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Abstract— This paper presents a new MIMO detector based on
successive projection of the received signal onto the faces of the
lattice induced by the channel matrix. Analysis of the relationship
between successive algorithms like V-BLAST and the Maximum
Likelihood (ML) sphere decoder, which share a common un-
derlying tree structure, leads to the design of the Successive
Projection Algorithm (SPA). Although it is a suboptimal detector,
we prove theoretically that when ML detection can be realized in
a successive manner, i.e., without back-tracking, ML performance
is also achieved by the SPA. The advantageous implications of this
result are illustrated via simulation of the average bit error rates
attained over a 4×4 MIMO flat fading channel. For instance, at
a target error rate of 10

−3 using 16-QAM modulation, a 2.8dB
improvement over the popular V-BLAST detector is observed at
a comparable complexity. We also demonstrate a parameterized
SPA, which offers performance profiles approaching that of an
ML detector.

Index Terms— Nearest lattice point search, maximum-
likelihood detection, suboptimal detection, (linear) MIMO sys-
tems, successive cancellation.

I. INTRODUCTION

With the advent of the space-time communications
paradigm, the detection of QAM-modulated signals observed
at the output of Multiple Input Multiple Output (MIMO)
channels has received a considerable amount of attention.
Popular leading algorithms arising from this body of work
include those based on successive strategies, e.g., the sub-
optimal V-BLAST scheme [1], [2], the ML sphere decoder
[3]–[6], and their variants, those based on parallel strategies
[7], and hybrid techniques such as the Chase detector [8].

Underlying successive approaches is the decomposition of
the overall detection problem into a set of smaller sub-
problems of decreasing dimension. For instance, application
of the QR factorization to the channel matrix leads to an upper
triangular channel structure that enables the detector to achieve
this desirable break-down. The decomposition of the overall
detection problem can be concisely captured in a search tree
structure, which is central to the current work and will be
discussed in greater detail in Section II.

The order of symbol detection is also known to play a
key role in the performance and/or complexity of successive
schemes [2], [4], [9]. For instance, in V-BLAST, poor ordering
leads to degraded preformance due to error propagation, and in
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sphere decoding, to greatly increased decoding times. In this
work, we present new results on the impact of ordering on
successive detection algorithms. Drawing on our findings, we
develop an efficient new detector that is capable of attaining
performance profiles ranging from that offered by the popular
V-BLAST variant, using MMSE nulling with cancellation and
ordering, to that of the ML sphere decoder. Our flexible new
detector is governed by a single parameter.

We begin our presentation in Section II with some math-
ematical preliminaries. Next, in Section III we study the
behaviour of successive detection schemes within the context
of the tree structure. Specifically we consider the distinct
instances of the tree induced by different symbol detection
orderings and identify desirable properties for achieving ML or
near-ML performance. This analysis leads to the design of the
Successive Projection Algorithm (SPA) as well as an iterative
variant, both formalized in Section IV. Section V evaluates
the performance of the new detectors and concludes with brief
comments on their complexities.

II. PRELIMINARIES

In this paper we are concerned with problems that can
be modelled as the minimization of the squared Euclidean
distance metric to a target point r over an M -dimensional
finite discrete search set XM with |X | = B:

s∗ = argmin
s∈XM

|r−Hs|2, (1)

where r ∈ R
N , H ∈ R

N×M , and the optimization variables
are the elements of s.1 Examples of such problems include
ML detection of lattice coded signals and QAM modulated
signals transmitted over MIMO flat fading channels, frequency
selective fading channels, or multi-user channels. Both sub-
optimal and optimal solutions to (1) are considered.

We assume that M ≤ N , and that H is of full rank M .
For communication over MIMO flat fading channels, this as-
sumption means that there are at least as many receive (N ) as
transmit (M ) antennas. The following notational conveniences
are applied: Let ai denote the ith column vector of matrix A

and zi the ith element of vector z. We denote by I the index
set {1, 2, . . . ,M}. To distinguish between a variable itself and

1The complex case where s ∈ (X 2)M is a vector of M QAM modulated
signals, r ∈ CN and H ∈ CN×M can be written as an equivalent problem in
twice the number of real dimensions, i.e., with r ∈ R2N and H ∈ R2N×2M .



its value, we use the underline notation si or s to refer to a
variable, and si ∈ X or s ∈ XM to indicate a particular value.

Given matrix H and alphabet X , we define the finite lattice
of points in the search set as

L ,
{
z

∣∣ z = Hs, s ∈ XM
}

. (2)

There are BM lattice points in L. It can be decomposed into
any one of M collections of B sub-lattices, each comprised
of BM−1 lattice points embedded in one of B parallel
affine sets.2 For instance, given i ∈ I, the ith collection
{Fi(si) | si ∈ X } contains B affine sets defined as

Fi(si) ,
{
z

∣∣ 〈
z− hisi, (H

−1)T
i

〉
= 0

}
, (3)

with 〈a,b〉 denoting the inner product.
We denote the orthogonal projection of a vector y onto

affine set Fi(si) as projFi(si)(y). and the corresponding
orthogonal distance is then

d(y,Fi(si)) , d
(
y,projFi(si)(y)

)
. (4)

Note that projFi(si)(y) is the point in the affine set that
is closest in Euclidean distance to y. Algebraically, Fi(si)
contains the feasible set of lattice points satisfying constraint
si = si and is of dimension M − 1.

Extending (3), given constraint index set J = {iL, . . . , i1}
of size L, we define the (M −L)-dimensional affine sets con-
taining the feasible sets of lattice points satisfying constraints
sil

= sil
, l = 1, . . . , L as

FJ (sJ ) ,

L⋂

l=1

Fil
(sil

), (5)

and we highlight a useful property of the resulting distances:
Lemma 1: Given index set K ⊆ J , the squared orthogonal

distance from a point y ∈ R
N to affine set FJ (sJ ) ⊂ R

N

can be written as

d2(y,FJ(sJ )) = d2(y,y′) + d2
(
y′,projFJ (sJ )(y)

)
, (6)

where y′ = projFK(sK)(y).
Proof: Because K ⊆ J , the corresponding affine sets

satisfy FJ (sJ ) ⊆ FK(sK). The result then follows directly
by recalling that projFK(sK)(y) ∈ FK(sK).

Lemma 1 states that the squared distance from a point
to an affine set can be decomposed into two orthogonal
components. Because distances are non-negative, we have that
d (y,FJ (sJ )) ≥ d (y,FK(sK)) if K ⊆ J .

Since the cost function of (1) can be expressed as
|r−Hs|2 = d2 (r,FI(s)), applying Lemma 1 recursively,
with index sets {i1} ⊂ {i2, i1} ⊂ . . . ⊂ {iM−1, . . . , i1} ⊂
{iM , . . . , i1}, gives a representation of its values as the
weights of the leaf nodes of a (M + 1)-level B-ary tree
structure as shown in Fig. 1.

The nodes of the tree are arranged in M + 1 levels,
numbered from the root at level 0 to the leaves at level M .

2Recall that an affine set M ⊂ RN is a set such that M = S+a for some
subspace S ⊂ RN and offset a ∈ RN . See [10, Sec. 1] for more details.
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Fig. 1. A B-ary tree structure for M = 2 and X = {−1, 1} (B = 2).

Associated with each is the projection of r onto an (M −L)-
dimensional affine set defined by the constraint index set
KL = {iL, . . . , i1}, where L is its level. We define the weight
of a node σ as the squared distance from r to this projection.
Because the constraint index sets grow along all paths from
the root, by Lemma 1 the corresponding sequence of node
weights is non-decreasing.

Recall that the values of the cost function are represented
as the weights of the leaf nodes. The leaf having the smallest
weight then corresponds to an ML solution. We emphasize
that index set {iM , . . . , i1} is one of M ! permutations of I.
More formally, we call Π = {iM , . . . , i1} an ordering3 and
say that each ordering induces an instance of the tree T (Π).

Finally, we make use of the following quantities: σ∗, the
weight of the leaf node associated with an ML solution, and
ν∗, the number of nodes in the search tree whose weights sat-
isfy σ ≤ σ∗. It is well-known that ν∗ reflects the computational
efficiency of optimal detectors [6], [11] and in this work we
discuss its implications for sub-optimal schemes.

III. ACHIEVING ML DETECTION SUCCESSIVELY

Many representative MIMO detection techniques, e.g., [1],
[3], seek to determine the nearest (or a nearby, in the case
of sub-optimal approaches) lattice point to target r by succes-
sively exploring the affine sets containing lattice points of L.
At each stage L, given index set KL of previously constrained
variables, these detectors perform the following tasks:

1) Select an unconstrained variable siL
, iL ∈ I \ K

L.
2) Detect symbol iL, i.e., assign a value siL

∈ X to variable
siL

, or interpreted geometrically, constrain subsequent
detection stages to operate within affine set FiL

(siL
).

3) Add iL to the constraint index set,
(
KL+1 = {iL,KL}

)
.

Steps 1-3 correspond to descending a level in the tree, where
KL is the constraint index set associated with a node at level
L. Thus the behaviour of a single-pass successive algorithm
that detects each of the symbols in some order, e.g., V-BLAST,
can be visualized as a simple path from the root (K0 = ∅) to
a leaf (KM = Π). ML algorithms like the sphere decoder
perform the same set of operations at each stage. However
they are permitted to back-track and therefore may potentially
explore more than one path to more than one leaf.

3We index the elements of Π in this way because many MIMO detectors
apply a QR factorization and as a result detect symbols in the reverse order of
the underlying index set. Therefore under Π the order becomes si1

, . . . , siM
.
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(a) Random selection strategy.
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(b) Optimal selection strategy.
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(c) Proposed selection strategy.

Fig. 2. Empirical estimates of the probability density functions fν∗ (ν∗) for various selection strategies over a 4:4 MIMO flat fading channel (complex,
M = 8) at an SNR of 5dB using 16-QAM modulation, based on 2,500 independent realizations of received signal vectors r and channel matrices H. The
optimal selection strategies were determined by brute force simulation of ν∗(Π) over all M ! possible orderings.

To investigate performance limits of single-pass successive
detectors, we conducted the following study: Assuming that
Step 2 is a linear detector, i.e., quantizes an appropriate
decision statistic to the nearest element of alphabet X , we
then considered the effect of applying different strategies in
Step 1. Since there is a one-to-one correspondence between
the sets of selection strategies and orderings, we can uncover
properties of a selection strategy via study of the tree T (Π)
induced by its associated ordering.

To quantify the “goodness” of a particular selection strategy,
we use the number of nodes in T (Π) whose weights satisfy
σ ≤ σ∗, denoted ν∗(Π). The rationale behind this metric is
that if for a given target vector r and channel matrix H there
exists Π such that ν∗(Π) = M , then there also exists an ML
detector that behaves as a single-pass detector. (See Appendix,
Lemma 2 and [11] for proofs.) Therefore, as we present in
Section IV and show in the Appendix, under these conditions
a single-pass successive scheme can achieve ML performance.

We report three interesting findings: First, that applying
a random strategy does not yield good values of ν∗(Π)
(Fig. 2(a)). Secondly, that the distribution realized by an opti-
mal selection strategy is favourable, i.e., the optimal ordering

Π∗ , argmin
Π

ν∗(Π) (7)

often satisfies ν∗(Π∗) = M (Fig. 2(b)). Finally, that the
distribution arising from the strategy to be proposed is near to
that observed in the best case (Fig. 2(c)). The selection strategy
used by the V-BLAST detector [2] was also simulated and it
produced a distribution near to that of the random case.

IV. THE SUCCESSIVE PROJECTION ALGORITHM (SPA)

The preceding investigation inspires us to ask what it means
for there to exist an ordering such that ML detection is
achievable in a single-pass through T (Π). The set of ordering-
induced trees share a common root, having weight 0, as well as
common leaf nodes, whose weights correspond to the values of

the cost function of (1). However, they may differ significantly
in the intermediate weights of non-leaf nodes, which leads to
widely varying values of ν∗(Π).

When ML detection can be achieved in a single-pass, the
weights of all non-leaf nodes that do not lie along the solution
path have weights satisfying σ > σ∗. For instance, a single-
pass successive detector traverses a simple path from the root
node to a leaf in the order specified by Π. Determining which
branch to take from level L−1 to L is equivalent to assigning
one of B values to variable siL

. Given constraint index set
KL = {iL,KL−1} and previously applied constraint values
sKL−1 , let αiL

and βiL
be elements of X such that

d2

(
r,FKL

([
αiL

sKL−1

]))
≤ d2

(
r,FKL

([
βiL

sKL−1

]))
(8)

≤ d2

(
r,FKL

([
γiL

sKL−1

]))
, (9)

for all γiL
∈ X \ {αiL

, βiL
}. Again assuming a linear

detector, αiL
is assigned to siL

and the corresponding branch

is traversed. In addition, we call d2

(
r,FKL

([
βiL

sKL−1

]))
the

base weight of the most favourable path not taken at level L.
It can then be shown that to achieve ML detection in a single-
pass, it suffices that these base weights be greater than σ∗ at
all levels of the tree.

Therefore intuition suggests that selection strategies where
the base weights of the best paths not taken are large at all
levels are most favourable for use with successive detectors.
In theory, it would be best to maximize the minimum base
weight over all levels. However because this global optimiza-
tion problem can not be efficiently solved, we propose the
following local selection criterion:

iL = argmax
i∈I\KL

d2

(
r,FKL

([
βiL

sKL−1

]))
. (10)

Pseudocode for the basic SPA detector is given in Algorithm 1.



Applying selection criterion (10) enables us to prove the
following important result on its performance:

Theorem 1: If there exists an ordering Π such that ν∗(Π) =
M , then the SPA returns an ML solution.

Proof: See Appendix.

Algorithm 1 SPA(r,H,M,X )

1: I ←− {1, 2, . . . ,M} Initialize index set
2: y←− r Initialize target
3: G←− (H−1)T Compute inverse
4: for each level L from 1 to M do
5: for each index i in set I do
6: αi ←− argminx∈X |〈y,gi〉 − x| Find nearest sets
7: βi ←− argminx∈X\αi

|〈y,gi〉 − x| Second nearest
8: δi ←− d2 (y,Fi(βi)) Compute distances
9: end for

10: iL ←− argmaxi∈I δi Select variable index
11: ŝiL

←− αiL
Detect symbol

12: I ←− I \ iL Remove from index set
13: y←− projFiL

(αiL
)(y)− hiL

αiL
Project and shift

14: for each index i in set I do Project inverse
15: gi ←− projFiL

(0)(gi)
16: end for
17: end for
18: Return ŝ

We refer to this algorithm as the basic SPA because it is
a single-pass detector. A natural extension is to keep track of
the ζ best paths not taken, i.e., those having the smallest base
weights. The extended SPA is then a ζ-pass approach, where
the main path and ζ paths not (initially) taken are traversed
in search of the ML solution. It should be clear that in the
limit as ζ −→ BM , all paths and nodes in the search tree are
explored and therefore the performance of the extended SPA
approaches that of an ML detector.

V. PERFORMANCE EVALUATION AND CONCLUSIONS

Fig. 3 illustrates the performance profiles offered by the
basic (ζ = 0) and extended SPA for ζ = 1, 2, 4. These are
shown alongside those of an ML detector and of the V-BLAST
scheme with MMSE nulling, cancellation and ordering. The
system simulated is a 4 × 4 (complex) MIMO spatially-
uncorrelated flat fading channel with inputs drawn from the
16-QAM symbol alphabet. We assume perfect channel state
information at the receiver. Observe that as the complexity of
the SPA is increased via parameter ζ, i.e., by exploring more
paths not taken, its performance improves. For the system
considered here at a target bit error rate of 10−3, there is
a 7.5dB gap between the V-BLAST and ML performance
profiles. Setting ζ to 0, 1, 2 and 4 allows the SPA to reduce
this gap to 4.7dB, 2.4dB, 1.2dB and 0.6dB, respectively.

The time complexity of Algorithm 1 with ζ = 0 is
O(M3), roughly comparable to one matrix inversion and a
few QR factorizations. For the extended SPA, this one matrix
inversion is still required, and the complexity of the remaining
operations is linear in ζ.
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Fig. 3. Bit error rate vs. average SNR per bit for 4:4 systems in independent
flat Rayleigh fading using uncoded coherent 16-QAM modulation. The
performance profiles of the proposed decoders (SPA with ζ = 0, 1, 2, 4) are
compared to those of the V-BLAST scheme (with MMSE detection, nulling,
cancellation and ordering) and of the ML sphere decoder.

Bit error rate performance is an essential validator of sub-
optimal detection schemes. In this work, we also consider
how their behaviour with respect to the underlying search
trees relates to that of ML detectors. Our analysis leads to
an advantageous and efficient new detector called the SPA. In
its development, we apply a general detection framework and
prove a useful theoretical result on the ability of single-pass
techniques to achieve ML detection. We simulated the bit error
rates attained by the SPA for several values of parameter ζ,
and demonstrated that all variants offer improved performance
compared to the popular V-BLAST scheme. In practice, the
gap from ML performance is observed to shrink significantly
even for very small values of ζ.
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APPENDIX

To prove Thm. 1, we begin by defining the central notion
of uniquely determinable variables.

Definition 1: Given received signal vector r, channel matrix
H, finite alphabet X , and σ∗, the squared distance from r to
the nearest lattice point in L, let the first and second nearest
(M−1)-dimensional affine sets to r in collection i be given by
Fi(αi) and Fi(βi), respectively, where αi and βi are elements
of X . Then we call variable si uniquely determinable (u.d.) if

σ∗ < d2 (r,Fi(βi)) . (11)

Because the squared distance to the second nearest affine
set in collection i is greater than σ∗, that to all lattice points
except those satisfying constraint si = αi are also greater than
σ∗. Therefore si can be determined uniquely, i.e., its optimal
value is αi, regardless of decisions made for the other symbols.

In the derivations to follow, let D denote the set comprising
the indicies of the u.d. variables and let an ordering Π be
called ensemble optimal (e.o.) if ν∗(Π) = M . Note that
given problem parameters r and H, an e.o. ordering may not
exist, i.e., if ν∗(Π) > M for all Π. However, over the entire
ensemble of problem realizations minr,H,Π ν∗(Π) = M . The
term ensemble optimal refers to those orderings that enable
this realization-independent optimum to be achieved.

Lemma 2: There exists an ensemble optimal ordering Π =
{iM , . . . , i1} if and only if exactly one node on each non-leaf
level of the induced search tree satisfies σ ≤ σ∗.

Proof: Because the leaf associated with the ML solution
always satisfies σ ≤ σ∗, so must its M ancestors. These lie
along a path, one on each non-leaf level of the tree. Also,
since ν∗(Π) = M , no other nodes may satisfy σ ≤ σ∗.

Lemma 2 captures the relationship between the existence
of an ensemble optimal ordering and the operation of an ML
detector called the Automatic Sphere Decoder (ASD) [11]. In
the context of the search tree, the ASD achieves ML detection
while only processing those nodes whose weights satisfy σ ≤
σ∗. Thus, when an e.o. ordering exists, the ASD behaves as
a single-pass detector. Next we consider the implication of an
optimal ordering on the existence of u.d. variables.

Lemma 3: If there exists an ensemble optimal ordering Π =
{iM , . . . , i1}, then D 6= ∅.

Proof: From Lemma 2, we have that only one node on
each non-leaf level of the tree satisfies σ ≤ σ∗. In particular,
at level 1, the squared distance to the second nearest affine
set in collection i1 must then satisfy d2 (r,Fi1(βi1)) > σ∗,.
Therefore i1 ∈ D and D 6= ∅.

Having established a sufficient condition for the existence of
u.d. variables at the first stage of successive detection, we then
observe the following about the behaviour of the SPA: Since it
computes the index of the first symbol to detect according to

i1 = argmaxi∈I d2 (r,Fi1(βi1)), as long as D 6= ∅, it must be
the case that i1 ∈ D. Thus, if an e.o. ordering exists, Algorithm
1 selects a u.d. variable for detection in its first stage.

At first glance, it may seem to follow immediately that in
such cases Algorithm 1 selects a u.d. variable at all stages.
However, there is a small wrinkle in that D may contain more
than one index. Therefore, the last tool that we need in order to
construct a recursive argument is to consider the consequence
of selecting any u.d. variable at the first stage.

Lemma 4: If there exists an ensemble optimal ordering Π
and a set of alternate orderings Πi = {Π \ i, i}, i ∈ D, then
Πi is ensemble optimal for all i ∈ D.

Proof: It suffices to show that only one node on each
non-leaf level of the trees T (Πi), i ∈ D satisfies σ ≤ σ∗.

Let j denote the position of i in Π, then the alternate or-
derings are given by Πi = {Π1. . . . ,Πj−1,Πj+1, . . . ,ΠM , i}.
Since si is a u.d. variable, only one node on level 1 satisfies
σ ≤ σ∗. To consider nodes on levels L = 2, . . . ,M − 1, first
recall that weights are non-decreasing along paths from the
root, therefore only the descendants of the one level 1 node
satisfying σ ≤ σ∗ need be considered.

For levels L ≤M − j, we apply Lemma 1 with index sets
KL \ i ⊂ KL to obtain that

d2 (r,FKL (sKL)) ≥ d2
(
r,FKL\i

(
sKL\i

))
. (12)

Since the smaller constraint index set can be written as
KL \ i = {Πi

M−L, . . . ,Πi
M−1} = {ΠM−L+1, . . . ,ΠM},

projFKL\i(sKL\i)
(r) is a level L− 1 node in tree T (Π), only

one of which satisfies σ ≤ σ∗. Combining this observation
with (12), we have that the node weights on these levels of
T (Πi) are at least as large as their counterparts in T (Π). Thus
at most one node per level can satisfy σ ≤ σ∗.

For levels L > M − j, the constraint index sets induced by
Πi and Π are identical. Therefore the node weights on these
levels of T (Πi) are equal to their counterparts on the same
levels of T (Π), only one of which per level satisfies σ ≤ σ∗.

Finally, since the leaf node associated with the ML solution
(and its ancestors) must meet the required condition, it follows
that exactly one node on each non-leaf level satisfies σ ≤ σ∗

and therefore Πi is ensemble optimal.
We can now prove the main result:
Theorem 1: If there exists an ensemble optimal ordering Π,

then Algorithm 1 returns an ML solution.
Proof: Since an ensemble optimal ordering Π exists,

Lemmas 3 and 4 establish that the index of the first symbol
si1 detected by Algorithm 1 matches with the first index of
an e.o. ordering Πp = {Π \ i1, i1}. It then follows that for
all nodes along the associated path to the ML solution, there
exists an e.o. ordering over the remaining variables.

The preceding argument can be repeated recursively, i.e., to
the selection of symbols si2 , . . . , siM

detected by Algorithm 1,
until it reaches the ML solution and terminates.

In other words, when an ensemble optimal ordering exists,
Algorithm 1 always detects symbols associated with uniquely
determinable variables and therefore its decisions are optimal.


