
Engineering a User-Level TCP for the CLAN Network

Position paper

Kieran Mansley
Laboratory for Communication Engineering

University of Cambridge
Cambridge, England

kjm25@cam.ac.uk

ABSTRACT
As networks and I/O systems converge and the bandwidth of
networks increases, conventional approaches to networking are
struggling to deliver the performance and flexibility required.

CLAN (Collapsed LAN) is a high performance user-level net-
work targeted at the server room. It supports RDMA and pro-
grammed I/O (PIO). We have implemented a set of IP based pro-
tocols at user level, and shown how true zero copy transmis-
sion (without modifying the sockets API) and reception can be
achieved.

In this paper we discuss the problems associated with placing
protocol stacks at user level and the architectural decisions re-
quired to obtain high performance. We also introduce our work
using the network gateway which connects CLAN to the Internet
to assist a server cluster in protocol processing.

1. INTRODUCTION
The line speed of local area networks has increased by orders of

magnitude in recent years. As it reaches a gigabit per second, the
network itself is often no longer the bottleneck in transferring data
from one host to another. Instead, the overhead of moving the
data between the application and the network [25] and performing
protocol processing [23] has become critical.

The overhead of traditional networking is due to a number of
factors [11] including copying data between buffers, demultiplex-
ing, interrupts, system calls, and inefficient protocols. These use
up CPU cycles that could be doing useful work for applications.

Networks are starting to be used in a number of unconventional
ways, and the roles of networks and storage are converging. For
example, iSCSI [22] is an emerging standard aimed at Storage
Area Networks. It allows SCSI commands to be issued over
TCP/IP to remote devices. This presents problems for the con-
ventional structure of operating systems. Each request for data
by the application must go through two stacks (filesystem and
network) in the kernel and there is a dependence between them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGCOMM 2003 Workshops, August 25–29, 2003, Karlsruhe, Ger-
many.
Copyright 2003 ACM 1-58113-748-6/03/0008 ...$5.00.

This leads to a more complex implementation and reduced perfor-
mance. To perform an iSCSI operation requires many more CPU
operations than an equivalent SCSI one. To address this problem
there have been attempts to perform TCP/IP on a processor on the
Network Interface Card (NIC), and have it present a SCSI inter-
face to the operating system. This dramatically increases the cost
of the network hardware. McAuley and Neugebauer [24] suggest
using virtual machines as an alternative to increasing the number
of processors.

The recent IETF draft proposals for Remote Direct Data Place-
ment (RDDP) and Remote Direct Memory Access (RDMA) [5]
describe another unconventional way of using networks. This
style of transfer is becoming increasingly important in high per-
formance networking, and has again motivated the move toward
placing processors on NICs. Co-processors (while attractive for
specialised operations such as graphics) are being increasingly
deployed in I/O systems. Although this removes load from the
main CPU it may not be beneficial in the long term as co-processors
continue to lag behind the speed of CPUs. Co-processors also add
latency to the data path in the NIC.

User-level networking has the potential to address many of
these problems. In this style of networking, the application is
able to communicate directly with the NIC, bypassing the oper-
ating system for the majority of operations. Similarly the NIC is
able to deliver received data directly into the application’s buffers.
We have developed a user-level network which provides an API
with similar semantics to the above IETF draft standards. We
have also used this network to implement a suite of protocols at
user level.

The IP suite of protocols (including TCP, UDP, ICMP) are used
for many Internet communications, and it is important that they
perform well. Despite a significant amount of research into effi-
cient implementations of user-level protocol stacks [21, 31] there
are still many areas that have not been fully resolved.

In this paper we describe how we have addressed the issue of
providing efficient protocol implementations for use in innovative
networks. In particular we have created a high performance suite
of IP based protocols for the CLAN network. Our work is fo-
cused on TCP/IP in a server cluster network and bridging this to
the Internet. Section 2 gives an overview of the hardware and key
software abstractions that the CLAN network provides. In Sec-
tion 3 we describe the architecture and structure of our user level
protocol stack. Section 4 describes our approach to user level re-
ception, while Section 5 deals with user level transmission and
introduces how we have developed a system to use the gateway
to assist the cluster nodes in protocol processing. Finally we out-

line how we plan to measure the performance of this setup and
highlight future work.

2. THE CLAN NETWORK
CLAN is a low latency, high performance, user-level network.

It has a raw bandwidth of 1Gbps. Its primary targets are the server
room and cluster computing.

In the rest of this section we provide a brief introduction to
CLAN. In previous work Riddoch et al have published detailed
descriptions of the hardware and software support, as well as
Tripwire [30] (the synchronisation mechanism), and its use to
support a variety of protocols and applications [28] including
VI [29].

2.1 Low Level Data Transfer
At the lowest level CLAN is a Distributed Shared Memory

(DSM) interface. Regions of memory can be mapped from one
host across the network to another allowing very low latency
transfers using standard processor write instructions. In this way
it is similar to the SHRIMP [6] network which uses reflective
memory. In addition to Programmed IO (PIO) the CLAN NIC
also provides a DMA engine to allow longer transfers to be of-
floaded from the CPU.

The format of data packets on the wire is similar to write bursts
on a memory bus. The packet consists of a start address in mem-
ory, followed by the data to be written to that address. There is
no length field. This is an interesting property, particular when it
comes to switching; packets can be arbitrarily split or merged part
way through transmission (as you do not need to alter the header).
The switch is therefore able to prevent long packets hogging con-
tended ports. Small packets can be combined in the network to
reduce overheads (this is particularly likely to happen when con-
gestion occurs, so increasing efficiency and relieving the conges-
tion). It also enables NICs to start transmitting as soon as data is
available, without waiting for an entire packet.

The prototype network does not provide any security against
malicious code writing to apertures that belong to other endpoints.
This would be essential in a commercial implementation, and a
solution similar to that developed for Hamlyn [37] could be used.

The API for CLAN takes a different approach to other user-
level networks [7, 36, 32]. It presents a single, low-level network
interface that supports communication with low overhead and la-
tency, high bandwidth, and efficient and flexible synchronisation.
More complex interfaces can be built on top of this without con-
siderable additional overhead. It is implemented using simple
hardware without on board processors.

Although at the lowest level CLAN is a DSM network, it is not
intended that the normal DSM style of communication is used by
applications. Instead, the DSM support is used as the base for
building higher level communication abstractions.

2.2 Distributed Message Queue
One of these abstractions is the Distributed Message Queue

(DMQ) as shown in Figure 1. It is essentially a flow controlled
messaging abstraction, and is described here in its simplest form.

A DMQ is similar to a circular message queue with two point-
ers, one to indicate the current read position (read_i), the other
to indicate the current write position (write_i). Both the sender
and receiver keep a “lazy” copy (in the shared address space) of
the pointer they are not responsible for. The buffer for the circu-
lar queue physically resides in the memory of the receiver and the

read_iwrite_i

lazy_write_i
Q

ueue entries

lazy_read_i

Remote
aperture

TripwireHost
memory

ReceiveSend

Figure 1: A Distributed Message Queue

sender has a mapping of it in its own address space. By writing
packets to these mappings and updating the queue pointers the
two nodes can communicate.

To perform transfers in this way requires only a few processor
write instructions. As a result it represents very low overhead.
The amount of physical memory required for the buffer is also
small (around 10KB for full Gbps throughput) due to the low
latency.

Synchronisation is performed using Tripwires [30] which pro-
vide a low-overhead mechanism for notifying the application of
changes to the queue.

This user-level API can also be applied to other server room in-
terconnects. In particular we are working with a Gigabit Ethernet
based system called EtherFabric from Level 5 Networks Ltd. [1]
This new hardware should allow easier implementation and has
the potential for further interesting experiments with the technol-
ogy described in the rest of this paper.

2.3 CLAN Hardware
We have a prototype hardware implementation consisting of a

number of Network Interface Cards (NICs), two 5-port switches,
and a bridge (between CLAN and Gigabit Ethernet) in develop-
ment. The current hardware has some weaknesses (for example
the DMA engine only allows a single request at once, and gener-
ates an interrupt after each transfer) but represents a viable plat-
form for research into software support for user-level network-
ing. These weaknesses will hopefully be solved by using the new
hardware available from Level 5 Networks.

While the hardware used is proprietary, it is all fabricated us-
ing cheap off the shelf components, and as a result would com-
pare favourably to existing Gigabit Ethernet NICs in terms of cost
when produced in volume.

The bridge was still under development when AT&T Labora-
tories Cambridge Ltd closed in April 2002. As a result, it is cur-
rently unfinished. To allow bridging experiments to continue we
are using an Intel STL2 dual processor server PC equipped with
CLAN and Gigabit Ethernet NICs to perform this role. A new
version of the NICs designed to run at 3Gbps was also in the
pipeline when the laboratory closed.

All the hardware used by CLAN is simple and lightweight
compared to other similarly performing networks. This results in
a more scalable implementation. Because there are few on board
resources used by each endpoint (Tripwires being the only one)
and no on board processor, the hardware itself does not impose
as many limits on the number of concurrent connections as other
technologies. Co-processors on NICs results in a more complex
data path, and as network speeds are currently increasing by or-
ders of magnitude every few years (outstripping the increase in
speed of specialized processors) this is likely to become more
critical.

3. STACK ARCHITECTURE
Traditional kernel protocol stacks are executed in a different

context to the application they are serving. The large overhead
associated with context switching is one of the primary factors
that motivated the move to user-level networking. However, ini-
tial attempts at developing user-level network stacks have used
a similar architecture to their kernel ancestors [8]. To ease im-
plementation (many user-level stacks are direct ports of kernel
stacks [26]) the protocol processing generally occurs in a sepa-
rate thread to the application. This has a number of disadvan-
tages. Firstly, although you have exchanged context switches for
thread switches these are both considerably more expensive oper-
ations than a function call. Secondly, protocol processing is done
at some undetermined time after an application issues a request
to send or receive data (at the mercy of the scheduler), and this
can lead to artificially increased latency. TCP’s window size is
sensitive to latency, so by acknowledging in a timely manner you
will increase the window, and increase the throughput.

Although separate threads for different tasks make dealing with
multiple connections, timers, etc, considerably easier, it was de-
cided for the CLAN user-level TCP stack to attempt to do the
majority of protocol processing in the same thread as the applica-
tion.1

The CLAN TCP/IP suite is based on lwIP [14, 15], a lightweight
implementation of IP, TCP and UDP. It is designed for low-memory
systems, such as embedded processors. We have heavily modi-
fied it to support high performance rather than its design goal of
low memory usage. In particular the threading model has been
changed. lwIP was chosen for its clean and simple code base
which easily adapted to our needs. This has proved considerably
easier than taking a higher performance stack (such as the Linux
kernel stack) and attempting to re-architect it at user level.

lwIP has a linear model for its threads as shown in Figure 2.
There is a thread for the application and sockets interface, a thread
for the TCP/IP stack, and a thread for the network interface. Data
must pass through each of these threads when either sent or re-
ceived. It can function in an operating system without thread sup-
port, but in this case it cannot use the sockets API and it still re-
quires some external path of execution to call its timer and incom-
ing packet functions at the appropriate times. Because all TCP/IP
processing is done by one thread, all accesses to the TCP/IP stack
are serialised through the use of message queues, which require
semaphores to provide coherency.

For the CLAN TCP/IP suite this has been adapted so that all
protocol processing and network card access is performed in the

1This approach is becoming popular in other areas of computing
where high performance is required. For example omniORB [33]
avoids thread switches on the call path by performing all work in
the calling thread.

Application

TCP/IP Stack Timers

Key:

Thread

Thread

boundary

Data path

Network Interface

. . .

Figure 2: lwIP TCP/IP Architecture

TCP/IP StackTimers Network Interface

. . .

Application

. . .

Key:

Thread

Thread

boundary

Data path

Figure 3: CLAN TCP/IP Architecture

same thread as the application (with the exception of timers, which
have a separate thread; we are currently investigating how TCP
timers can be more efficiently implemented). As a result, the
data path has no thread switches. As each application thread can
access the TCP/IP stack directly without having to go through
a semaphore controlled message queue there are fewer locking
overheads (although some effort had to be expended to ensure the
TCP/IP code was thread safe). This has lead to an architecture
as illustrated in Figure 3 where rather than the components be-
ing arranged in a linear fashion they are arranged with the CLAN
network code acting as a hub. The TCP/IP stack, instead of being
the means by which the application accesses the network (via the
sockets API) is now a tool for the network interface to use, and
the application accesses the CLAN network code directly (but
still via the sockets API).

To support this change in the way protocol processing activity
is driven does not require any modifications to the application,
other than to link against a different shared library. (Some mod-
ifications are required however to achieve the separate issue of
zero copy reception of data as described in Section 4.2). A com-
mon criticism of other user level network libraries is that applica-
tions cannot use select() with a combination of the user-level
socket file descriptors and traditional OS file descriptors. In our
case this is possible due to the way the asynchronous event queues
that select responds to are implemented (see [30, Section 3.5] for
further details), and is invisible to the application.

A good example of the implications of the change in threading

to the stack is the implementation of blocking reads and writes.
In normal circumstances these would block at the thread inter-
face between the application/sockets API and the TCP/IP stack.
For example, writes would block waiting for space in the TCP
send queue. By removing this thread boundary we are no longer
able to block in this way. Instead, because the stack is execut-
ing in the same thread as the application, we use the processor
time that would otherwise have been released (due to the applica-
tion blocking) to perform the protocol processing. This can con-
tribute to reduced latency as protocol processing occurs as soon
as something is queued for writing rather than when the TCP/IP
stack thread is next run. For receives, protocol processing is done
lazily (i.e. when the application asks for it). This should result in
improved cache performance as the data is touched by the stack
just before the application makes use of it. The advantages of this
technique have been demonstrated by Druschel & Banga [13].

Implementing this change in architecture has been interesting.
Often changing assumptions about the way things are organised is
a good way to expose the limitations and fragility of code. How-
ever, the stack we have chosen has coped very well with this or-
deal. The most interesting problems encountered have been:

Connections. Having a connection oriented network (CLAN) be-
neath a connectionless protocol (IP) brings us advantages
in demultiplexing, but in turn presents its own problems.
For incoming packets we have more knowledge than is
usual (because we know which connection the packet ar-
rived on) and we need some way to propagate this knowl-
edge into the protocol stack so that it is not deduced again
in the normal way. Similarly, for outgoing packets the ap-
plication layer knows which socket a write has occurred
on, and propagating this knowledge to the network layer
is helpful. We have provided hooks into the data struc-
tures that track each packet to allow this information to be
passed. To complicate matters there are also numerous spe-
cial cases (e.g. a reset sent by the TCP stack) for which
there is no mapping to a socket.

Understanding all of the interfaces involved. The protocols are
generally well documented, but the sockets interface has
evolved over many years. Its documentation (understand-
ably) focuses on how to use it in the simple case, rather
than how to understand all the different ways it can be used
in and the significance of the details.2

Optimising the common case. Making the common case (data
reception and transmission) fast is good, but it can result
in increased complexity for less common operations. To
allow us to judge the overall benefit of a change we have
developed a profiling system to graphically compare the
time taken to do a particular operation in two (or more)
different implementations.

API to the network interface. In traditional architectures the API
between IP and the network interface is simple (in essence,
one function to call to transmit data, and another to call
when data has been received). We have changed the ar-
chitecture to make the network interface code a hub for all
communication with the application. As a result the code
must now provide a much richer interface and make this
accessible to both the application (through sockets) and the
protocol stack.

2Just like footnotes, “The devil is in the detail”.

4. USER-LEVEL DELIVERY
One of the most important differences between traditional net-

working and user-level networking is the way incoming data are
delivered to the application.

In the kernel-based architecture incoming packets are delivered
to a pool of packet buffers, which are then examined by the ker-
nel to determine the application for which they are destined, and
queued waiting for the application to perform a read. The data
must be copied from the kernel packet buffers to the application
memory space.

User level networks have taken a variety of approaches to de-
livery. The most difficult part is the one that was performed by
the kernel - that of demultiplexing the incoming packets; i.e. de-
termining which application it should be delivered to. Some user-
level networks have left this functionality in the kernel [35, 16].
Some have even chosen to leave IP in the kernel [8], but in doing
either of these they take a large performance hit compared to a
pure user-level network. Others have chosen to implement this
(and possibly other) functionality in the NIC itself [26, 7], but
this requires more complex (and therefore expensive) hardware.
Also, as the NIC must store state for each connection, the avail-
able hardware resources place a limit on the number of concurrent
connections that can be supported.

In our implementation we were keen to avoid both of these
pitfalls, and this is simplified by the physical network. A trans-
fer within a CLAN network is analogous to a write burst on a
memory bus, or an RDMA Write. Each write consists of a start
memory address where the first word should be written, and is fol-
lowed by the data. This means that the network is send-directed,
whereas the majority of others are receive-directed; i.e. it is the
sender that determines the final location (in the receiver’s mem-
ory) of the data, not the receiver. This makes the receiver’s role
in the demultiplex much simpler. However, in order to ensure
the data ends up in the correct place the receiver must inform the
sender where the data should go in advance. (This is performed
as part of connection setup). This style of transfer has recently
been proposed as a draft standard for Remote Direct Data Place-
ment (RDDP) and Remote Direct Memory Access (RDMA) by
the IETF.

4.1 Implementation
The model used to transport IP over CLAN is built around

a structure similar to the Distributed Message Queue discussed
in section 2.2. A circular queue is shared across the network,
with the remote host writing data, and the local host reading data.
There is one DMQ (or more) per socket. For TCP/IP there are es-
sentially two operations that need to be performed on each packet.

• Firstly, it must be processed by the relevant protocol stacks.

• Secondly, if it contains valid data, it must be passed to the
application.

As a result the queue in this case requires three pointers, rather
than normal two (read and write). The write pointer is the same
as before, but we now subdivide “read” into a protocol pointer
and a delivery pointer, which keep track of the respective tasks’
progress.

In this way, we are able to perform both delivery and proto-
col processing directly on the data, in place, without copying it.
It also separates the act of protocol processing from the act of
delivery.

We also separate the headers from the payloads and transfer
them into two separate queues. In this way we prevent the pay-
load queue becoming fragmented as headers are processed and
discarded in advance of the application reading the payloads. It
also allows for some optimisations on the headers queue as the
entries are all fixed size and small enough to be efficiently trans-
ferred using PIO instead of DMA. Synchronisation is performed
on the headers queue.

Should an out of order segment be received it is copied out of
the DMQ to prevent it causing delays for in order packets. This
copy prevents additional complexity on the fast path for received
data. It is subsequently processed in the normal way.

As the application is able to access the queue memory directly,
we need some mechanism to disguise the circular structure of
the queue. To do this, we use a Virtual Ring Buffer [19], where
the physical pages that make up the queue are mapped into two
adjacent pages in virtual memory. The application (or TCP/IP
stack) is then able to read the entire contents of the queue starting
from any position within it. Therefore, packets which wrap round
from the end to the beginning do not require special treatment,
and no alterations to the application or stack are necessary.

4.2 Extensions to preserve data
A copy is also necessary unless the sockets API is modified to

return a buffer with the received data in, instead of taking a buffer
from the application and filling that with the data. In this case,
should a server application wish to preserve the received data it
will still need to copy it out of the queue to make space for more
incoming packets. There are two approaches that can be taken to
freeing space in the queue. The less robust method is to assume
that when the application next performs a read operation on that
socket, it has finished with the data from the previous read, and
we can now release that space in the DMQ. Alternatively if this
assumption is not valid the sockets API also requires modifica-
tion to add a call for the application to signal that it is now safe
to reuse that space. However, for many server applications this
assumption is valid as the stream of incoming data is only pro-
cessed once and then immediately discarded or written to a more
permanent medium.

If the application knows it will need to preserve the data in
memory, and it does not wish to take the performance hit of copy-
ing the data, it can publish an area of memory that it would like
the payloads to be delivered to. Then, instead of the payloads
going into a circular queue they can be delivered directly to the
application’s chosen location. The headers are removed and pro-
cessed in a circular queue as before.

Although more efficient for some servers, this does require
some changes to the application and modifications to the sock-
ets interface in order to publish the buffers in advance. Similar
extensions were made to the API for WinSock2.

5. ZERO COPY TRANSMISSION
So far we have only examined the changes we have made to

support zero copy reception of data. Zero copy transmission has
a different set of associated problems. Existing attempts at zero
copy TCP [10, 9] have either modified the sockets API, or used
copy-on-write page flipping.

The sockets interface was not designed to perform zero copy
operations. When send() is called it returns once the data has
been placed on TCP’s send queue. There is still a considerable
amount of protocol processing to be done before the packet is

transmitted, and it could be some time before it is safe to discard
the data. As a result the stack is required to copy the data to pre-
vent it being overwritten by the application. Even if this were not
the case and the buffer could be guaranteed until the data are writ-
ten, many high performance network cards use DMA to transfer
the data to the network and the DMA request may not happen im-
mediately. The data must be preserved until the DMA has com-
pleted. Even if you achieve this without copying, you still need
to preserve the data until a TCP acknowledgement is received in
case you are required to retransmit. This will take at least one
round trip time (RTT) and when communicating over the Internet
RTTs can be large.

In the rest of this section we discuss a number of ways to ad-
dress this issue.

5.1 Update the Sockets API
Firstly, because the problem stems from a weakness in the

sockets interface the obvious choice would be to remedy this by
changing the interface. It needs some way to notify the applica-
tion when it is safe to re-use the buffer. Many zero-copy APIs
have been developed [31] to do just this, including the IEEE stan-
dard for Asynchronous I/O [20]. Many would argue in favour of
this option; we should not be expending effort to provide workarounds
for outdated APIs. However, while that might be an ideal, in re-
ality, if there is a solution that (all else being equal) can fix the
problem without changing the API, it will be more popular. The
resistance to changing APIs should not be underestimated.

5.2 Alterations to the transport protocols
We could also argue that retransmits by servers are, in many

cases, unnecessary. Were this burden removed from the server the
need to wait for an ACK would go away. Where the data being
served are static, the client could simply re-request any erroneous
or missing data, especially if Application Level Framing [12] is
used. Where the content is dynamic the client would have to en-
sure that it received a coherent set. There may be cases where this
is not feasible and so, in those at least, retransmits are desirable.

This could be realised by using UDP as the transport protocol
in place of TCP and many modern servers and clients (for exam-
ple RTP or NFS) effectively do just that.

5.3 Blocking semantics
The application will (or at least can) re-use the buffer as soon

as the send() returns. Therefore, if we do not want the buffer
to be re-used we do not return from the send() call. Instead of
blocking until the data have been queued on the TCP send queue,
we could block until the data have been sent, or the DMA opera-
tion has completed, or even until the TCP acknowledgement has
been received. However, blocking until a TCP acknowledgement
is received for each send() in the worst case reduces TCP from
a streaming protocol to a ping-pong protocol. Only one send()
per socket can be in-flight at any one time.3 Because of the single
threaded nature of our TCP stack it is easy to experiment with this
change in blocking behaviour. It was observed that moving from
a system where it blocks until the DMA has completed to a sys-
tem where it blocks until an acknowledgement is received results
in at least half the throughput.4 It is clear this is not suitable as a

3This is not the same as a single packet being in-flight at once,
as applications often pass large blocks of data in a single write
operation.
4The exact degradation will be strongly related to the ratio of

solution, but blocking the send() until the DMA has completed
may be justifiable. This would solve the problem for transport
protocols such as UDP where retransmits are not supported.

If we do this, we still need some way to guarantee access to the
data for protocols which do perform retransmits. We have started
to look at ways that the data could be copied with low overhead.
These are all based around performing the copy at the same time
as writing the data to the network, and so absorbing some of the
overhead of the copy into the network write. (They are essentially
very similar operations, especially in a distributed shared memory
based network such as CLAN).

5.4 Memory Multicast
Essentially what we are trying to perform is “memory multi-

cast”. We would like to write data to the network’s memory map-
ping and to a physical memory mapping in the same operation.
Without support for this from the hardware it is difficult to imple-
ment directly, but we have considered a number of ways in which
existing hardware may be used to achieve this effect.

One of these is based around abusing the Intel architecture
when PIO is used5. The Intel Pentium Pro (and subsequent) cores
feature a RISC like architecture. x86 instructions are executed by
breaking them into smaller, simpler operations called micro-ops.
These micro-ops are then placed into a pool and can be scheduled
out of order to achieve more optimal use of the CPU’s resources.
There are five execution units to carry out these micro-ops, and
so they can be executed in parallel. As a result, if x86 instructions
to output the data from memory to the network, and x86 instruc-
tions to copy the data from memory location to another are inter-
leaved, there is a reasonable chance that these will be optimised
to occur in parallel. However, both writes will need to traverse
the front-side bus, and this could limit the performance. Also,
as the micro-ops have no visibility outside the CPU the program-
mer has no control over the order of their execution, and in any
case it relies on this particular implementation of the x86 archi-
tecture. As a result, we have chosen not to attempt to implement
this suggestion, but it should be seen as an illustration of how,
when performing one write, doing another at the same time may
be less than twice as expensive.

5.5 Write-back from NIC
The NIC could write outgoing packets back to memory as well

as to the network. While this would not be limited by the re-
sources available on the NIC, it would clearly double the PCI and
memory bus usage. It would also be hard to schedule it so that
you had nice bursts in both directions. In particular when using
PIO to write data to the network, the outgoing writes would take
priority over the incoming ones, and the NIC would soon run out
of FIFO space. As a result, this is not an acceptable solution.

5.6 NIC Assisted Retransmission
A more feasible solution would be to add an expansion card to

accompany the NIC. This would be relatively simple, consisting
of an FPGA, some memory, and a PCI bridge. This card would
snoop the PCI bus, watching for writes to the network. It would
store the data associated with such writes in its RAM. (While not
used for retransmission, a similar approach [34] has been sug-

bandwidth to latency of the network.
5Rather unusually we are using PIO to write data to the network
for small transfers as this gives much higher performance than
DMA

gested for related problems.) Should a retransmit be necessary
the stack could then request the expansion card DMA the data to
the NIC, and in so doing perform the retransmit. This achieves
preservation of the data with no additional CPU load and no ad-
ditional bus bandwidth consumed, but it does have a number of
disadvantages. Firstly, there is the expense of the extra hardware
required. This could be reduced by integrating it into the NIC but
it would still dramatically increase the hardware costs and limit
scalability, especially for a simple card like the CLAN NIC.

5.7 Copy On Write
A different approach would be to only copy the data if neces-

sary, and avoid it in all other cases. We only need to copy the data
if the application tries to re-use one of its recently used buffers.
(Many servers will be dealing with static content, and so may
never do this.) It would be straightforward to implement a copy-
on-write system where when a buffer was passed to the stack that
page was marked as “in-use” until the corresponding TCP ac-
knowledgement is received. If the application tries to write to
that page in the meantime the page would be copied. Clearly this
requires manipulation of the page table entries by the protocol
stack. This would be easy if the stack were in the kernel (and in
fact this has been used by kernel stacks [17]), but from user-level
we would either have to make a system call (which would negate
much of the benefit of having the stack at user-level) or we would
have to perform user-level memory management and page table
manipulation, which in turn would need selective TLB flushing.
It would also only give benefit to those applications who normally
would not require the buffers to be copied. While many may fall
into this category, there are some notable exceptions (particularly
benchmarks) which would not. In these cases you would be worse
off than if you had just copied the data to start with because of the
additional overhead in page table manipulations.

A

B C

D

A

B

CD

Gateway

Server

Node

Client

Node

CLAN

NIC

GigE

NIC

Retransmit

Buffer

(a) Retransmit requested
by server

A

C

D

A

B

CD

Gateway

Server

Node

Client

Node

CLAN

NIC

GigE

NIC

Retransmit

Buffer

(b) Retransmit requested
by gateway

A is the incoming data path, B is the retransmit
request path, C is the outgoing data path, and D is

the retransmitted packet path.

Figure 4: Gateway Assisted Retransmission.

5.8 Gateway Assisted Retransmission
The underlying CLAN network is more reliable than current

technologies such as Gigabit Ethernet. This is facilitated by the
property that you cannot write data to a host unless the host has
space to receive it. i.e. Packets are never dropped by the receiver.
Many networks do not have this property. The new hardware
from Level 5 Networks will also have error detection support
built in. This suggests a solution that does not consume any ad-
ditional server resources. To connect the CLAN network to the
wider world we require a bridge. Part of our research has been
investigating how the bridge can be used as a protocol processing
gateway to help with TCP processing.

Rather than require the server node to preserve the packets it
has transmitted until they are acknowledged, the gateway could
do this more efficiently. The gateway must access all data flowing
out of the network, and so can buffer it in memory at little extra
cost to itself. As a result, a copy of the data is preserved by the
cluster without any extra CPU, bus, NIC resources, or network
bandwidth being used on the server node.

There is the additional cost involved at the gateway, but this is
less critical than the cost of the NICs (as there are far fewer gate-
ways than NICs). Also, by having the retransmit memory shared
by all the nodes in the cluster we can make more efficient use of
this resource. The bound on buffer requirements on the gateway
is given by the combined bandwidth delay product of all connec-
tions through the gateway. The maximum combined bandwidth
is 1Gbps. The average round trip time is likely to be less then
500ms, giving a worst case buffer requirement of 500Mbits (i.e.
64MB). As network speeds increase, this is likely to increase lin-
early with the bandwidth as the average round trip time is likely
to remain constant (or decrease). The difficult part is reading
and writing to this memory at the line speed of the network, but
this can be achieved using current technology by having multiple
memory banks in parallel and a wide bus to access them.

There are two approaches to initiating a retransmit.

• The TCP on the server node can send the gateway a mes-
sage to request a retransmit, providing enough detail (the
connection ID and sequence number) for the gateway to
identify the packet to retransmit. Figure 4(a)

• Alternatively the gateway can monitor incoming traffic, and
identify for itself when a retransmit is necessary. Figure 4(b)

The latter clearly simplifies the TCP on the server node, and
should result in faster retransmits. This is at the cost of com-
plexity on the gateway as it tends towards a TCP offload engine.
The former has the advantage that the gateway need keep no state
other than that which is necessary for the DMQs. We are con-
ducting trials to compare these approaches to discover which is
more efficient overall. We are effectively researching where the
optimal host/network split is for TCP, investigating the compro-
mise between a complete host based implementation and a full
TCP offload engine [27].

We have taken the concept of involving the gateway in protocol
processing further and started investigating what other roles the
gateway can take to assist the server nodes in protocol processing.

A simple, but extremely useful one, is having the gateway strip
headers from incoming packets and deliver the headers and pay-
loads to the servers in separate queues, in the same way as is done
for intra-cluster communication.

If the gateway is involved in protocol processing and has gone
some way to parsing an incoming packet, it could also transmit

the parse tree (into a third queue) along with the packet to the
server node to prevent the node having to repeat that work. There
is again a trade off here between the cluster bandwidth and server
node CPU, which we plan to evaluate experimentally.

6. MEASURING PERFORMANCE
We are still at the stage of implementation and optimisation

of this approach to networking, so we do not have a complete
set of thorough performance measurements. However, the initial
experiments do suggest that it will out perform traditional kernel
networking (we are currently able to roughly match it).

Bandwidth figures are notoriously difficult to compare, as they
are often sensitive to network configuration parameters [18, 2]
(such as MTU, TCP window, socket buffer sizes, etc). Published
results for other networks also tend to focus on the saturated band-
width for large packet sizes, which does not give a good measure
of the network’s performance for real traffic patterns.

We have therefore created our own testbed to allow direct com-
parison of different technologies. This consists of four PCs acting
as the server nodes connected via the CLAN switch. A fifth ma-
chine (dual PIII 1GHz STL2) acts as the gateway, and is equipped
with a CLAN NIC and a 3Com 985 Gigabit Ethernet NIC. This is
connected via Gigabit Ethernet to other machines to allow us to
feed traffic to and from the server nodes. This setup is illustrated
in Figure 5.

We will be comparing the bandwidth and latency of our ap-
proach, both within the cluster and between the cluster and the
Internet. This will be compared to a conventional network stack
(using Gigabit Ethernet) over the same network topology. The
additional latency produced by our cluster and gateway will be
measured by comparing path “A” to path “B” in Figure 5. The
bandwidth and latency will be measured using NetPIPE and ping.
We will also be using server applications (such as web servers and
databases) to gauge how improvements impact the real world.

Finally, we will determine the scalability of our gateway as
the number of concurrent connections and the number of nodes
within the cluster increases.

7. FUTURE WORK
We are currently at the stage of having a working implemen-

tation of the ideas discussed in this paper. This includes a suite
of IP based protocols (IP, TCP, UDP, ICMP, BSD sockets) at user
level in our CLAN network, and interfacing to other networks via
our gateway. We are now beginning a phase of optimisation and
performance testing.

This is very much still work in progress, and as such there are
some unresolved issues. We are still evaluating (as described in
Section 5.8) how much protocol processing on the gateway is pos-
sible.

The area of TCP’s timers is one that interests us and will be
investigated further. In particular, the issues relating to the exact
requirements TCP has of timers [3] and the efficient implementa-
tion of them at user level [4].

We have yet to implement the extension to preserve received
data described in Section 4.2.

There is the possibility of using the gateway and other network
hardware to perform load balancing and firewalling operations.
The unusual properties of our network (send directed, connec-
tion oriented, and the implicit knowledge of other nodes’ receive
buffer usage) allow for some interesting approaches to these prob-
lems.

Host 1

Bridge

CLAN

Switch

Host 2

Gigabit

Ethernet

CLAN

A B

Figure 5: Network Testbed Topology

8. CONCLUSIONS
In this paper we have proposed an innovative approach to net-

working. By placing the protocols at user level we have been
able to achieve high performance, but this benefit comes with a
number of problems to which we have suggested solutions.

To make the delivery from network interface to application of
incoming packets more efficient, the conventional stack approach
has been changed to one where the network interface is a hub
for communication, using the traditional stack as a tool to per-
form protocol processing. This change has resulted in improved
performance, but produced its own set of challenges. Zero-copy
reception is only possible through modifications to the sockets
API, but the extent of these modifications depends on the char-
acteristics of the application. Single-copy operation through an
unmodified sockets API is also supported.

True zero-copy transmission of data using the unmodified sock-
ets API has been achieved. This was done by altering the block-
ing semantics of the sockets operations and moving the role of
performing retransmission from the server node to the gateway.

This represents a potentially cheaper and more flexible solution
when compared to existing work where co-processors are being
used on NICs to perform protocol processing.

9. ACKNOWLEDGEMENTS
The author would like to thank members of the Laboratory for

Communication Engineering, Cambridge University Computer
Lab, and former members of AT&T Laboratories-Cambridge for
their advice. In particular the work done by Steve Pope, Derek
Roberts and David Riddoch as part of the CLAN project has been
invaluable.

Kieran Mansley is jointly funded by a Royal Commission for
the Exhibition of 1851 Industrial Fellowship, and AT&T Labs-
Research.

10. REFERENCES
[1] Level 5 Networks Ltd.

http://www.level5networks.com/.
[2] M. Allman and A. Falk. On the Effective Evaluation of

TCP. ACM Computer Communications Review, October
1999.

[3] M. Aron and P. Druschel. TCP: Improving Startup
Dynamics by Adaptive Timers and Congestion Control.
Technical Report TR98-318, Dept. of Computer Science,
Rice University, 1998.

[4] M. Aron and P. Druschel. Soft Timers: Efficient
Microsecond Software Timer Support for Network
Processing. ACM Transactions on Computer Science,
18(3), August 2000.

[5] S. Bailey and T. Talpey. DDP and RDMA Architecture.
Internet Draft
http://www.ietf.org/internet-drafts/
draft-ietf-rddp-arch-01.txt, 2003.

[6] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and
J. Sandberg. Virtual Memory Mapped Network Interface
for the SHRIMP Multicomputer. In 21st Annual
Symposium on Computer Architecture, pages 142–153,
April 1994.

[7] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
Gigabit-per-Second Local Area Network. IEEE Micro,
15(1):29–36, 1995.

[8] T. Braun, C. Diot, A. Hoglander, and V. Roca. An
Experimental User Level Implementation of TCP.
Technical Report 2650, INRIA Sophia Antipolis, France,
1995.

[9] J. C. Brustoloni and P. Steenkiste. Effects of Buffering
Semantics on I/O Performance. In Operating Systems
Design and Implementation, 1996.

[10] H. K. J. Chu. Zero-Copy TCP in Solaris. In USENIX
Annual Technical Conference, 1996.

[11] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An
Analysis of TCP Processing Overhead. IEEE
Communications Magazine, 27(6):23–29, 1989.

[12] D. D. Clark and D. L. Tennenhouse. Architectural
Considerations for a New Generation of Communication
Protocols. In Proceedings of ACM SIGCOMM, 1990.

[13] P. Druschel and G. Banga. Lazy Receive Processing (LRP):
A Network Subsystem Architecture for Server Systems. In
Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation, 1996.

[14] A. Dunkels. Minimal TCP/IP Implementation with Proxy
Support. Technical Report 20, Swedish Institute of
Computer Science (SICS), 2001.

[15] A. Dunkels. Full TCP/IP For 8 Bit Architectures. In
Proceedings of the First International Conference on
Mobile Systems, Applications, and Services, 2003.

[16] A. Edwards and S. Muir. Experiences implementing a high
performance TCP in user-space. In Proceedings of the
conference on Applications, technologies, architectures,
and protocols for computer communication, 1995.

[17] A. Gallatin, J. Chase, and K. Yocum. Trapeze/IP: TCP/IP at
near-gigabit speeds. In USENIX Annual Technical
Conference, 1999.

[18] P. Gray and A. Betz. Performance evaluation of

copper-based gigabit ethernet interfaces. In Proceedings of
the 27th Conference on Local Computer Networks, 2002.

[19] P. Howard. VRB - Virtual Ring Buffer.
http://phil.ipal.org/freeware/vrb/.

[20] IEEE and The Open Group. The Open Group Base
Specifications Issue 6.
http://www.opengroup.org/onlinepubs/
007904975/basedefs/aio.h.html.

[21] J.C.Mogul and K.K.Ramakrishnan. Eliminating Receive
Livelock in an Interrupt-Driven Kernel. ACM Transactions
on Computer Systems, 15(3), August 1997.

[22] J.Satran, K.Meth, C.Sapuntzakis, M.Chadalapaka, and
E.Zeidner. iSCSI. Internet Draft
http://www.ietf.org/internet-drafts/
draft-ietf-ips-iscsi-20.txt, 2003.

[23] J. Kay and J. Pasquale. Profiling and Reducing Processing
Overheads in TCP. IEEE/ACM Transactions on
Networking, 4(6), 1996.

[24] D. McAuley and R. Neugebauer. A Case for Virtual
Channel Processors. In Proceedings of the Workshop on
Network-I/O Convergence: Experience, Lessons,
Implications (NICELI), 2003.

[25] S. S. Mukherjee and M. D. Hill. Making Network
Interfaces Less Peripheral. IEEE Computer, 31(10):70–76,
1998.

[26] I. Pratt and K. Fraser. Arsenic: A User Accessible Gigagit
Ethernet Interface. In Proceedings of Infocom, 2001.

[27] M. Rangarajan and A. Bohra. TCP Servers: Offloading
TCP Processing in Internet Servers. Design,
Implementation and Performance. Technical report,
Rutgers University, 2002.

[28] D. Riddoch, K. Mansley, and S. Pope. Distributed
Computing with the CLAN Network. In Proceedings of the
27th Conference on Local Computer Networks, 2002.

[29] D. Riddoch, S. Pope, and K. Mansley. VIA over the CLAN
Network. Technical report, University of Cambridge, 2001.

[30] D. Riddoch, S. Pope, D. Roberts, G. Mapp, D. Clarke,
D. Ingram, K. Mansley, and A. Hopper. Tripwire: A
Synchronisation Primitive for Virtual Memory Mapped
Computing. In Proceedings of the 4th International
Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP), 2000.

[31] S. H. Rodrigues, T. E. Anderson, and D. E. Culler.
High-Performance Local-Area Communication With Fast
Sockets. In USENIX Annual Technical Conference, 1997.

[32] C. A. F. D. Rose, R. Novaes, T. Ferreto, F. A. D.
de Oliveira, M. E. Barreto, R. B. Avila, P. O. A. Navaux,
and H.-U. Heiss. The Scalable Coherent Interface (SCI) as
an Alternative for Cluster Interconnection.

[33] S.-L.Lo and S.Pope. The Implementation of a Low Call
Overhead IIOP-based Object Request Broker. In
Proceedings of ECOOP Workshop on CORBA:
Implementation, Use and Evaluation, 1997.

[34] P. Steenkiste. Design, Implementation, and Evaluation of a
Single-copy Protocol Stack. Software - Practice and
Experience, 28(7):749–772, 1998.

[35] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D.
Lazowska. Implementing Network Protocols at User Level.
IEEE/ACM Transactions on Networking, 1(5):554–565,
Nov 1993.

[36] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net:A
User-Level Network Interface for Parallel and Distributed
Computing. In Proceedings of the 15th ACM Symposium
on Operating System Principles, 1995.

[37] J. Wilkes. Hamlyn—An Interface for Sender-based
Communication. Technical Report HPL-OSR-92-13,
Hewlett-Packard Research Laboratory, November 1992.

