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Key results: The Ordered Sphere Decoder (OSD) performs ML detection for MIMO channels at a greatly
reduced computational cost, while also providing a competitive sub-optimal solution in fixed time.

How does the work advance the state-of-the-art?: The OSD is evaluated against state-of-the-art works,
demonstrating a dramatic complexity reduction, particularly in the important higher modulation order regimes.

Motivation (problems addressed): The OSD is a new ML MIMO channel decoding proposal that addresses
the issues of decoding complexity and delay over a wide range of operating regions.

INTRODUCTION

The ML detection of signals transmitted over MIMO
channels is an important communications problem
that is well-known to be NP-complete. A current
state-of-the-art solution is the Sphere Decoder (SD)
[3,7], whose computational cost is polynomial in the
average case [4]. So bright are its prospects for in-
dustrial application that VLSI implementations have
already been reported in the literature (e.g., [1]). Even
so, existing SDs exhibit two major weaknesses: Their
complexity coefficients can become large when the
problem dimension is high, e.g., at the spectral effi-
ciencies demanded by future services, and the vari-
ance of their computation times can also be large,
leading to undesirable highly variable decoding de-
lays. In this paper, we present the OSD, a solution
that successfully tackles these critical challenges.

SPHERE DECODING

A MIMO channel detector produces a set of symbols
s ∈ XM given a set of signals v ∈ R

N observed at
the output of the communication channel, typically
modelled as a linear system H ∈ R

N×M combined
with an additive noise vector n ∈ R

N .1 We assume
that M ≤ N and that H is of full rank M , i.e., there
are at least as many observations as symbols to be de-
tected. Since the transmitted symbols are drawn from
a known finite alphabet X of size B, the detector’s
goal is to choose one of the BM possible transmitted
symbol vectors based on the data.
The SD is an ML detector, i.e., it returns a solution

s∗ = argmax
s∈XM

P (v is observed | s was sent) (1)

= argmin
s∈XM

|v − Hs|2, (2)

where we make the further assumption that the addi-
tive noise n is white and Gaussian.
Solving (2) via brute force requires computing the

1In this work, all signals and coefficients are real numbers;
we recall that complex signal detection can be written as an
equivalent problem in twice the number of real dimensions.

distances from v to an exponential number of points.
The SD on the other hand, is based on efficiently enu-
merating only those points located within some dis-
tance of the observed v. Assuming that at least one
such point is found, it then follows that the nearest
point to v in the exponential search set must also be
the nearest one in the smaller set. Thus an optimal
solution can be declared after computing, on average,
only a polynomial number of distances.
Underlying all known SDs is a weighted (M + 1)-
level B-ary tree, as depicted in Fig. 1 for the case
where M = B = 2 and X = {−1, 1}.
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Figure 1: Weighted 3-level binary tree, X = {−1, 1}.

Its nodes are numbered from the root at level M to
the BM leaves at level 0. Traversing a branch from
level i to i − 1 assigns a value to symbol si. Thus
descending from the root to a leaf assigns values to
all M symbols. To each branch can be assigned a
non-negative weight, and to each node a weight equal
to the sum of the branches along its path from the
root, such that the leaf node weights are precisely the
squared distances in (2). Within this context, an op-
timal solution is given by the symbol vector assigned
to the smallest weight leaf node in the tree of Fig. 1.

THE ORDERED SPHERE DECODER

A block diagram of the proposed decoder is shown in
Fig. 2. It is formed by cascading an ordering module
with an Automatic Sphere Decoder (ASD) [5].
The ordering module takes as its inputs the vector of
observed signals v and the channel matrix H. It is
a fixed time algorithm with a polynomial complex-
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Figure 2: Block diagram of the OSD.

ity that is roughly comparable to a handful of ma-
trix inversions or QR factorizations. It produces at
its output an ordered channel matrix Hp and a sub-
optimal initial guess for the detected symbol vector
s0. The construction of Hp is based on a heuristic
rule designed to reduce the number of nodes (at all
levels) whose weights are less than that of the small-
est weight leaf node. Please see [6] for more details.
The ASD is a new sphere decoding algorithm that
takes as its inputs the observed vector v and a chan-
nel matrix H. Its complexity is characterized by the
product of the number of nodes expanded ν and the
per-node processing time τ . We show in [5] that all
known SDs expand at least as many nodes as the
ASD, and also that for all known SDs, including the
ASD, τ is linear in M . Therefore we propose to com-
pare the computational performance of different SDs
by considering their respective average values of ν.

SIMULATION RESULTS

Fig. 3 shows the average number of nodes expanded
by the OSD and by a radius-adaptive SD based on
the Schnorr-Euchner enumeration (SEA) [2,3] over a
range of Signal-to-Noise Ratio (SNR)s. As expected,
νOSD ≤ νSEA regardless of the SNR. Also, for all
of the decoders, there is a lower bound of ν ≥ 2M ,
where M is the number of transmit antennas; the fac-
tor of two arises because there are two real dimen-
sions per complex dimension.
A vast improvement is realized by the OSD, espe-
cially at low SNRs, where the complexity of existing
sphere decoders is not widely considered to be com-
petitive. Even more noteworthy is that this improve-
ment remains significant even as the modulation or-
der is increased, and that the computational profile of
the OSD is consistently almost an order of magnitude
more efficient than current proposals.

CONCLUSIONS

In this paper we present a new ML MIMO decoding
proposal that is both effective in addressing critical
weaknesses of current proposals and timely, as the
sphere decoder vies for a central role in current 4G
standardization efforts. Simulation results demon-
strate that the OSD offers an immense reduction in
the computational cost of sphere decoding. We also
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Figure 3: Average number of expanded nodes (ν)
vs. average received SNR per bit for the SEA and
OSD decoders over a 4:4 MIMO flat fading channel
using QPSK, 16-QAM and 64-QAM modulations.

highlight its effectiveness in the higher modulation
order regimes that have traditionally been prohibitively
complex for SDs. Finally, an advantageous by-product
of the OSD is the competitive sub-optimal solution
s0, which is computed in fixed time and can be re-
turned early to delay-sensitive applications that are
unable to wait for the ML solution. The bit error
rate of s0 taken as a sub-optimal solution is compara-
ble to that of the well-known V-BLAST system with
MMSE nulling, cancellation and ordering.
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