could easily be generated by 3D modelling applications or manually edited. I chose to use
XML3 as a basis since it is easy to read both by humans and by XML parsing libraries. I could
not find a format which suited my needs – all existing formats are either far too complicated4 or
not powerful enough – and therefore designed a custom schema. I created scenes in this format
by modelling them in Blender (see below) and exporting them to the Cal3D5 format; since Cal3D

contains less information than required by the simulation, I could semi-automatically convert it
to my format using an XSLT6 stylesheet, and then add the missing information manually.

Output data

The output of a simulation is much simpler than the input data: All that is required is the
position and orientation, and possibly the velocities, of each body at each time step. For
articulated bodies, the orientation of each bone is also required. This suggests a simple matrix
layout in which bodies and bones are sorted along one dimension and time along the other.

The output file is such a matrix, arranged in a simple ascii file format which can directly be
imported by Octave (see below). Octave can then be used for further processing or evaluation
of the results.

2.5.2 Tools

Programming languages

I chose Java 1.57 as language for the implementation of the bulk of the project. Java’s strictly
object-oriented paradigm and its package concept facilitate the management of large software
engineering projects; it is mature, well supported and benefits from an extensive run-time library.
I particularly appreciate its good type safety (and hence bug prevention) compared to languages
like C. I also make heavy use of the generic type polymorphism added in version 1.5.

Java is a verbose language though, so I decided that it would be beneficial to prototype the
algorithmically tricky parts in a concise language first. For this purpose I used GNU Octave8, a
scripting language optimized for numerical computation on matrices and vectors. I implemented
almost all numerical algorithms in this project in Octave first; this version was too slow to be
of much practical use, but turned out to be extremely useful to guide the subsequent Java

implementation. Octave was also used for processing of simulation output, for example to
generate plots of the simulation behaviour.

Libraries

Rendered output is specified in the project requirements, and the most common choice for
displaying 3D graphics in Java programs is the Java3D9 library. Java3D provides a clean

3eXtensible Markup Language, http://www.w3.org/XML/
4for example X3D, http://www.web3d.org/
5Character Animation Library, http://cal3d.sourceforge.net/
6eXtensible Stylesheet Language with Transformations, http://www.w3.org/TR/xslt
7Using Sun’s J2SE JDK 5.0, http://java.sun.com/
8GNU Octave – http://www.octave.org/ – uses a language mostly compatible to Matlab –

http://www.mathworks.com/products/matlab/
9https://java3d.dev.java.net/
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object-oriented interface to either a software renderer or accelerated graphics hardware, and is
also quite well documented.

Processing of the input file was done using an XML data binding tool which I had developed
independently in summer 2005. This tool takes a grammar for an XML schema in RELAX

NG10 format and generates a set of Java classes implementing a run-time representation of that
schema. The actual low-level parsing is done by the SAX11 parser implementation in Xerces12.

Some of the numerical algorithms required by the simulation could have been obtained
through libraries. However, none of them are particularly complicated – their C implementa-
tion in [17] is at most a few pages long and is easy to translate into Java. I therefore chose
to implement the algorithms myself, giving me the freedom to combine them intimately (see
section 3.1.3).

Tool chain

For Java development, I set up the Eclipse13 environment, and a dual build system using the
Ant14 tool was kept as fallback in case of problems with Eclipse. To analyse the run-time
performance of the Java implementation, EJP15 was used.

I created input data for the simulation using Blender16, an open source 3D modelling/ani-
mation/rendering application. Blender supports internal scripting in Python17 to extend its
functionality. This allowed me to write some short Python scripts which imported the results
of a simulation as an animation back into Blender, acting on the original models. This was
useful to review simulation results separately from the internal Java3D output. Blender can
also export animations to the YafRay18 raytracer to produce high-quality video files. These
AVI files were converted to MPEG-1 video streams using FFmpeg19.

Some types of constraint involve very messy algebraic expressions (appendix B.4). I found
it useful to automatically generate optimized source code implementing these expressions using
Maple20.

Backup strategy

All work was done either on PWF machines or my own computer. All project files were kept
under version control using CVS21, and regular snapshots of the whole repository were trans-
ferred to the Pelican backup service. A working build environment was maintained both on the
PWF and my computer so that work could continue seamlessly in case of disaster.

10http://www.relaxng.org/
11Simple API for XML, http://www.saxproject.org/
12Apache Xerces2 Java, http://xerces.apache.org/xerces2-j/
13http://www.eclipse.org/
14http://ant.apache.org/
15Extensible Java Profiler, http://ejp.sourceforge.org/
16http://www.blender.org/
17http://www.python.org/
18http://www.yafray.org/
19http://ffmpeg.sourceforge.net/
20http://www.maplesoft.com/products/maple/
21http://www.nongnu.org/cvs/
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Figure 2.5: Alfred, one of the meshes used as input data. From left to right: The triangle mesh
in wire-frame view; a raytraced perspective view; and the skeleton in its rest position.

Example scenes

I modelled all input data for the simulations in Blender. The most interesting mesh is that
of Alfred, a humanoid articulated body (figure 2.5), which I created using human anatomical
data [1]. It has 2295 vertices, 4524 faces and is bound to a skeleton of 25 bones, also shown
in figure 2.5. There are some bugs in this mesh – for example, strange cracks appear at the
shoulders when the arms are lifted high – but since creating good example data is not a primary
objective of this project, these problems should be disregarded.

Dissertation

LATEX was the definite choice for writing this dissertation because of its reliability, good handling
of cross-references, beautiful layout and many other benefits. I created the figures using Dia22,
Gnuplot23 and the GIMP24.

22http://www.gnome.org/projects/dia/
23http://www.gnuplot.info/
24http://www.gimp.org/

20



Chapter 3

Implementation

In section 1.3, six core components of this project were identified. The first three – ODE solving,
rigid body dynamics and articulated bodies – were introduced in the last chapter. In this chapter
I give details of how the whole simulation was implemented in software, and which challenges I
faced along the way (section 3.1). I then elaborate on the three remaining components – collision
detection (section 3.2), and handling of colliding and resting contacts (section 3.3).

3.1 Casting theory into code

My final implementation comprises 700 lines of Octave code (prototyping and numerical tools)
and 10500 lines of Java code for the main implementation (including 3500 lines automatically
generated by the XML data binding tool), plus a few fragments in other languages.

3.1.1 The engineering process

The primary management challenge was to control the uncertainties caused by my lack of prior
knowledge of the algorithmic details required. The first four milestones, up to collision detec-
tion, bore no major uncertainties, and could therefore be accomplished on schedule. I started
surveying the options for implementing articulated bodies during milestone 2; at this point I
realized that it was going to be much more challenging than expected, and that I would have to
adapt my strategy.

I decided to suspend coding after milestone 4 and to work on the theory until I was certain
that I understood it. If I tried to implement my ideas immediately, I believe the result would
have been chaotic and a waste of time. I set myself a new hierarchy of tasks arranged in a
rectangular grid. From left to right, the columns were the simulation components as listed in
section 1.3 (except for item 4, which was already completed). From top to bottom, the rows
were labelled

1. search for literature relevant to the subject;

2. read and completely understand it;

3. if it is insufficient and no more literature can be found, work out a new algorithm for doing
it;

4. argue or prove that the algorithm works correctly;
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5. write down a good explanation of the algorithm, as if it were for another person to read,
to ensure I fully understand it;

6. write a prototype in Octave.

The idea of this grid is that each cell – one of these six tasks applied to one of the five
simulation components – depends on those above and to the left of it. Thus I could start in the
top left-hand corner and work towards the bottom right-hand corner; backtracking was possible
when I got stuck, but there was a clear objective and I could track progress. I decided that only
once I had covered the whole grid would I lay out and implement the Java program. Completing
the grid took me seven weeks, from mid-December until the end of January.

The Java implementation, testing and debugging were completed in the following seven
weeks, slightly less than the nine weeks originally allocated to this part of the project. Including
the seven additional weeks required to complete the “theory grid”, the project was now five
weeks behind schedule.

Writing the dissertation, again a task with few uncertainties, took the allotted length of
time. With five weeks delay carried over and one week of holiday, the project finished six weeks
behind schedule. Given the early completion date (19 March) originally envisaged, this still
allowed me to submit well before the deadline.

3.1.2 Application architecture

The Java implementation consists of five packages:

Scene. Facilities to load a scene description from an XML input file, and data structures to
represent it at run-time. This package is automatically generated by the data binding tool.

Maths. General-purpose implementations of vectors, matrices (including sparse matrices),
quaternions, solver for ordinary differential equations (variable-step-size Runge-Kutta with
Cash-Karp parameters [17]), and a solver for systems of linear equations (biconjugate gra-
dient method, also taken from [17]).

Geometry. Handling of triangle meshes at run-time: deformation of articulated meshes, ren-
dering of meshes using Java3D, collision detection. (Depends on Scene and Maths)

Dynamics. Implementations of a rigid body and all the different constraint types. Architec-
ture for handling interactions between objects. Articulated body code combining rigid
bodies and constraints, and implementation of the collision/contact handling algorithms.
(Depends on Scene, Maths and Geometry)

Main. Main application class and test cases. (Depends on Scene and Dynamics)

The application follows a clean object-oriented design throughout. Some excerpts from its
class/interface hierarchy are shown in figure 3.1. This diagram indicates how extensible the
architecture is: any two SimulationObjects can interact, generating an Interaction object – this
could be anything from a repulsive Coulomb force to some sort of sentient behaviour – without
having to change any of the rest of the system.

This design encapsulates algorithms in a way which is both clear and efficient. To give but
two examples:
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<<interface>>

SimulationObject

<<interface>>

GeneralizedBody
World

<<interface>>

Body
CompoundBody

ArticulatedBody<<abstract>>

RigidBody

Cylinder MeshBody

<<interface>>

Interaction

<<interface>>

Constraint
<<interface>>

InteractionForce

JointConstraint NailConstraint <<interface>>

InequalityConstraint

RotationConstraint VertexFaceCollision EdgeEdgeCollision

Gravity

Figure 3.1: Two class inheritance hierarchies from the Dynamics package. Methods are omitted
for better readability.
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• the ODE solver operates on the Vector interface. The RigidBody’s state vector implements
the add method in such a way that quaternions are automatically normalized when appro-
priate. Thus the ODE solver needs to know nothing about quaternions, and a RigidBody

object can be handled by any ODE solver.

• the biconjugate gradient method for solving linear equations only multiplies Matrix objects
with Vectors. This operation is implemented efficiently for sparse matrices, so the algorithm
can run quickly even though it knows nothing about sparsity itself.

3.1.3 Making it work

A flow chart of the main simulation loop is given in figure 3.2. The main algorithmic building
blocks are indicated on the right margin. The order in which the steps is performed is important,
and it took me several attempts to get this right – despite careful thought beforehand – because
the bugs were quite subtle. The step size can be varied both by the ODE solver error estimation
and by the Newton-Raphson collision time search. This would not have been possible with a
library implementation of either algorithm.

There was only one major design mistake which I had to correct during the debugging phase:
I had originally decided to store the current state of the simulation as values in each RigidBody

object. This caused errors when the simulation had to backtrack and retry a step, because part
of the body state had already been overwritten by the aborted step and could not be regained
without introducing tight coupling with the ODE solver. I changed the architecture such that
all time-varying state of a body is kept in a separate, immutable state vector, and all operations
require the current state as an argument, returning a new state. These side-effect-free semantics
made juggling different simulation states much easier, but the rewriting effort to incorporate
this architecture change took almost a week – it would have been no difficulty if I had initially
designed it this way.

I did not invest much effort in improving the run-time performance, but I did perform some
profiling which showed that a very large proportion of the time was being spent in the bi-
conjugate gradient solver for linear equations. I had originally implemented the preconditioned
version of this algorithm described in [17], but noticed in the profiler that computing the precon-
ditioner matrix was more expensive than its benefit. Removing the preconditioning immediately
increased the execution speed of the whole simulation by a factor of 18.

3.1.4 Extensions

Being significantly behind schedule towards the end of the project, I decided not to add many
optional features – I merely wrote a short but exceedingly useful script to import completed
simulations into Blender, in order to create raytraced video files.

3.2 Collision detection

I now turn to the fourth main component of the system (as listed in section 1.3). An important
requirement of the simulation is that bodies must not penetrate each other. In order to enforce
this constraint, the program must first be able to detect penetration.
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explained in section ↓

Load scene and initial state from XML file
}

2.5.2

Compute initial set of interactions and constraints
}

3.2.1

Choose initial time step length h

Repeat:

Time step:

For each time and state required by Runge-Kutta/Cash-Karp:
}

2.2

Apply non-constraint forces (e.g. gravity)

constraints = equality constraints ∪ contact constraints

Repeat:

Solve constraints for Lagrange multipliers (equation 2.13)

separating = contact constraints with a component λi < 0







3.3.2

constraints = constraints \ separating

Until separating = {}

Apply constraint forces JT λ to bodies

Compute derivative of state vector
}

2.1

Compute O(h4) and O(h5) approximations of new state vector

error = difference between the approximations

If error too large:

Estimate new (smaller) value for h







2.2

Goto Time step

Otherwise if error is small:

Estimate new (larger) value for h for the next time step

Compute interactions (e.g. collisions) in new state
}

3.2.1

If penetration has occurred:

Estimate new (smaller) value for h by Newton-Raphson







3.2.2

Goto Time step

While there are colliding contacts:

constraints = equality constraints ∪ colliding contacts

Solve constraints for Lagrange multipliers (equation 3.7)







3.3.3

Apply constraint impulses JT λ to bodies

Reclassify contact types according to new velocities

time = time + h

Output the simulation state for the current time

Until a predefined simulation time has been reached

Figure 3.2: Overall (slightly simplified) structure of the simulation algorithm.
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Figure 3.3: Example tree of axis-aligned bounding boxes (AABBs).

3.2.1 Intersection of triangle meshes

Collision detection determines which meshes are geometrically in contact, and what type of
contact is present. The simplest algorithm for this purpose would be to take each triangle
of one mesh and test it for intersection [16] against each triangle of the other mesh. This
O(N2) algorithm is clearly very inefficient; most research in collision detection endeavours to
create algorithms which are as close as possible to O(1) complexity while remaining semantically
equivalent.

Fast computation is only a minor concern in this project, therefore I shall describe my
solution only briefly. This algorithm was suggested by Dr. Breton Saunders [21] and is simpler
than most published algorithms, but nevertheless effective.

For each mesh, the closest-fitting Axis-Aligned Bounding Box (AABB) is computed. The
set of triangles is split approximately in half along the axis of the longest bounding box side,
and an AABB is computed for each subset of triangles (the two new AABBs may overlap). The
subdivision continues recursively until each box contains only a single triangle. Thus we obtain
a binary tree of bounding boxes (see figure 3.3).

AABBs can efficiently be tested for intersection. To determine whether two meshes are in
contact, the boxes at the roots of their AABB trees are tested against each other. If the boxes
intersect, all four pairings of their immediate children are tested. This procedure continues
recursively as long as the boxes intersect. At the leaves of the tree, the actual triangles are
tested for intersection.

3.2.2 Finding the time of contact

This collision detection algorithm returns nothing if meshes are separated merely by a very small
distance. Thus it is likely that bodies which were separate in one time step are suddenly found
to have interpenetrated in the next. There are elaborate solutions which predict the time of
impact using proximity detection and the bodies’ velocities. I take a simpler approach: if, at

26



time

distance
between bodies

0
−d

t t + ht + h′

Figure 3.4: Estimating a new step length h′ after penetration occurred when using step length
h. The iteration stops when the penetration depth lies within the tolerance d.

some time, meshes have penetrated beyond some tolerance threshold, the current simulation
step is discarded and retried using a smaller step length.

Retrying a step is quite expensive, so it is desirable to find the time of first contact with
a minimum number of retries. The depth of penetration can usually be estimated from the
collision geometry, and the velocities of the bodies are known from the simulation. Hence I
can use the Newton-Raphson algorithm [17] for root finding (see figure 3.4) to make a good
guess at the next step size. This method converges rapidly in most cases, but occasionally it is
unstable, so my program automatically resorts to binary search [22] if Newton-Raphson diverges
or converges too slowly.

3.2.3 Types of contact

We are now in a state where the polygon meshes are in non-penetrative contact, i.e. there is
some intersection between their surfaces, but the intersection of their volumes is very small or
zero. Between polyhedral bodies we can identify several basic types of contact, and the most
common – vertex/face and edge/edge contact – are exemplified in figure 3.5. I have derived
expressions for handling these two types of contact in appendices B.4.5 and B.4.6.

There are many other types of contact which occur, particularly when complicated meshes
collide. It is unclear how these might best be handled; regrettably I could not find any results of
research in this area. It seems intuitively plausible that it might be possible to decompose any
contact between polyhedral bodies into a set of vertex/face and edge/edge contacts, as figure 3.6
demonstrates. However, no such algorithm is known to me, and my own attempts at creating
one turned out to be unfruitful – the problem is extraordinarily difficult to tackle in general.

Instead, I chose to use a heuristic if a collision cannot be classified as either vertex/face or
edge/edge: the colliding surfaces are approximated by spheres, planes and points, for which
handling expressions can be derived. This approximation can cause unrealistic behaviour in
some cases, but I have not found it to be a problem in practice.

27



(a) (b)

Figure 3.5: Basic types of polyhedral contact: (a) vertex/face, (b) edge/edge.

(a) (b)

Figure 3.6: Two examples of composite contacts between polyhedral bodies: (a) four vertex/face
contacts (one for each corner on the upper cube’s bottom face), (b) two vertex/face and two
edge/edge contacts.

3.3 Collision and contact handling

3.3.1 Overview

In the last section I explained how to detect contact between meshes. To prevent the bodies
from penetrating each other during the simulation, the collision that has been detected must be
handled in a physical way.

Let us distinguish two cases of contact between bodies: resting contact and colliding contact.
Resting contact is given when the relative velocity at the contact point is zero (or very small)
when projected onto the contact plane. Bodies in colliding contact are moving towards each
other.

Creating a simulation involving contacts is generally seen as a difficult task. Baraff [4] derives
equations to handle collisions, and outlines (with a number of errors) a way of handling resting
contact. Unfortunately his collision handling does not work in combination with constraints,
and his resting contact computation relies on a complicated and uncommon numerical routine.
In this project, I developed a new method of handling contacts which is simpler to implement,
more powerful, and works perfectly together with constraints like those required for articulated
bodies.

3.3.2 Resting contact

Bodies in resting contact exert equal and opposite forces on each other so that they do not
interpenetrate. This force must exactly balance the outside force, otherwise they will accelerate
apart. The direction of this force is perpendicular to the plane of contact.

We need an algorithm which computes the contact forces in an arbitrary system, where there
may be objects stacked on top of each other, different forces and torques acting, etc. Let us
employ a constraint function c whose value is positive when the bodies are separated, zero when
they are in contact, and negative when they have penetrated. In resting contact we have ċ = 0.
The function becomes interesting when we consider its second derivative, c̈. The non-penetration
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constraint for a resting contact can be written as

c̈ ≥ 0. (3.1)

More exactly, if it is the case that c̈ < 0, we need to apply forces and torques to the bodies
such that afterwards we have c̈ = 0. When c̈ ≥ 0, no force is applied (otherwise we would be
glueing the bodies together). But how do we solve this inequality in practice? At this point we
diverge from Baraff’s method [4], which expresses equation 3.1 and additional side conditions
as a quadratic program and uses a specialized numerical solver.

Let us take a much simpler approach and pretend for now that (3.1) contained an equals
sign. Then this is a constraint like any other, which we can satisfy by using the Lagrange
multiplier method of section 2.4.2. Moreover, if there are multiple points of resting contact in
the system, and also ‘real’ equality constraints like joints between bodies, we can solve all of
these simultaneously without having to think twice.

However, having solved equation 2.13 for λ, we need to take care. Observe equation 2.14, in
which the constraint forces are computed:

Φc = JT λ =
m∑

i=1

(Ji)
T λi (3.2)

Since each row of J is generated by a particular constraint, and the ith row of J is scaled
with component λi of λ in the linear combination of constraint forces, we can say that each
each component λi specifies the ‘amount’ of constraint i to apply to the system. Moreover, a
positive value of the λi component generates forces and torques which push the bodies apart,
while a negative value pulls them together (the opposite sign convention is equivalent, but one
convention must be used consistently). It is such a negative λi that we must avoid.

This gives us a basis for an algorithm which turns (3.1) back into what it actually is –
an inequality: set up constraint functions for all contact points, and solve the system of linear
equations for the Lagrange multiplier λ. In this vector, find all components relating to inequality
constraints whose value is negative. (Equality constraints are left untouched whatever their λ

component value is.) If there are none, calculate JT λ and add the forces and torques to the
system – then we are done. If there are negative components, completely discard the constraints
to which they belong (since the bodies are accelerating away from each other in this point, the
contact will break in the next time step), then repeat the solving for λ with the reduced set of
constraints. The process may take several iterations before terminating, but always terminates
because in each iteration we either reduce the number of active constraints or exit.

I have not yet been successful in proving this novel algorithm correct, but despite extensive
pondering and testing I have not found any examples in which it fails either.

3.3.3 Colliding contact

While points of resting contact had the property that ċ = 0, colliding contact is characterized
by ċ < 0. (If ċ > 0 then the bodies are separating. Such a contact can be ignored for now, but
we cannot fully discard it, as explained below.) The bodies’ linear and angular momenta must
be modified instantaneously to satisfy ċ′ ≥ 0, otherwise the bodies will interpenetrate in the
next time step.

Physically, this operation is expressed in terms of an impulse. An impulse u has the same
dimensions as linear momentum p (kg m/s) and is directly added to the momentum of the body
to which it is applied: p′ = p + u. If the impulse is applied at the point s, and r is the body’s
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centre of mass, it also changes the angular momentum to L′ = L + (s− r) × u. This behaviour
is analogous to that of a force.

A collision between two bodies must conserve the total momentum of the system [8]. This
implies that the impulses acting on the bodies at a point of collision must be equal and opposite.
However, the collision need not necessarily conserve energy. A collision which does conserve
energy is called fully elastic, and may be given for example by an ideal rubber ball which, when
dropped, bounces up to exactly the same height as it was dropped from. At the other extreme,
an inelastic collision is one which reduces the energy of the system as much as possible – the
bodies do not ‘bounce apart’ again.

Most real collisions are somewhere in between, depending on the materials of the colliding
objects. The elasticity (also called coefficient of restitution) is a scalar 0 ≤ ε ≤ 1, where ε = 0
indicates an inelastic collision, and ε = 1 full elasticity.

How do we now find the impulses we need to apply to the colliding bodies, and how do we
simultaneously handle constraints? Once again we can use a Lagrange multiplier method, but
a new equation must be derived which operates on impulses rather than on forces.

Set up a vector c of concatenated constraint functions including all equality constraints and
all points of colliding contact. Points of resting contact and separating contacts must not be
included. Now for all points i of colliding contact we have ċi < 0. Remember that this value
is the relative velocity of the bodies in the point of contact, projected onto the normal of the
contact plane. Then the relative velocity ċ′i after the collision is given by ċ′i = −εiċi. The
components of the relative velocity parallel to the contact plane remain unchanged.

Assume for convenience that the first m components of c come from equality constraints,
and that the remaining k components are due to inequalities. Then ċ′ is the required value of
ċ after the collision:

ċ′ =














0
...
0







m

−ε1ċm+1

...
−εkċm+k














(3.3)

i.e. we require all equalities to be satisfied, and all inequalities to have ‘bounced’ by the right
amount. We can rewrite this as ċ′ = ċ − Eċ, where E is the diagonal m + k × m + k matrix

E =














1
. . .

1

︸ ︷︷ ︸

m

1 + ε1

. . .

1 + εk














(3.4)

Let us now concatenate the linear and angular momenta of all n bodies into a single vector
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Figure 3.7: Fully elastic spheres are packed tightly in a rigid box, with no space between them
or at either end. When one is tapped horizontally with a hammer, the impulse travels up and
down the chain forever, always being reflected at the walls of the box.

Ψ, like we previously did for forces and torques (equation B.15):

Ψ =











p1

L1

...
pn

Ln











(3.5)

From the definition of M−1 (equation B.16) we can deduce that ẋ = M−1Ψ. We are seeking
a vector Ψc which, when added to Ψ, causes the constraints to return the value ċ′:

ċ = Jẋ = JM−1Ψ =⇒ ċ′ = JM−1(Ψ + Ψc) (3.6)

(cf. equation B.19). It turns out1 that this vector can be written as Ψc = JT λ for some m+k-row
vector λ. Substituting the previously defined expressions into equation 3.6:

ċ′ = JM−1(Ψ + JT λ)

ċ − Eċ = JM−1Ψ + JM−1JT λ

JM−1Ψ − EJM−1Ψ = JM−1Ψ + JM−1JT λ

−JM−1JT λ = EJM−1Ψ (3.7)

All variables in equation 3.7 are known except for λ, so this is just a system of linear equations
which we can solve for λ. The resulting vector Ψc = JT λ of impulses can be directly added to
the rigid bodies’ momenta.

We are not quite finished yet. Having modified the bodies’ momenta, the state of other
contact points in the system may have changed. While the previously colliding contacts will
have turned into resting or separating contacts, other (previously unconsidered) contacts may
now be colliding! Thus we must repeat the whole process described in this section, ignoring the
previously colliding points, and considering the new ones instead. If there are no new colliding
contacts, we have finished.

The bad news is that this algorithm is not guaranteed to terminate – indeed figure 3.7 shows
an example in which it will run indefinitely. An easy way of solving this problem is by not
allowing ε to be too close to 1; then if a loop occurs, the system will eventually run out of
energy and return to a resting contact.

1The argument is analogous to the derivation of the force vector in terms of Lagrange multipliers; see [4] for
details.
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3.3.4 Generalized collisions

In section 2.4.6 I mentioned that the simulation still needed a way of limiting the range of valid
angles for a joint of an articulated body. I could not find any literature explaining how one
might realize such a constraint, but I was excited to notice one day that I already had all the
tools in hand, and merely needed to combine them.

An angle limitation is simply another type of inequality constraint. Usually two constraints
are required for each axis about which rotation is possible:

c1 = current angle − minimum angle

c2 = maximum angle − current angle (3.8)

The two inequalities c1 ≥ 0 and c2 ≥ 0 then require the current angle to always stay within
the range bracketed by the minimum and the maximum. Once c1 and c2 have been formulated
in an appropriate way, these inequalities can be given directly to the algorithms for resting and
colliding contact, alongside any other constraints generated by meshes in contact or by joints.
These algorithms will ensure that all constraints are satisfied simultaneously (irrespective of
their origin), and the result actually behaves just as expected!

The continuation of the good news is that I have already given a suitable formula to determine
the current angle of rotation about a particular axis in equation 2.16 (section 2.4.5). This formula
can simply be reused for inequalities.

There is just one problem: it is fiendishly hard to visualize what a particular restriction on
a 3D rotation actually means. The best I could come up with is to imagine a 3D phase space in
which each coordinate is the angle of rotation about one of the segment’s local (Cartesian) axes.
The set of valid rotations for one joint is then a subspace of some shape; despite the linear look
of inequalities 3.8, this space is generally not polyhedral; in fact it is often not even compact.
Maple cannot visualize such a solution space of inequalities, so I wrote myself a little program
for this task (figure 3.8) and used it to set up the joint limits for Alfred’s skeleton.
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Figure 3.8: Screenshot of a tool to visualize the solution space of simultaneous inequalities in
three variables (here, the rotation about three different axes). If a point in the solution space is
selected, the three angles of rotation corresponding to this point are applied to the cube on the
right-hand side; this allows the inequalities to be adjusted to fit the desired set of rotations.
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Chapter 4

Evaluation

The first three chapters explain in detail how the simulation application was developed. I now
turn to its evaluation and explain how I showed that the program works as required.

4.1 Testing strategy

An application as large as the one developed in this project is almost impossible to get right
entirely by advance planning. Although I took much care during the preparation and imple-
mentation, I anticipated that testing and debugging would be necessary.

As mentioned in section 3.1.1, I prototyped most numerical algorithms in Octave which
allowed rapid interpretation of results through its plotting facilities, and hence a rapid edit–
test–debug cycle. For each major algorithmic part of the project I modelled a physical system
which placed a particular emphasis on one part of the simulation, thus allowing me to test and
debug each feature before working on the next feature:

• a gyroscope (section 4.2.1) to test rigid body dynamics,

• a double pendulum to test articulated bodies/constraints,

• Newton’s cradle (section 4.2.2) to test colliding contact handling,

• a simulation of boxes falling onto a table to test resting contact handling.

I developed the Java version of each feature only after it was working to satisfaction in the
Octave prototype. The Java implementation usually introduced new bugs, which I could locate
by implementing the same test cases in Java, and using step-by-step comparison with the Octave

computation. This testing and debugging strategy turned out to be fruitful and effective.

4.2 Quantitative evaluation

I performed several quantitative tests on the program by simulating simple mechanical systems
and comparing their numerical outcome to the physical predictions.

4.2.1 Gyroscope simulation

The first set of tests simulates a gyroscope (figure 4.1), which was also used as a general test
case (section 4.1). A gyroscope consists of a single rotating rigid body and a ‘nail’ constraint
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Figure 4.1: Schematic drawing of a gyroscope. The disc rapidly rotates about its own axis, and
gravity causes a slower precession movement (shown as a dotted line) about a vertical axis.

(appendix B.4.1) holding one end of its axis in place. In a gravitational field the gyroscope
exhibits a precession movement. Although this behaviour seems counter-intuitive at first, it can
be characterized analytically [12]. There are not many interesting systems of rigid bodies which
have an exact solution, so a gyroscope is a good choice for quantitative evaluation.

I set up initial conditions similar to the values one might find in a toy gyroscope (20 revolu-
tions per second about the gyroscope axis, one full circle of precession in 8 seconds). I then ran
the simulation for 8 s, using an average time step length of about 2.3 · 10−4 s. The simulation
performed one full circle of precession in 7.953 s, which is within 0.6 % of the theoretical value.
Over the course of 8 s, the body rotated by 320.36π radians about its own axis, which differs
from the theoretical value by only 0.1 %. These errors varied little even in simulations using
larger time steps. The effects of nutation1 were small for the chosen initial conditions but may
have contributed towards the errors.

It is interesting to also observe a different error, namely the amount by which the constraint
drifts apart. Usually this drift is compensated in the Lagrange multiplier method so that it
never manifests itself, but temporarily deactivating this correction2 makes the error introduced
by the ODE solver observable.

Figure 4.2 shows by what distance the gyroscope’s ‘nail’ constraint drifted apart after 8 s
of simulation time, for a wide range of different step sizes. There are some noteworthy features
about this plot:

• The logarithmic axes are scaled such that one order of magnitude in the horizontal has
the same length as five orders of magnitude in the vertical. Observe that in this scaling,
the solid line (error per time step) is an almost perfect straight line with gradient 1. This
shows that the error is indeed an O(h5) function of the step size, as expected.

• Over a wide range of step sizes, the plot of the total accumulated error is parallel to the
solid line. This means the total error is also O(h5), which is even better than expected:
although the approximation in each time step is O(h5), the number of steps required is
inversely proportional to the step length, so one might expect a larger overall error. This
relationship indicates that the ODE solver’s target error can in fact be used as a reliable
estimate of the overall error to within a constant factor.

• As step sizes h become very small – below about 3·10−4 s – the error in each step continues
to scale order O(h5), but due to the huge number of steps, the accumulated error cannot

1Having nothing in common with mutation, nutation is an oscillation about an axis orthogonal to the two
main axes of rotation. [8]

2by setting k = d = 0 in equation 2.13.
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Figure 4.2: Errors introduced by the ODE solver for different step sizes h, as observed in the
gyroscope simulation. Solid line: difference between O(h4) and O(h5) Runge-Kutta approxima-
tions for each time step. Dashed line: cumulative drift of the gyroscope’s ‘nail’ constraint after
8 s simulation time.

be reduced much further. However, the errors here are in the range of nanometres, so they
should be of little concern for computer graphics purposes.

In summary, the results for the simple gyroscope simulation inspire confidence that the
implementation is reliable and will continue to produce realistic results for complicated systems
which lack an exact solution. They also show that the target error can conveniently be adjusted
to match the requirements, because more CPU time does – within sensible bounds – buy higher
accuracy.

4.2.2 Collision handling

The analysis in the last section is relevant for continuous systems, but says nothing about
simulations involving collisions. For this purpose I simulated a different kind of physics toy,
Newton’s cradle (figure 4.3). This system does not have an exact analytical solution, but it does
have characteristic behaviour patterns which may be observed.

Newton’s cradle works best when the elasticity is large (ε ≈ 1). I simulated it using ε = 1.0
and ε = 0.9, with one ball initially raised and the other four at rest. The comparison of the
two simulation results is shown in figure 4.4. The energy is calculated as the sum of potential,
linear and angular kinetic energies of all five balls, with zero potential when all balls are at
their equilibrium position. Fully elastic collisions conserve energy in the simulation (constant to
within 1 part in 108), while imperfect collisions instantaneously dissipate energy.

The momentum of balls 2–4 stays zero (within 1 part in 1010, except for transient peaks,
which are immediately neutralized again) with full elasticity; with ε = 0.9, they increasingly
begin to swing, as expected. The bottommost plots in figure 4.4 show how the step size is
reduced to find the exact time of collision, and large time steps are taken otherwise.
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1� 2 3� 4� 5� 1� 2 3� 4� 5�

Figure 4.3: Newton’s cradle. By conservation of momentum and energy, if k balls collide with
one end of the chain of balls, the same number of balls bounce up on the opposite side. The
other balls stay stationary.

All behaviour exhibited by this system matches the behaviour observed in reality, so it
constitutes a good demonstration that the algorithm of section 3.3.3 works correctly: it respects
the constraints which attach the balls to the frame of Newton’s cradle, and it propagates impulses
along the chain of contacts. The simulation works equally well with more than one ball in motion.

4.2.3 Run-time cost

Profiling of the application revealed that the simulation spends about 93 % of its time running the
biconjugate gradient algorithm to solve the constraint equations. To round off the quantitative
evaluation, I wanted to know how the computational cost relates to the size of the problem.

The biconjugate gradient algorithm is an iterative procedure which stops when some error
criterion is met. In theory, if exact arithmetic was being used, a solution would always be
found in O(N) iterations for a system of N constraints3 [17]. Each iteration requires a constant
number of multiplications of a matrix with a vector, and these multiplications dominate (86 %)
the cost of the algorithm. Such a multiplication has a cost of O(N2) for a general matrix, but
only O(N) for the type of sparse matrix we are dealing with. Hence a theoretical estimate of
the overall cost of the algorithm would be O(N · N) = O(N2).

In practice, the algorithm converges more slowly when using floating-point arithmetic. I
measured the ratio of CPU time to simulation time for a range of different-sized systems and
found an overall relationship of about O(N2.5). Note that the use of sparse matrices still causes
a significant benefit, since a simpler implementation would require the same number of iterations
and hence be about O(N3.5). In absolute terms, a small simulation – of a double pendulum,
say – runs almost in real-time on my PC4, while one with 100 constraints requires approximately
one hour of CPU time per second of simulation time.

4.2.4 Numerical stability

I had very few problems with numerical stability throughout this project. The ODE solving
turned out to be very robust; this is particularly satisfying since ODE stability would have
been the greatest problem if a penalty method had been used instead of Lagrange multipliers
(section 2.4.1). I occasionally observed divergence of the biconjugate gradient algorithm; this
seemed to occur only if there were contradictory constraints in the system. In complicated
collision geometries such contradictions did sometimes occur. I solved this problem by keeping

3or rigid bodies, but since we are dealing with articulated bodies, we can assume a linear dependence between
the numbers of bodies and constraints.

4AMD Athlon XP 2000+
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Figure 4.4: Plot of various time-varying properties of Newton’s cradle. Left column: using ideal,
fully elastic collisions (ε = 1.0). Right column: imperfect collisions (ε = 0.9).
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track of the approximate solution with the smallest error amongst all iterations; if the algorithm
starts diverging, it is aborted and the ‘best guess’ is used. This procedure is not mathematically
justified, but in all my simulations it produced good results.

4.3 Simulation examples

In the end, the purpose of this project is to produce animations for computer graphics, and
the last word must be given to the human observer who watches these animations. I would
like to claim that the results are of a quality similar to what an animator might create, and
that they are realistic in the sense that they do not violate the laws of physics or anatomy.
However, such a claim is difficult to defend convincingly in print. I have therefore compiled a
video of several example animations, and I urge the reader to watch it to gain a more personal
impression of this project’s results. The video can be found in the 3D graphics section of my web
site http://martin.kleppmann.de/. The following sections describe how each of the simulated
systems was implemented and point out noteworthy features.

4.3.1 Pendulum systems

The simplest physical system in the demonstration video is the animation of a double pendulum
(a rigid pendulum with a second one attached to its end), and its extension to three, eight and
25 segments. The double pendulum is a commonly studied system in physics; although it does
not have an exact analytic solution, an approximate solution can be found for small angles. In
this case, one finds that the resulting movement is the sum of two simple harmonic oscillations
at different frequencies, resulting in a mysterious-looking swinging movement.

The double, triple and eight-part pendulums are set up in a very similar way. Each segment
is modelled as a rigid cylinder with constant density. The top end of the top segment is held in
place by a ‘nail’ constraint. Each pair of adjacent segments is connected by a ball-and-socket
joint. Initially, all segments are at rest, the first segment is rotated by 45 degrees anticlockwise
from the equilibrium position, and all other segments hang straight down.

The simulation does not employ an XML input file; instead, the objects representing the
bodies and the constraints are directly created by the Java test case. The simulation results
were exported to Blender and rendered using the internal renderer and orthographic projection.
I also performed a Fourier transform on the results of the double pendulum simulation, which
indicated very clearly that there were two main frequency components.

The 25-segment pendulum is an attempt to simulate rope, and it is considerably more am-
bitious. It is modelled as a cylindrical mesh bound to a chain of 25 bones. The ground is a
separate mesh, and in the simulation its position is fixed by three ‘nail’ constraints. This input
data is represented as an XML file. Collision detection is performed on basis of the meshes, thus
the rope can collide both with itself and with the ground.

The joints between adjacent segments of the rope are of ball-and-socket type, and their
rotation is limited to a maximum of 15 degrees about each axis. The simulated rope is therefore
very stiff. I am not entirely sure how realistic I should consider this simulation; its behaviour
looks strange at first, but this is mainly due to the assumptions put into the model. I believe
that the simulation correctly obeys the model, but the model would have to be refined in order
to produce genuinely realistic-looking rope.
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4.3.2 Newton’s cradle

The next section shows Newton’s cradle in a range of different animations. For full elasticity,
various combinations of one, two and three balls in simultaneous motion are demonstrated, and
all effects observed in a real toy cradle are reproduced. I also simulate what happens if collisions
are not fully elastic: all balls gradually begin to swing, and the sequence of collisions becomes
much more complicated.

Newton’s cradle is modelled as five spherical bodies, each with its centre of mass at the
centre of the ball (i.e. the wire connecting it to the frame is assumed to be massless). The
joint to the frame is modelled as a ‘nail’ constraint, and the frame itself does not exist in the
simulation. Collision detection is performed not on the basis of the meshes (since these are
polyhedral approximations and not exact spheres), but using a special type of sphere/sphere
constraint which computes its behaviour using the positions of the centres of the balls and their
radii.

For the simulation to work accurately, a very low penetration tolerance must be set. The
different examples are simulated in exactly the same way, independent of the number of balls
moving or the elasticity of collisions.

4.3.3 Falling boxes

The third section demonstrates eleven interacting rigid bodies: ten boxes falling onto a table.
The simulation is performed at two different elasticities: one close to what one would expect in
reality (ε = 0.2), and one very bouncy as contrast (ε = 1.0).

Each of the ten boxes is modelled as a symmetric hollow body. All boxes and the table are
specified as meshes in an XML input file. The table is held in place by three ‘nail’ constraints.
These simulations exhibit a range of different collision types: each example starts with a ver-
tex/face collision when the first box hits the table, and is followed by a sequence of vertex/face,
edge/edge and compound collisions. Whenever a collision cannot be clearly classified as either
vertex/face or edge/edge, the algorithm searches for a plane which contains as closely as possible
the line of intersection between the two colliding meshes. This plane is then used as the contact
plane for computing the impulses and resting contact forces.

The fully elastic version of this simulation looks unrealistic because it behaves as though the
boxes were made of extremely bouncy rubber. The version with elasticity 0.2 is much closer to
what one might expect in a real-life scene, but the contrast between the two is interesting. At
the end of the low-elasticity simulation, several boxes can be seen in a frictionless glide over the
surface of the table. They cannot penetrate the table due to a resting contact force.

4.3.4 Alfred falling down stairs

The final two sections show a humanoid model fall down a straight staircase and a spiral stair-
case respectively. I created these simulations to demonstrate a situation which did not require
control of muscular forces (which are hard to control in a simulation [10]) but were nevertheless
interesting.

The simulation on straight stairs and on the spiral staircase are set up in a very similar way.
Each scene consists of two bodies, a polygon model of the staircase and Alfred himself. In each
case, the staircase is held in place by three ‘nail’ constraints5. Alfred is an articulated body as

5It seems intuitively bizarre that one might make a whole staircase immobile by only three nails, but in the
simulation the magnitude of the forces is, of course, almost irrelevant!
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Figure 4.5: Animation of Newton’s cradle.

Figure 4.6: Animation of ten boxes falling onto a table.
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described in section 2.5.2.
All meshes and skeletons are defined in an XML input file. All joints’ rotation is restricted

in a way which approximates the anatomical reality. Nonetheless the body sometimes enters
poses which, although they are not impossible, look rather uncomfortable. This is because a
pose does not gradually become more uncomfortable as the limit is approached, but action takes
place only at the limit. The articulated body model would have to be extended to accommodate
a notion of “comfort” or elastic limits.

For purposes of collision detection, the shape of the Alfred mesh is approximated by 252
little spheres. The staircase is not approximated. Thus this simulation does not make use of
the usual vertex/face and edge/edge collisions; instead, sphere/face and sphere/edge collisions
occur (on contact with the staircase), and sphere/sphere collisions (on contact between different
parts of the articulated body, e.g. the hand against the chest). I found the use of spheres to be
the most reliable technique for such a complicated mesh. Constraint functions for these types
of collision can be derived fairly easily and handled using the usual algorithms for resting and
colliding contact as described in section 3.3.

The camera movement and lighting was set up in Blender. After importing the simulation
results, the animation was rendered using Blender’s internal renderer/raytracer. Some of the
mesh deformations look strange; this is unrelated to the simulation, but must be blamed on my
lack of 3D art skills!
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Figure 4.7: Animation of Alfred falling down a set of stairs.

Figure 4.8: Animation of Alfred tumbling down a spiral staircase.

43



Chapter 5

Conclusions

5.1 Successes

In this project I have successfully created a general-purpose application which simulates the
dynamic behaviour of many different mechanical systems. In particular, it handles all features
necessary to animate articulated characters like humans or animals: an arbitrary-shaped ex-
terior, a skeleton with many different types of joints, and collisions with other bodies. I have
quantitatively verified the accuracy of the simulation results for simple mechanical systems,
and demonstrated that the program produces realistic-looking animations in more complicated
scenes involving a model of a human character.

All requirements of the project proposal have been met, except for the simulation of friction,
which was ruled out at an early stage because it is too complicated. All other features were
realized at a high quality standard. The implementation is carefully designed to use refined
algorithms which

• keep numerical errors very small, doubtlessly within the bounds acceptable even for am-
bitious computer graphics purposes;

• give the simulation a high degree of stability and reliability;

• allow a reasonable run-time performance which can be traded off against the required
accuracy by adjusting parameters.

The technology of this project is close to current research, and carrying it out required
some algorithms which I could not find in any of the publications I searched. I therefore had to
newly invent several algorithms, which took several weeks longer than anticipated in the original
schedule. However, I succeeded in adapting my management strategy to the uncertainties facing
this project, so that it could be completed in an organized way.

5.2 Limitations

There are only few explicit approximations in my simulation algorithms; this means that if they
were to be run using ideal arithmetic (no rounding errors) and arbitrarily small time steps, the
exact physical behaviour would be obtained. The exceptions are:

• Given a triangle mesh and the density of a body, I currently approximate its mass and
moment of inertia using a simple heuristic. For a better simulation, this should be replaced
by an exact analysis of the geometric properties [14].
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• Simple collisions (vertex/face and edge/edge cases) can be handled in an exact way, but
more complicated collision geometries are currently approximated by planes or bounding
spheres. This produces plausible-looking but slightly incorrect animations. Ideally, exact
handling of any sort of collision would be desirable, but I am unsure whether such an
algorithm exists.

• As mentioned previously, static and sliding friction have been completely ignored. Algo-
rithms to simulate these exist, but they are complicated [2].

Even with these added features, my program would not be a ready-to-market product. It
particularly lacks user-friendliness: there are several simulation parameters (tolerances and error
thresholds) which need to be configured differently depending on the situation in order to obtain
good results. Ideally the program should be able to determine these automatically. A higher
execution speed would also be beneficial, since the current cost – in my test cases, up to an hour
of CPU time per second of simulation time – limits productivity. The algorithm in [3] could
alleviate this.

5.3 Summary and outlook

In summary, I consider this project a clear success. I am glad to have chosen such an ambi-
tious project because it was personally rewarding: in particular, the lack of existing algorithms
forced me to contemplate the background theory in great detail, which has given me a good
understanding of the subject area.

There are not many decisions that I would have taken differently in retrospect. In the
schedule I should have left more time for understanding the theory; I had thought there would
be a simple, “obvious” way of realizing articulated bodies, rather than having to deal with
constraints. This meant I massively underestimated the problem. I would have also avoided the
design mistake mentioned in section 3.1.3.

The application is not yet user-friendly enough for general use, but with some additional
effort it might gain this potential. I can envisage working on it beyond the frame of this project,
and will consider the possibility of publishing some of the new algorithms to a wider audience.

I would like to thank Dr. Brett Saunders [21] and Dr. Neil Dodgson (supervisor) for their
ideas and discussions, particularly in the early phase of this project.

45



Appendix A

Notation

a italic Latin letter scalar
θ italic Greek letter angle
a boldface Greek/Latin letter column vector
0 boldface figure 0 null vector (of appropriate dimension)
M sans serif upper-case letter matrix
1 sans serif figure 1 identity matrix (of appropriate dim.)
q sans serif lower-case letter quaternion
ċ dot first derivative with respect to time
c̈ double dot second derivative with respect to time
JT superscript T matrix transpose
M−1 superscript −1 matrix or quaternion inverse (eq. 2.5)
q bar quaternion conjugate (eq. 2.4)
|a| norm vector or quaternion magnitude (eq. 2.6)
ã tilde corresponding quaternion (eq. 2.7)
a∗ asterisk dual tensor (eq. A.1)
a × b cross vector cross product
a · b dot inner product
ℜ(q) real real part of a quaternion

Given any vector a = (a1, a2, a3)
T , we define its dual tensor, written as a 3× 3 matrix, to be

a∗ =






0 −a3 a2

a3 0 −a1

−a2 a1 0




 (A.1)

(see [18, 4] and also Kalra [13], who defines it to be the transpose of the expression above). The
dual allows us to rewrite a vector cross product as a matrix multiplication:

a × b = a∗ b (A.2)

Note that (a∗)T = −a∗.
Let us also recall some basic identities of vector and matrix algebra [18]:

a × a = 0 (the null vector)

a × b = −b × a

a × (b + c) = a × b + a × c
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a · b = b · a

a · b = aT b

a · (b + c) = a · b + a · c

a · (b × c) = b · (c × a)

= c · (a × b)

a × (b × c) = b(a · c) − c(a · b)

(AB)C = A(BC)

A(B + C) = AB + AC

(AB)T = BT AT

AA−1 = A−1A = 1 (the identity matrix)

47



Appendix B

Proofs and derivations

B.1 Quaternion integration

Let us first consider a geometric view on quaternions, taken from [24]. Treat the four components
of a quaternion as Cartesian coordinates of a four-dimensional vector space. The set of unit
quaternions is then the surface of a unit hypersphere (also called a glome [26]) in this vector
space. Each point on this hypersphere corresponds to a particular rotation. It also turns out
that each pair of opposite points on this sphere represent exactly the same rotation; hence all
possible rotations are contained in one hemisphere, no matter where the sphere is cut in half.

B.1.1 Conservation of magnitude

Define the quaternion dot product, in analogy to the 4D vector dot product, to be

p · q = (pw + pxi + pyj + pzk) · (qw + qxi + qyj + qzk) = pwqw + pxqx + pyqy + pzqz (B.1)

The dot product is commutative, contrary to the quaternion juxtaposition product.

The instantaneous rate of change is given [4, 6, 20] to be

q̇ =
1

2
ω̃q =

1

2
(ω1i + ω2j + ω3k)(qw + qxi + qyj + qzk)

=
1

2
(−ω1qx − ω2qy − ω3qz) +

i

2
(ω1qw + ω2qz − ω3qy) +

j

2
(−ω1qz + ω2qw + ω3qx) +

k

2
(ω1qy − ω2qx + ω3qw)

We now treat q and q̇ as 4D vectors and calculate their dot product:

q · q̇ =
1

2
(−qwω1qx − qwω2qy − qwω3qz + qxω1qw + qxω2qz − qxω3qy

−qyω1qz + qyω2qw + qyω3qx + qzω1qy − qzω2qx + qzω3qw)

= 0.

The rate of change is orthogonal to q, and therefore it is always a tangent to the sphere, touching
it at the point corresponding to q. The set of all possible values of q̇ is thus a hyperplane (a
three-dimensional subspace) tangential to the sphere at the point q in 4D space.
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normalize q
q̇q + hq̇

Figure B.1: Normalizing a quaternion after performing an ODE solving step.

We can determine the magnitude |q̇| from the sum of squares of the components given above
and find it to be |q̇| = 1

2
|ω| |q|. Since we always require q to be a unit quaternion, we can reduce

this to

|q̇| =
1

2
|ω|. (B.2)

Now let us determine what happens if we calculate q + hq̇ for some finite h. Note that this
operation is required by all common numerical solvers of differential equations. Consider the
magnitude of the result:

|q + hq̇|2 = (q + hq̇) · (q + hq̇)

= q · q + 2hq · q̇ + h2q̇ · q̇

= 1 + 0 +
h2

4
|ω|2

> 1 whenever |ω| > 0.

Hence, if the body in question is rotating, it is not possible for a standard numerical ODE
solver to preserve a quaternion’s property of unit magnitude.

B.1.2 Normalization is not enough

One should think that given the derivative of a quaternion q (equation 2.11, page 13), one can
find q(t+h) for some time step h within the accuracy of the ODE solver employed (O(h5) error
for fourth-order Runge-Kutta). Unfortunately this is not the case. This shall be demonstrated
using Euler’s method; it should, however, be pointed out that more sophisticated methods like
RK4 are also affected. Consider the value of q at the next time step, q(t + h) = q(t) + hq̇(t).
For any non-zero h and q̇ this point will always lie outside the unit quaternion sphere due to the
orthogonality of q and q̇. This is usually compensated by renormalizing the quaternion after the
ODE solving step. Geometrically, this renormalization can be understood as drawing a straight
line through the origin and the point q(t)+hq̇(t), intersecting this line with the unit sphere and
replacing q(t + h) by this point of intersection (see figure B.1).

Following the tangent to the sphere is a reasonable approximation to following its curve if
the magnitude of hq̇(t) is small compared to the curvature of the sphere. For large time steps
or large magnitudes of ω, however, this gets increasingly erroneous. Consider the limiting case,
a body rotating infinitely fast (|ω| → ∞): after renormalisation, q will have moved merely
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|ω|t
2

q̇(t)

Re

i-Im

Figure B.2: Assumed situation for the derivation in section B.1.3.

a quarter of the way around the unit sphere, which equates to concatenating the rotation of
quaternion q with some rotation by 180◦. This is a strictly finite amount of rotation per time
step, while it would actually have been correct to perform an infinite number of revolutions
around the quaternion sphere.

If a polynomial approximation method like RK4 had been used instead of Euler’s method, a
parametric polynomial space curve would have been fitted to the surface of the sphere instead
of the straight line. Note however that the Taylor series of the sin and cos functions are non-
terminating, and that it is therefore not possible for a finite polynomial curve to lie exactly in
the surface of a sphere. These ODE solvers will therefore suffer the same problems, albeit less
pronounced.

B.1.3 Corrected quaternion integration

Assume that the body we are simulating is rotating at a constant angular velocity. (This
assumption is later weakened by the use of a more sophisticated ODE solver, but for now we
will stick with Euler’s method.) Furthermore assume without loss of generality that the body
is rotating clockwise about its x axis, which corresponds to the world’s x axis, and that at time
t = 0 the body’s frame and the world frame coincide. Then the orientation of the body (the
quaternion describing the linear transformation from the body’s frame of reference to the world
frame) is given as a function of time by

q(t) = cos

(
|ω|t

2

)

+ sin

(
|ω|t

2

)

i (B.3)

(cf. equation 2.8, figure B.2) and its angular velocity is

ω = (ω1, ω2, ω3)
T = (|ω|, 0, 0)T (B.4)

for some arbitrary |ω|, measured in radians per unit time.
Now assume w.l.o.g. that we take a time step from t = 0 to t = h. Then we require that the

result returned by Euler’s method for q(h) after renormalization be equal to its exact value in
equation B.3:

cos

(
|ω|h

2

)

+ sin

(
|ω|h

2

)

i =
q(0) + hq̇(0)

|q(0) + hq̇(0)|
(B.5)

We know from examining the 4D geometry that the value assigned to q̇ in equation 2.11 has
the correct direction and merely needs to be corrected in magnitude. In other words, we are
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searching for a scalar function f(h, |ω|) which will allow q̇ to satisfy equation B.5:

q̇h(t) = fω̃(t)q(t) (B.6)

Observe that under the above assumptions q(0) = 1, and thus q̇h(0) = f |ω|i. Substituting
this into equation B.5 and considering only the real part:

cos

(
|ω|h

2

)

=
[

1 + (f |ω|h)2
]− 1

2

⇔ (f |ω|h)2 =
1

cos2
(
|ω|h

2

) − 1

⇔ f(h, |ω|) =
1

|ω|h

√
√
√
√
√

1 − cos2
(
|ω|h

2

)

cos2
(
|ω|h

2

) =
1

|ω|h
tan

(
|ω|h

2

)

To check, we substitute this result into the i-imaginary part of equation B.5:

sin

(
|ω|h

2

)

= tan

(
|ω|h

2

) [

1 + tan2

(
|ω|h

2

)]− 1

2

= tan

(
|ω|h

2

)



cos2

(
|ω|h

2

)

+ sin2
(
|ω|h

2

)

cos2
(
|ω|h

2

)





− 1

2

= tan

(
|ω|h

2

)

cos

(
|ω|h

2

)

= sin

(
|ω|h

2

)

Thus we establish the validity of this expression for f . Observe that by using L’Hospital’s
rule, we can find value of f for an infinitesimally small time step:

lim
h→0

f = lim
h→0

|ω|
2

cos−2
(
|ω|h

2

)

|ω|
=

1

2

i.e. we obtain the original equation 2.11 for the instantaneous rate of change.
Now let ∆q = hq̇ = h

2
ω̃q. From equation B.2 we find that |∆q| = |ω|h

2
. Hence we can

simplify the expression for the quaternion correcting factor by expressing it in terms of ∆q as
follows:

hfω̃q =
h

|ω|h
tan

(
|ω|h

2

)

ω̃q = tan (|∆q|)
∆q

|∆q|

This expression now has a clear geometric interpretation with respect to the 4D geometry
(see figure B.3): |∆q| is measured in radians, and it corresponds to the correct angle between
the old and the new vector q. Since q and q̇ are orthogonal, we have a right-angled triangle
between the origin, the old and the new points q, and hence we can use the tan function to
evaluate the required length of the side in direction ∆q.

Finally we can combine this correction and the subsequent quaternion normalisation into a
single function, which I call Quergs (for Quaternion integration step)1:

q(t + h) = Quergs(q(t), ∆q) =
q(t) + tan (|∆q|) ∆q

|∆q|

|q(t) + tan (|∆q|) ∆q

|∆q| |

1This naming follows the spirit of Shoemake [24], whose “Slerp” function is an ‘acronym’ of Spherical l inear
interpolation.
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Re

i-Im

q
∆q

∆q

q + tan(|∆q|) ∆q

|∆q|

Quergs(q, ∆q)

Figure B.3: Illustration of the operation of Quergs.

=
q(t) + tan (|∆q|) ∆q

|∆q|
√

1 + tan2 (|∆q|)

=

[

q(t) + tan (|∆q|)
∆q

|∆q|

]

cos (|∆q|)

The last expression is simplest (and again allows geometric interpretation), but probably the
first of the three expressions is more useful for numerical evaluation, since it involves only one
trigonometric function and minimizes numerical errors.

When implementing this formula, care must be taken around the discontinuities of the tan
function, where numerical instability may occur. These discontinuities are reached whenever a
body performs an odd multiple of half revolutions during a single time step.

B.2 Free precession

This argument is modelled after [19]. The moment of inertia L of a rigid body is defined as

L = Iω (B.7)

where I is the inertia tensor and ω is the angular velocity vector. Torque is the rate of change
of angular momentum over time:

τ = L̇ = İω + Iω̇ (B.8)

We can further evaluate İ by writing I as a product with some rotation matrix R and its
transpose:

I = RIbodyR
T (B.9)

It can be shown that such a decomposition of the inertia tensor always exists, and that
Ibody is a diagonal, time-invariant matrix containing the moments of inertia about the body’s
principal axes [8]. Hence we obtain

İ = ṘIbodyR
T + RIbody

d

dt
RT (B.10)

Witkin [4] derives that Ṙ = ω∗ R for a rotation matrix R and an angular velocity vector ω.
Using this identity and taking the differential operator onto the inside of the transpose at the
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end of equation B.10,

İ = ω∗ RIbodyR
T + RIbody(ω

∗ R)T

= ω∗ RIbodyR
T − RIbodyR

T ω∗

= ω∗ I − Iω∗ (B.11)

Substituting equation B.11 back into B.8:

τ = Iω̇ + ω∗ Iω − Iω∗ ω

= Iω̇ + ω∗ Iω (B.12)

Equation B.12 corrects the similar expression in [20], page 34. This means that the angular
acceleration of a rigid body is given by

ω̇ = I−1(τ − ω∗ Iω). (B.13)

where τ is the sum of all torque vectors acting on the body. This means that even if there
are no torques, its angular velocity may change if I is not diagonal (i.e. if the body is somehow
asymmetric). This effect is called free precession.

In a simulation, we usually integrate over torques to find angular momentum, and then
calculate the angular velocity from the momentum in each time step using the current moment
of inertia. In this case, the angular acceleration in equation B.13 is not needed. It is required
only for purposes of computing constraint forces and torques.

B.3 Constrained rigid body dynamics

This section is based on material in [4] and [20]. The explanation in these sources is rather
sketchy though, and the following details I worked out are more comprehensive.

B.3.1 Prerequisites of constraint solving

Consider a system of n rigid bodies at a particular point in time. Assume that we can define a
vector x which represents the state of the whole system as a function of time2. x has 6n rows
(one row for each d.o.f.) and its first and second derivative with respect to time are

ẋ =











ṙ1

ω1

...
ṙn

ωn











and ẍ =











r̈1

ω̇1

...
r̈n

ω̇n











(B.14)

where ri is the position of the centre of mass of body i, and ωi is its angular velocity. Thus ẋ is
the concatenation of all bodies’ linear and angular velocities, and ẍ is that of the accelerations.
We cannot write down an explicit expression for x since we do not have a representation of
orientation whose derivative is ω. This is not a problem though, since we can work exclusively
with ẋ and ẍ.

2Witkin [4] calls this vector q; I use x to avoid confusion with quaternions.
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We require two more vectors in the same format, containing the forces and torques already
acting on the system, for example due to gravity or muscular activity:

Φ =











F1

τ1

...
Fn

τn











Φp =











0

−ω∗
1I1ω1

...
0

−ω∗
nInωn











(B.15)

Here Fi denotes the sum of all forces acting on the centre of mass of body i, and τi is the
sum of all torque vectors acting on body i. The vector Φp accounts for the fact that a body’s
moment of inertia is in general not constant in the world frame3; Ii is body i’s moment of inertia
in the world frame at the current point in time. See appendix B.2 for a derivation of Φp.

Following the same principle of concatenation, we set up the inverse mass-inertia matrix
M−1, a 6n × 6n matrix of the form

M−1 =
















1
µ1

1

I−1
1

1
µ2

1

I−1
2

. . .
1

µn

1

I−1
n
















(B.16)

µi denotes the (scalar) mass of body i, 1 stands for the 3 × 3 identity matrix, and I−1
i is

the inverse of the inertia tensor (written as a 3 × 3 matrix) of body i in the world frame. All
empty regions are zero. While µi will typically stay constant over time, Ii may depend on the
orientation of body i.4 These variables have been chosen such that

ẍ = M−1(Φ + Φp). (B.17)

B.3.2 Definition of the Jacobians

Now assume that we want to impose m constraints on this system. Express each constraint as a
function c which is zero when the constraint is satisfied. We can then concatenate all constraint
functions into a single m-row constraint vector c. Each valid configuration of the system must
satisfy c = 0. ċ and c̈ must be calculated algebraically before implementation.

The Jacobian matrix [18] J contains all partial derivatives of c w.r.t. each coordinate of x.
Similarly, J̇ is the Jacobian of ċ:

Jij =
∂ci

∂xj
and J̇ij =

∂ċi

∂xj
(B.18)

Both J and J̇ are m× 6n matrices. However, since we do not have an explicit expression for
x, we cannot calculate them directly using partial differentiation. Instead we make use of the
following analytic results:

ċ = Jẋ and c̈ = J̇ẋ + Jẍ. (B.19)

3The subscript p of this vector stands for precession, since the variability of the moment of inertia causes free
precession.

4If we know the principal axes of the body, we can express I in a time-invariant form combined with rotations
into the principal axes frame and back again (see [4]), which saves us a lot of effort.
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ci

Figure B.4: Block structure of the Jacobian matrix of m constraints in a system of n bodies. For
example, if ci is a ball-and-socket joint between bodies b1 and b2, each of the two slices (shaded
areas) is three rows high and six columns wide. The vertical position of ci must match its offset
in the concatenated constraint vector c, and the horizontal positions of the slices must match
the offset of bodies b1 and b2 in the vectors ẋ, Φ and Φp (equations B.14 and B.15).

Any Jacobian component Jij is certainly zero if constraint i does not mention body ⌊j/6⌋.
Since each constraints usually involves only two bodies, J and J̇ each have a sparse block-
structured form sketched in figure B.4. If there are many constraints, their slices of the Jacobian
can be calculated independently and simply inserted at the right places in J and J̇. Appendix B.4
gives derivations of Jacobian slices for different constraint types.

B.3.3 Finding the Jacobians

Both [4] and [20] omit details on how to derive the Jacobians J and J̇ for a custom constraint. I
deduced the following procedure after pondering over some source code implementing one type
of constraint (specifically equations B.23 and B.24 below). The source code was kindly provided
by Dr. Breton Saunders [21]. It was used only for this derivation and not copied otherwise. The
implementation in this project is based on the following derivations.

We start by defining a function c which evaluates to zero (or the null vector) for all states
which satisfy the constraint, and any non-zero value for all other states. We then calculate the
first and second derivatives with respect to time, ċ and c̈, which must both exist.

For any sort of valid constraint, we should be able to massage both ċ and c̈ into a sum of
products form. Moreover, in each summand in ċ, at least one of the variables should be either
the linear velocity of the centre of mass of one of the bodies, or the angular velocity of one of
the bodies. Use algebra to make this ‘chosen variable’ the rightmost variable in each product,
and evaluate the rest of the product to a single matrix.

Now observe equation B.19 (page 54). We can easily factor our expression for ċ into J and ẋ

(since the latter contains the linear and angular velocities for all bodies). J has the same number
of rows as there are constraints, and 6n columns for a system of n bodies. Each of the matrices
in our expression for ċ also has the same number of rows as there are constraints, and has 3
columns. All we need to do is to find the correct horizontal position of each of these matrices
in J, depending on the location of the ‘chosen variable’ in ẋ. Thus we obtain the matrix J.

Observe equation B.19 again. Now we know c̈, ẋ, J and ẍ – no problem. Evaluate c̈ − Jẍ,
remembering that ẍ is the vector of linear accelerations and angular accelerations. The result
should be an expression which we can bring into just the same kind of sum of products form as
we previously did with ċ. By exactly the same procedure we factor out the linear velocities and
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angular velocities (not accelerations!), thus obtaining J̇.

In case you were in doubt, this procedure is of course executed by a human on paper (possibly
assisted by a symbolic algebra system) prior to implementation. The simulation program will
just plug numbers into the hard-coded expressions for c, ċ, J and J̇ during each time step of the
simulation.

B.4 A catalogue of constraint functions

Let us consider some examples of constraints to clarify the procedure.

B.4.1 Fixed point in space (‘Nail’)

This simple constraint ‘nails’ a particular point in a rigid body to a fixed point in world space.
(It’s a very flexible nail, because despite fixing the position, it allows all three modes of rotation.)
Let p be the position of the centre of mass of our rigid body, s the vector from the centre of
mass to the point in the body we want to attach, ω the angular velocity of the rigid body, and
t the coordinates in world space that we want to nail the point to. Then we can set up a simple
constraint function,

c = p + s − t (B.20)

which equals the null vector when p + s and t coincide, as required. Since this is a three-
dimensional vector equation, we are actually defining three constraints at once. t does not
change over time, so we obtain

ċ = ṗ + ω × s

= ṗ − s∗ ω (B.21)

c̈ = p̈ + ω̇ × s + ω × (ω × s)

= p̈ − s∗ ω̇ − (ω × s)∗ ω (B.22)

(cf. similar derivations in [13]). We have already moved the ‘chosen variables’ to the rightmost
position of each product. We will now factor ċ and write out the components of J in terms of
the vector components:

ċ =






1 0 0
0 1 0
0 0 1




 ṗ +






0 s3 −s2

−s3 0 s1

s2 −s1 0




 ω (B.23)

The two matrices in equation B.23 thus form two slices of J at the locations appropriate for
ṗ and ω. We now continue to the next step of the procedure:

J̇ẋ = c̈ − Jẍ = (p̈ − s∗ ω̇ − (ω × s)∗ ω) − (p̈ − s∗ ω̇)

= −(ω × s)∗ ω

=






0 ω1s2 − ω2s1 ω1s3 − ω3s1

ω2s1 − ω1s2 0 ω2s3 − ω3s2

ω3s1 − ω1s3 ω3s2 − ω2s3 0




 ω

(B.24)
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We see that here there is only one slice for J̇; the slice belonging to p̈ is zero. Since ω also
occurs inside the matrix, there are actually several alternative representations of this matrix
which are equally valid.

B.4.2 Ball-and-socket joint

Two rigid bodies are attached together at a particular point in each of the bodies. They may not
separate, but all three rotational degrees of freedom are permitted. This is a good representation
e.g. of a human shoulder joint.

Let a and b be the positions of the centres of mass in the first and second rigid body
respectively. Let s be the vector from a to the attachment point, and t the vector from b to
the attachment point. Also let ω be the angular velocity of the first body, and φ that of the
second. Then our constraint function and its derivatives are:

c = a + s − b − t (B.25)

ċ = ȧ + ω × s − ḃ − φ × t (B.26)

c̈ = ä + ω̇ × s + ω × (ω × s) − b̈ − φ̇ × t − φ × (φ × t) (B.27)

The rest of the derivation is very similar to the previous example. We obtain four matrix
slices for J and two slices for J̇.

B.4.3 Rotation axis restriction (‘Joystick’)

We now have formulae to define a ball-and-socket joint. How can we express other types of
joints? A good way of doing this is by augmenting the ball-and-socket constraint with additional
constraints which restrict the set of valid rotations. In this section I derive expressions for a
constraint which prohibits rotation about one particular axis – or, in other words, confines the
axis of any valid rotation to a plane. In engineering terms, this is called a universal joint [23].
Let us define a unit vector n which points in the direction of the axis we want to prohibit;
equivalently, this is the normal of the confinement plane.

It is not completely easy to visualize what this type of constraint means. One good way to
look at it is to consider a standard two-axis joystick. If it is placed on a table, the two axes
of rotation lie in a plane parallel to the surface of this table. But you cannot turn the stick
about its own axis. Hence the normal of the constraint plane is orthogonal to the table surface.
Don’t be confused by the fact that the joystick handle happens to point in the direction of the
normal – any sort of obscure shape may be substituted in its place without changing the nature
of the constraint!

A more common sort of joint is the hinge or revolute joint, which we find in most doors, in
our knees and elbows. It allows rotation only about one particular axis. We can conveniently
express it by employing two ‘joystick’ constraints on the same body, each of which confines the
axis to a plane. Provided the two planes are not parallel, the axis about which rotation may
occur is just the line of intersection of these two planes. In summary, to make a revolute joint,
we first add a ball-and-socket joint. Then we find two non-collinear vectors which are both
orthogonal to the hinge axis, and use them as normal vectors for two ‘joystick’ constraints. This
reduces the original number of six degrees of freedom to one – the angle of the hinge.

For this derivation I will use an alternative notation for quaternions, which is used by Shoe-
make [24], amongst others. Instead of using the complex constants i, j and k, a quaternion is
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written as a pair consisting of a scalar (the real part) and a 3D vector (the three imaginary
parts):

q = qw + qxi + qyj + qzk = [qw, (qx, qy, qz)
T ] = [qw,qv] (B.28)

Using this notation, we can write the quaternion product in terms of vector dot and cross
products:

pq = [pw, pv] [qw, qv] = [pwqw − pv · qv, pwqv + qwpv + pv × qv] (B.29)

We shall now consider the relative rotation of two rigid bodies. Say the first body has an
orientation quaternion p and angular velocity φ, and the second body orientation q and angular
velocity ω. Assume that each quaternion expresses the rotation required to transform from the
body’s frame to the world frame. Then the quaternion product p−1q is the rotation required to
transform from the second body’s frame to the first one’s – that is, the relative rotation of the
two bodies.

To confine the axis of rotation, we use the fact that the axis is contained in the imaginary
parts of a quaternion (equation 2.8, page 12). We want the dot product of this axis and the
normal vector n to be zero. Conveniently, the dot product happens to be implicitly present in
the real part of the quaternion product (see equation B.29). Hence we can define our constraint
function as follows:

c = ℜ(ñ p−1q) (B.30)

As with complex numbers, the function ℜ returns only the real part of its argument. Since
the real part of ñ is zero by definition, this is just the dot product of n and the axis of p−1q,
with an extra minus sign in front (cf. equation B.29). The constraint function is a scalar because
we are only losing one degree of freedom.

The derivative of q with respect to time is q̇ = 1
2
ω̃q. Pushing the differential operator onto

the inside of a quaternion inverse produces a minus sign and reverses the order, provided we are
dealing with a unit quaternion:

d

dt
p =

1

2
φ̃ p ⇐⇒

d

dt
(p−1) = −

1

2
p φ̃ (B.31)

We now have everything in place to calculate the constraint function derivatives:

ċ =
1

2
ℜ(ñ p−1 ω̃ q) −

1

2
ℜ(ñ p−1 φ̃ q) (B.32)

c̈ =
1

2
ℜ(ñ p−1 ˜̇ω q) −

1

2
ℜ(ñ p−1 ˜̇

φ q) (B.33)

+
1

4
ℜ(ñ p−1 ω̃ ω̃ q) −

1

2
ℜ(ñ p−1 φ̃ ω̃ q) +

1

4
ℜ(ñ p−1 φ̃ φ̃ q)

We manipulate these equations into the form required to find J:

ℜ(ñ p−1 ω̃ q) = ℜ([0, n] [pw, −pv] [0, ω] [qw, qv])

= ℜ([n · pv, pwn − n × pv] [−ω · qv, qwω + ω × qv])

= −(n · pv)(ω · qv) − (pwn − n × pv) · (qwω + ω × qv)

= −nTpvq
T
v ω − (pwn + pv × n)T (qwω − qv × ω)

= −nTpvq
T
v ω − (pwnT − nTp∗

v)(qwω − q∗
v ω)

= −nT (pvq
T
v + (pw1 − p∗

v)(qw1 − q∗
v)) ω
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Here 1 denotes the 3× 3 identity matrix. The same derivation is valid if we substitute φ for
ω, hence we obtain the Jacobian

Jẋ = −
1

2
nT (pvq

T
v + (pw1 − p∗

v)(qw1 − q∗
v))ω

+
1

2
nT (pvq

T
v + (pw1 − p∗

v)(qw1 − q∗
v))φ (B.34)

Now the first two terms of equation B.33 are generated by Jẍ, so for finding J̇ we need only
consider the last three terms. Let us evaluate the penultimate term:

ℜ(ñ p−1 φ̃ ω̃ q) = ℜ([0, n] [pw, −pv] [0, φ] [0, ω] [qw, qv])

= ℜ([0, n] [pv · φ, pwφ − pv × φ] [−ω · qv, qwω + ω × qv])

= ℜ
(

[ n · (pv × φ) − pwφ · n,
(pv · φ)n + pwn × φ − n × (pv × φ) ]

[ −ω · qv, qwω + ω × qv ]
)

= −(n · (pv × φ) − pwφ · n)(ω · qv)

−((pv · φ)n + pwn × φ − n × (pv × φ)) · (qwω − qv × ω)

= −(n · (pv × φ))(qv · ω) + pw(n · φ)(qv · ω)

+(n · (qv × ω))(pv · φ) − qw(n · ω)(pv · φ)

−(n × (pwφ − pv × φ)) · (qwω − qv × ω)

= nT (pw1 − p∗
v)φqT

v ω − nT (qw1 − q∗
v)ω pT

v φ

+(pwφ − pv × φ)Tn∗(qw1 − q∗
v)ω

Fortunately, the other two terms of equation B.33 we are interested in are similar, so we can
obtain them by substitution in the last expression. This gives us the following expression for J̇:

J̇ẋ =
1

4

(

nT (pw1 − p∗
v)ω qT

v − nT (qw1 − q∗
v)ω pT

v

+(pwω − pv × ω)Tn∗(qw1 − q∗
v)

−2nT (pw1 − p∗
v)φqT

v − 2(pwφ − pv × φ)Tn∗(qw1 − q∗
v)

)

ω +

1

4

(

nT (pw1 − p∗
v)φqT

v − nT (qw1 − q∗
v)φpT

v

+(pwφ − pv × φ)Tn∗(qw1 − q∗
v)

+2nT (qw1 − q∗
v)ω pT

v

)

φ (B.35)

B.4.4 Rotation angle limitation

As mentioned in section 3.3.4, the constraint function of the last section can be used in an
inequality context to limit the angle of rotation rather than just the axes. Adding a constant
value to the constraint function makes no difference to its derivatives and therefore leaves the
Jacobians derived in the last section unchanged.

So the implementation is easy, but the challenge is to understand what effect such an inequal-
ity actually has. Since quaternions are rather hard to visualize, let us translate the meaning
of equation B.30 into Euler angles. Choose three orthogonal axes with basis vectors a, b and
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g such that a × b = g and b × g = a and g × a = b and |a| = |b| = |g| = 1. Consider the
rotation p−1q (the relative rotation between the two bodies), and decompose it into a sequence
of three rotations: first a rotation of α about the a axis, then a rotation of β about the b axis,
and finally a rotation of γ about the g axis. Thus we have

p−1q = gba (B.36)

a = cos (
α

2
) + ã sin (

α

2
) (B.37)

b = cos (
β

2
) + b̃ sin (

β

2
) (B.38)

g = cos (
γ

2
) + g̃ sin (

γ

2
) (B.39)

Now if we evaluate the constraint function about each of the axes a, b and g, we get (skipping
some boring algebra):

ℜ(ã gba) = − sin (
α

2
) cos (

β

2
) cos (

γ

2
) − cos (

α

2
) sin (

β

2
) sin (

γ

2
) (B.40)

ℜ(b̃ gba) = − cos (
α

2
) sin (

β

2
) cos (

γ

2
) − sin (

α

2
) cos (

β

2
) sin (

γ

2
) (B.41)

ℜ(g̃ gba) = − cos (
α

2
) cos (

β

2
) sin (

γ

2
) − sin (

α

2
) sin (

β

2
) cos (

γ

2
) (B.42)

These expressions make clear how interdependent the three axes are – it is generally not
possible to change a constraint on one axis without affecting the others. The best way to proceed
from here is to enter inequalities using formulae B.40 to B.42 into a program for graphical
visualization, and to experimentally determine the values such that the desired behaviour is
achieved.

B.4.5 Confinement to a plane (vertex/face collision)

We want to define a constraint function whose value is the distance between a point and a plane,
where the point is attached to one rigid body, and the plane to another. The plane is defined by
a point in the plane and a normal vector. The distance should be positive if the point is on the
side of the plane pointed to by the normal, and negative if it is on the opposite side. If we put
this constraint directly into the Lagrange multiplier equation, it will enforce the condition that
the distance be zero – the point is confined to move only within the plane. But if we use the
same constraint function in an inequality, we have a handler for the vertex/face collision case.

Say a is the centre of mass position of the body to which the plane is attached, and s is the
vector from the centre of mass to an arbitrary point in the plane. The angular velocity of this
body is ω. The plane has a unit normal vector n̂ (|n̂| = 1). The point we are interested in is
b+ t, where b is the centre of mass position of the body to which the point belongs. This body
has angular velocity φ.

Then the constraint function and its derivatives are given by

c = (b + t − a − s) · n̂ (B.43)

ċ = (ḃ + φ × t − ȧ − ω × s) · n̂ + (b + t − a − s) · (ω × n̂)

= n̂T ḃ − n̂T ȧ − n̂T t∗φ + (a − b − t)T n̂∗ω (B.44)

c̈ = (b̈ + φ̇ × t + φ × (φ × t) − ä) · n̂ +

2(ḃ + φ × t − ȧ) · (ω × n̂) + (b + t − a) · (ω̇ × n̂ + ω × (ω × n̂))
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= n̂T b̈ − n̂T ä − n̂T t∗φ̇ + (a − b − t)T n̂∗ω̇ + (B.45)

(2(ȧ − ḃ − φ × t)T n̂∗ + (a − b − t)T (ω × n̂)∗)ω − n̂T (φ × t)∗φ

from which J and J̇ can be read off as usual.

B.4.6 Edge/edge collision

In this section we require a constraint function whose value is the shortest distance between two
straight lines. The problem is closely related to the one in section B.4.5. If used as an equality
constraint, it could be used to simulate two metal rods which are joined together such that the
join can move up or down either of the rods, but the rods always have to touch in one point – a
kind of combination of a ball-and-socket joint with two one-dimensional sliding rails. However,
the practical use of such a system is rather limited. Much more important is the use of this
constraint as an inequality, where it can handle the collision situation in which two edges collide.

We assume that each straight line is connected to a rigid body. The first body’s centre
of mass is located at a, its angular velocity is ω, s is a vector from the centre of mass to an
arbitrary point on the line, and u is a vector pointing along the line (unit magnitude is not
required). Similarly, the second body’s CoM is b, its angular velocity is φ, t points at the line
and v points in the line’s direction. In this derivation we shall assume that the lines are not
parallel (|u × v| 6= 0); the parallel case is special and needs to be handled separately.

If u and v are not parallel, we can find a unique plane which contains one line and is parallel
to the other. This plane has a normal vector n = u×v (or n = v×u). Interestingly this normal
is the direction in which the force or impulse acts in the event of a collision. It is not obvious
that this is the case, but by playing around with two books or similar it is possible to convince
oneself. Then the closest distance between the two lines is given by

c = (b + t − a − s) ·
n

|n|
(B.46)

The derivation of the Jacobian matrices involves some of the most messy linear algebra in
this project, so hold on tight. Let us first define a few auxiliary variables:

n = u × v (B.47)

h =
1

|n|
= (n · n)−

1

2 (B.48)

z = ṅ = u̇ × v + u × v̇

= (ω × u) × v + u × (φ × v)

= v∗u∗ω − u∗v∗φ (B.49)

y = ż = ü × v + 2 u̇ × v̇ + u × v̈

= (ω̇ × u) × v + (ω × (ω × u)) × v + 2 (ω × u) × (φ × v) +

u × (φ̇ × v) + u × (φ × (φ × v)) (B.50)

= v∗u∗ω̇ − u∗v∗φ̇ + v∗(ω × u)∗ω − u∗(φ × v)∗φ + 2 (φ × v)∗u∗ω

n̂ = hn (B.51)

˙̂n = hz −
1

2
n(n · n)−

3

2 (z · n + n · z)

= hz − h3 (n · z)n (B.52)
¨̂n = hy − 2h3(n · z) z − h3(n · y)n − h3(z · z)n + 3h5(n · z)2 n (B.53)
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Now we can turn to calculating the derivatives of c:

ċ = n̂ · (ḃ + φ × t − ȧ − ω × s) + (b + t − a − s) · ˙̂n (B.54)

= h (u × v)T (ḃ + φ × t − ȧ − ω × s) +

(b + t − a − s)T (hz − h3 (n · z)n)

= huTv∗ḃ − huTv∗ȧ − huTv∗t∗φ + huTv∗s∗ω +

(b + t − a − s)T (hv∗u∗ω − hu∗v∗φ − h3u∗vuTv∗(v∗u∗ω − u∗v∗φ))

= huTv∗ḃ − huTv∗ȧ

+
(

huTv∗s∗ + h (b + t − a − s)T (1 − h2u∗vuTv∗)v∗u∗
)

ω

−
(

huTv∗t∗ + h (b + t − a − s)T (1 − h2u∗vuTv∗)u∗v∗
)

φ (B.55)

= Jẋ

c̈ = n̂ ·
(

b̈ + φ̇ × t + φ × (φ × t) − ä − ω̇ × s − ω × (ω × s)
)

+

2
(

ḃ + φ × t − ȧ − ω × s
)

· ˙̂n +
(

b + t − a − s
)

· ¨̂n (B.56)

= huTv∗b̈ − huTv∗ä − huTv∗t∗φ̇ + huTv∗s∗ω̇ +

huTv∗(ω × s)∗ω − huTv∗(φ × t)∗φ

+2h (ḃ + φ × t − ȧ − ω × s)T
(

v∗u∗ω − u∗v∗φ

−h2u∗vuTv∗(v∗u∗ω − u∗v∗φ)
)

+(b + t − a − s)T
(

h (v∗u∗ω̇ − u∗v∗φ̇ + v∗(ω × u)∗ω

−u∗(φ × v)∗φ + 2 (φ × v)∗u∗ω)

−2h3(v∗u∗ω − u∗v∗φ)uTv∗(v∗u∗ω − u∗v∗φ)

−h3u∗vuTv∗(v∗u∗ω̇ − u∗v∗φ̇ + v∗(ω × u)∗ω

−u∗(φ × v)∗φ + 2 (φ × v)∗u∗ω)

−h3u∗v(ωTu∗v∗ − φTv∗u∗)(v∗u∗ω − u∗v∗φ)

+3h5u∗vuTv∗(v∗u∗ω − u∗v∗φ)uTv∗(v∗u∗ω − u∗v∗φ)
)
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Finally we subtract the terms generated by Jẍ from c̈ and separate into factors of ω and φ

as usual:

J̇ẋ =

(

huTv∗(ω × s)∗ (B.57)

+2h (ḃ + φ × t − ȧ − ω × s)T (1 − h2u∗vuTv∗)v∗u∗

+(b + t − a − s)T
(

hv∗(ω × u)∗ + 2h (φ × v)∗u∗

−h3u∗vuTv∗v∗(ω × u)∗ − 2h3u∗vuTv∗(φ × v)∗u∗

−2h3 (v∗u∗ω − u∗v∗φ)uTv∗v∗u∗

−h3u∗v(ωTu∗v∗ − φTv∗u∗

−3h2uTv∗(v∗u∗ω − u∗v∗φ)uTv∗)v∗u∗
))

ω

−

(

huTv∗(φ × t)∗

+2h (ḃ + φ × t − ȧ − ω × s)T (1 − h2u∗vuTv∗)u∗v∗

+(b + t − a − s)T
(

hu∗(φ × v)∗ − h3u∗vuTv∗u∗(φ × v)∗

−2h3 (v∗u∗ω − u∗v∗φ)uTv∗u∗v∗

−h3u∗v(ωTu∗v∗ − φTv∗u∗

−3h2uTv∗(v∗u∗ω − u∗v∗φ)uTv∗)u∗v∗
))

φ
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