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Abstract. This note describes a standalone generic location event simulator that 
has been designed for the visualisation, scalability testing and evaluation of 
location-aware event-driven middleware and applications. 

1. Introduction 

Middleware for location-aware applications has recently emerged from several 
projects [1,2,3,4]. They are designed to manage real-world location events and to 
provide relevant high-level event streams to location and context-aware applications. 
The simulator described here has been developed in the context of the QoSDReAM 
middleware project [1,2]. 

Scalability and soak testing are difficult to perform in such systems, since the raw 
events are derived from physical sensor technologies, therefore requiring developers 
to move about in the manner that they would expect users to, under normal 
circumstances, in the user’s own environment. The frequency, distance and speed 
with which they move differs greatly and is application domain dependent, meaning 
there is a need for testing with a costly prototype deployment. Scalability testing also 
requires the deployment of large numbers of locatables – objects whose locations can 
be sensed. But it is not possible in a typical laboratory with a relatively small number 
of people, who do not move around as much as the thousands of travellers, staff and 
vehicles moving though an airport on a daily basis. It would be useful to be able to 
easily produce evidence that shows our middleware can scale to the specified number 
of events required by the end user. In addition, application designers often need to 
perform early evaluations of alternative designs before access to sensor systems is 
available. Beyond visualisation, analysis of the data would provide operations 
researchers and transport engineers with the information they need to be able to help 
in the architectural planning of buildings by predicting problems associated with 
crowds building up at bottlenecks for crowd control and safety of crowds etc. Thus, 
there is now a real need to be able to simulate an environment for testing large-scale 
sentient applications. We have developed an event-based simulator that models the 
behaviours of locatables in a simple model of a physical space. The simulator 
generates and sends simulated location events into a generic location event-driven 
middleware platform. 

This section discusses the reasons why such a simulator is needed in large scale 
ubiquitous computing middleware. Section 2 describes the overall architecture and 



the main components that are needed to build it. Section 3 goes in to more detail on 
the most important part of the simulator, the main components needed in building 
realistic behaviour in to the objects being simulated. Section 4 presents our results, 
and some discussion on what the results said about our location-aware middleware. 
Finally we discuss further work and conclude. 

1.1 Background 

Hybrid systems are dynamical processes that are heterogeneous in nature, having 
continuous parts, governed by differential or difference equations, and by discrete 
parts, described by finite state machines and automata, if-then-else rules, 
propositional and temporal logic. They switch between many operating modes, with 
mode transitions triggered by variables crossing specific thresholds (state events), by 
the elapse of certain time periods, or by external input events.  

Our simulator is based on a process-oriented hybrid simulation model of 
locatables’ behaviour in terms of physical movement as well as stoppages at queues, 
combining a continuous mechanics model, a discrete-event queuing model, a sensor 
model, and a few other supporting physics models. Each locatable has a mostly 
continuous behaviour until an event occurs suddenly changing its state (say in 
velocity or position) at discrete time steps. There has been no work using these 
techniques in ubiquitous computing, however it is becoming popular in control 
systems. In our simulator, locatables are modelled as generic vehicles, so we can 
adopt approaches from standard control theory problems of cruise control, brake-by-
wire and steer-by-wire systems. A major project in this area is Shift [5], a Berkeley 
Path hybrid automata programming language for Autonomous Guided Vehicles. The 
basic ideas for simulation and queuing theory, such as having a central scheduler and 
queue array-list, are common across all object-oriented discrete-event queuing 
simulators [6]. The traffic simulation part of the system (the computer simulation of 
traffic engineering models) can be classified in to microscopic (vehicle-vehicle 
interactions), mesoscopic and macroscopic (a continuous flow, for traffic flow 
analysis) categories. Most urban transportation problems are network related [7], and 
a lot of ideas for the queuing model part of the system, for example being able to 
specify delays on links, came from Berkeley’s ns2 simulator [8], however our system 
required locatables to be able to move freely in all three dimensions of space. 

Finally, although their requirements are the opposite of ours, we should mention 
Ubiwise (WISE/Nexus/Ubisim) [9] and QuakeSim [10] which aim to help 
demonstrate ubiquitous computing applications on PCs, simulating the user interface 
in 2D/3D, the sensors, the communications protocols, etc. Both decided to use the 
Quake III arena engine (as one of their requirements is for a realistic looking GUI), 
and QuakeSim has integrated the Context Toolkit [4] into itself (to gather, aggregate, 
interpret and publish the context information). In the conclusion of their recent ACM  
paper [11] the QuakeSim authors mention that their system is only “for demonstration 
purposes, and for small-scale testing during development” and that “for full-scale 
system tests, it is necessary to use the real system deployed in its real setting” – 
however that is not the case with the simulator described here, which has behavioural 
simulation of locatables. 



Fig. 1. Architecture of the generic location event simulator 

2. Architecture 

2.1 Main components 

The simulator has a central State Transition Controller which sets the initial positions 
of all the locatables, assigns tasks to them when their current task has just been 
completed, and manages the state transitions between the mechanics and queuing 
models. The Global Clock ensures all processes are running the same time-step, thus 
governing the overall frequency and consistent global ordering of events being 
generated, an important consideration when the simulator’s threads need to be 
distributed for scalability reasons. 

There are several different models in the system, discussed in more detail in the 
section on “Pluggable models and behaviours”. The Mechanics and Queuing Models 
help define the behaviour of the locatables, the Sensor and Environment/Error Models 
simulate the unique and dynamically changing physics present in the room (for 
example how ambient light can affect an infrared-based sensor such as the 
ActiveBadge system [12]), and the World Model is a model of the building’s 
geometry. 

2.2 Operation 

Once all the models are defined, and the simulator is run, the locatables enter and exit 
the world via the Mechanics or Queuing Model. In the examples implemented, they 
enter with a certain inter-arrival rate, and exit after a certain period of time, or when 
certain tasks have been completed. 
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At the bottom left-hand corner of Fig.2, the locatables enter the simulator’s queue1 
via the State Transition Controller, at times governed by a set inter-arrival-rate. After 
waiting in the queue and being served (governed by the queue length and a set 
maximum serving rate), they exit the Queuing Model and enter the Mechanics Model, 
again via the State Transition Controller. In this model, they move around the World 
Model avoiding collisions, either at random or governed by their set tasks, defined in 
their behaviour modules (such as go to shops area, browse around this area for 60 
seconds, enter the nearest shop, wait there for 30 seconds,). Finally at a specified time 
they move towards that locatable’s departure gate, entering Queues 2&3, at the top 
right-hand corner of Fig.2. This is another set of state transitions, controlled by the 
State Transition Controller. 

Fig. 2. A screenshot of an example simulation run of the simple airport terminal demo 

3. Pluggable models and behaviours 

Genericity and pluggability are the most important requirements for this software. 
The simulator runs as a stand-alone program, so it is very easy to forward location 
events, to any middleware that needs to be tested, from a completely pluggable sensor 
layer. Its generic queuing model has pluggable statistical distributions to allow for 
more complex, customisable inter-arrival behaviour, and its generic mechanics model 
has pluggable equations to allow for realistic high-level movement-based behaviours 
of any locatable, so it is possible to extend it to model vehicles moving outdoors. The 
code will soon be open-sourced, so that developers and researchers will have the 
ability to plug it in to other middleware, and to encourage further development of 
plug-ins of sensors and behaviours. 

3.1 World model 

The simulator generates events, and is intended for use with any middleware that will 
perform the appropriate calculations on those events. There is a need for a clear world 
model, to make it easier for application programmers to build worlds (such as an 
airport, railway station, etc), by simply specifying room geometry, centre-of-door 
locations etc, that use our simulator to generate locatables in that world. 
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This model of the real world environment needs to be consistent with the 
middleware being tested. In the QoSDReAM middleware framework, the model has 
static regions (2D geometric shapes) stored in an object database defining room 
geometry (walls, doors, stairs, escalators, lifts, etc), and dynamic regions defined 
dynamically via events from the underlying (simulated or real) sensor subsystem, 
around itself for every monitored physical object. When an overlap occurs between 
two significant regions, an event is fired up to the applications that have subscribed to 
that particular event type (and the necessary event filtering is taken care of 
automatically). 

3.2 Sensors 

The simulated event streams have exactly the same format as the events that the real 
world physical sensors generate, and thus it is impossible for the middleware to tell 
them apart. It is possible to interchange, or even to mix, real and simulated events in 
real time, to serialize the time-stamped event stream into a file for graphing, and to 
replay them afterwards in real-time which is useful in tracking bugs that occur at run-
time. 

Users have been able to generate a variety of sensor event types, of varying 
resolution and frequency, because of the regions abstraction discussed above, 
including sensors which measure geometric position (ActiveBat [14]), symbolic 
position (the room-contained ActiveBadge [12]), vision (TRiP [13]), proximity 
(login/keyboard monitors), etc. 

3.3 Human behaviour 

Simple behaviours are composed into more complex composite behaviours (that can 
include behaviour based on position, time, locatatorId, locator type, etc), and one of 
these, including all its state information about time etc, can be assigned to a locatable, 
or to a set of locatables based on their defined role, as their current task. These roles 
are similar to defining locatable-types, such that all locatables of those types take on 
the behaviours specified to that type. The behaviours implemented so far are: 

Initialisation and  queue behaviour 
The queuing model is fairly generic. The positions and characteristics of the 
queues in the system need to be specified, including their positions 
(x,y,width,height), λ (the birthrate in a Markov chain) along with its probability 
distribution for a pseudo-random inter-arrival rate (oscillates between the chosen 
1/λ and 0), µ (the service time of the server), their topology (MM1’s in series, 
MMn, a branched MMn network with specified probabilities for the branch 
directions, etc), a buffer limit, and to specify the event to be sent to the mechanics 
model when a locatable has gone through that queue. 

Straight-line behaviour 



This is the simplest behaviour in the mechanics model, and locatables continue to 
move in a straight line, until their collision avoidance algorithm changes the path 
because an obstacle was detected. 

(Sequence of) goal-seeking behaviour 
A locatable tries to travel, via the shortest-path-route whilst avoiding obstacles, 
towards a specified goal. An extension to this behaviour is to specify a sequence of 
bounded random sub-goals, which helps to create believable movement, and goal-
timeouts were set to make sure locatables never become stuck within a room. 
Automated sub-goal calculation, based on an “all-possible-movements-plane”, 
will be implemented as part of an overall framework. 

Finally, the basic collision avoidance algorithm always exists underneath all the 
different behaviours mentioned above (however, this too is pluggable), as we assume 
all locatables will always try to avoid colliding with each other. The algorithm makes 
changes to the velocity based on differential equations for realistically feasible motion 
of any generic locatable, with an exponentially increasing slow-down as the locatable 
gets nearer the obstacle, and with different locatable-types having different turning 
rates and turn radii – for example, humans can turn abruptly on the spot to avoid 
moving locatables, and realistically detect static objects (walls) earlier, slowly 
applying only small changes to the path, so the end result are locatables moving 
parallel to walls, which is what happens in real-world corridors. 

 

Fig. 3. An example run – graph showing only 3 of the 50 locatable’s tracks. The axes are 2D 
space (x, y) and time (t) 

4. Results 

The results here consist of microsimulation (mechanics and queuing theory) and 
macroscopic (fluid flow approximation [15]) models. The simulator can output results 
to a file whilst running in a GUI-less mode, to speed up execution on low-end 
computers and to make sure that the most accurate performance results possible are 
obtained for the middleware being measured. Each locatable runs in its own thread, 
which allows it to scale to very large spaces with a high number of events, and to also 
have a distributed implementation. The main limitation to scale is the number of 
locatables that can fit in a given area at any one time. Obtaining architectural data, we 
assume average walking speeds of 5 ft/s (≅ 1.5 m/s), and set the area to that of Atlanta 



Airport (529,547m2). This demo was not tested against real world data, however this 
is being resolved (section 5). 

What can be seen in Fig.3 is that locatables try and spread out to avoid the crowds 
that inevitably build up in the centre, and to minimise the probability of a collision 
occurring. They only walk across the centre when executing a shortest path goal-
seeking behaviour. Locatables enter the mechanics model (from queue1) at different 
times, with Locatable44 not even entering (because t=120 is too low for it to enter 
and exit queue1, although it did arrive at queue1 at t=40), and Locatable14 not getting 
near to queue2 because it gets blocked by all the other locatables that were nearer at 
t=120. 

In Fig.4, the difference between the two sets of bars indicates the time spent in 
queue1 for each locatable, which is growing because we specified λ=0.05, µ=0.067. 

 

Fig. 4. Analysis of the effect of build ups in the Queue1 of the example run. λ=0.05, µ=0.067 

Fig. 5. Macroscopic fluid flow analysis 

Fig.5 demonstrates the kind of analysis possible with macroscopic fluid-flow 
approximation. The first graph of Fig.5 shows that between a density of 0 and 1 
locatable/m2, speed increases from 0 m/s to a maximum (as expected, because with 0 
locatables, speed is 0, and with only 1 locatable in the unit square area, there is 
nothing to slow it down), then decreases exponentially as more locatables crowd the 
unit square area (the collision avoidance algorithm forces the locatables to slow 
down). The linear graph (dotted-line) shows a well-known approximation to the 
speed-density relation, where this slowdown would continue to a complete standstill, 
like bumper-to-bumper traffic jams in the case of vehicles, at (2.5, 0). The 
“backward-S” curve (dashed-line) is another well-known graph, based on 
observations of cars on highways. The second graph clearly shows that there is a 
maximum flow rate, and we define the x-y points being where there is optimum 
density and speed. The final graph shows that flow increases until it reaches a 
maximum (at optimum speed and density), then decreases to zero reaching the jam 
density mentioned above. 
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5. Conclusions and Future Work 

The successful test of the simulator helped convince us that having large numbers of 
simple pluggable locatable behaviours is the correct architecture for a simulator 
supporting the design, development and testing of ubiquitous computing applications. 

More behaviours are being added by our group and soon by others (currently being 
developed are “moving target tracking” and “fluid flow following”). The airport demo 
was not tested against real-world location data, so we are now comparing the latest 
version of this simulator against ActiveBat[14] data from an office environment 
(AT&T Labs, Cambridge). Finally, we may work on more advanced control theory, 
such as model verification of the hybrid system, and more integrated behaviour and 
feedback loops using adaptive, neural, and fuzzy-control systems. 
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