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Abstract.  Watching athletes allows coaches to provide both vital feedback on 
how well they are performing and on ways to improve their technique without 
causing or aggravating injuries.  The thoroughness and accuracy of this 
traditional observation method are limited by human ability and availability.  
Supplementing coaches with sensor systems that generate accurate feedback on 
any technical aspect of the performance gives athletes a fall back if they do not 
have enough confidence in their coach’s assessment.   
 
A system is presented to model the quality of arbitrary aspects of rowing 
technique found to be inconsistently well performed by a set of novice rowers 
when using an ergometer.  Using only the motion of the handle, tracked using a 
high-fidelity motion capture system, a coach trains the system with their idea of 
the skill-level exhibited during each performance, by labeling example 
trajectories.  Misclassification of unseen performances is encouragingly low, 
even for unknown performers.   
 
Keywords: Novel Applications, Sports coaching, Quality, Rowing Technique, 
Body motion, Intelligent Sensing Systems, Spatiotemporal Pattern Recognition, 
Shape Analysis.   

1   Introduction 

When practising a physical skill, reassurance that our technique is good or feedback 
on how to correct it, are crucial for motivation and improvement.  Learning a 
technique so we perform correctly without thinking requires lengthy (re)training of 
“muscle memory” as well as studying the underlying biomechanical principles, 
especially if the technique is complex or we need to break old habits.  Real-time 
feedback can help athletes when learning what good and bad technique feels like.  As 
they may not be able to feel whether the whole performance is correct and can not 
stop to observe themselves, feedback is required from a third party such as a coach.  
In this paper, the authors choose to investigate generating feedback to supplement 
coaches of the Olympic sport of rowing.  The multi-faceted technique requires a very 
high level of consistency and precision at high speed between multiple rowers.  On 
the water, a few centimeters difference in a stroke can unbalance and decelerate a boat 



so there is real need for continuous personal feedback.  Rowing can be practiced very 
realistically in a laboratory environment by using a stationary ergometer.   

 
Good coaches will always be in demand but automated analysis of body 

movements may offer advantages over human coaching: world-class coaches are 
often busy and expensive.  They often coach in squads to instill competition, giving 
each athlete a fraction of their time during which they might give unrepresentative 
and damaging feedback.  Even experienced coaches can not simultaneously 
concentrate on all aspects of a technique, can be biased towards athletes they know, 
can fail to notice differences in a performer they are used to watching and can become 
impaired by factors such as fatigue.   

 
An automated, surrogate system could analyze athletes continuously whenever 

they train, objectively focusing on any number of aspects simultaneously.  As motion 
capture systems continue to develop, this hardware will become much more 
affordable than a real person.  On-athlete sensors could also offer a more accurate 
perspective from inside the boat rather than from a distance.  When athletes are 
interested in semantically sophisticated descriptions of a performance, informal 
discussions between coaches and the authors showed they may be less comfortable 
representing a performance as digitized trajectories of points, rather than watching 
their moving flesh.  By automating analysis of the trajectories, athletes could instead 
be presented with comprehendible and familiar ontological elements from the domain 
of rowing, which could also be used as automatically constructed, low bandwidth 
indices into recorded performances.   

 
The authors have circumstantial evidence from the sports science community that 

biomechanical theory can not always justify coaches’ behavior and that the latter find 
difficultly in explaining their judgments.  Supervised learning provides a framework 
for directly associating coach-level feedback with performances recorded using a few 
sensibly, but not precisely placed sensors, whereas a traditional (bio)-mechanical 
approach would require explicit and precise formulation of rules for every facet of the 
technique.   

 
The physical sensation of rowing drives the terminology to include words such as 

“relaxed”, “fluid”, “too”, “sufficient” or “that looks right!”  Their amorphous and 
complex nature is hard to capture using explicit biomechanical formulae, especially 
when the authors tried to use some coaches’ explanations.  Approximations may have 
detrimental or unobvious effects on classification performance through including or 
missing out certain factors; when rowing even small movements are important.   

 
Measurements of performances of a similar quality still have inherent noise from 

the sensors and differences in where they are worn.  Characterization of what 
technique works best for different athletes also adds to variation that is not suited to 
exact mechanical formulae.  Even for more tangible aspects such as “overreaching” or 
“leaning back too far”, rules would need to be personalized and require expert 
biomechanical advice to be trustworthy.  The authors found that a large number of 
biomechanical measurements are typically taken and instrumenting athletes is time 



consuming.  Rules that rely on specific sensors become dependable on those sensors 
functioning.  By using such rules the system is customized to the domain of rowing 
and the same system could not be taught different sporting techniques.   

 
The highly complex nature of rowing where large intra-class variations are present 

but important differences between classes are made due to multiple, occasionally 
unobvious aspects changing by large or very small amounts, makes this an apt 
challenging problem for machine learning, especially when using a limited set of 
body movements.  How well a learning system might recognize the quality of an 
individual aspect of technique when performed by different people and with different 
levels of skill, whilst ignoring other changing aspects of the technique, is a question 
that has not been addressed for the domain of rowing as far as the authors are aware.   

 
The process of coaching athletes includes observation and analysis of their 

technique to determine the quality of their performance, deciding what 
encouragement or corrections are necessary and formulating how to communicate this 
so that athletes appreciate it.  This involves explaining and demonstrating correct 
technique whilst the athletes rest so they can be prompted to recall it as necessary 
during a later performance.  The quality of a performance can be described at various 
levels of precision from an overall judgment of the whole performance, to the quality 
of individual aspects of the technique, to a highly detailed description of each muscle.  
This work focuses on determining the quality of individual aspects of rowing 
technique using binary classification as this provides a simple yet informative 
representation of common judgments.   

2   Previous Work 

Much research exists into the capture and analysis of human body motion, including 
recognition of everyday activities to specific gesticulations.  However, judgment of 
the quality of a physical performance is less common and work that exists tends to 
focus on a few direct biomechanical measurements that are somehow related to 
quality within the medical domain.   

 
Work in [2] uses HMMs to recognize a vocabulary of gestures that could make up 

a surgical procedure.  Using different observations of the performance, a naïve 
judgment of skill is based simply on the number of different gestures used in a 
performance, or the percentage of time spent on each gesture.  No rigorous validation 
is completed.  Authors of [5] admit that the objective measurements of surgeons’ 
dexterity as recorded by a motion capture system within an operating theatre does not 
capture the complexity and differences in styles involved in assessing the skill of 
different surgeons.  The authors of [4, 10] use HMMs to obtain values for overall 
quality of a complete surgical performance, rather than individual aspects.  The 
method used in [10] splits the performances into sub-sections with semantic 
significance and used the distance from a template performance as a measure of 
quality.  The authors of [4] calculated the log-likelihood of a performance by applying 



one model to the whole performance, disregarding any internal structure and achieved 
a recognition of performance that correlated highly with an expert (r = 0.93 p<0.001).   

 
Recognition of sporting activities is the focus of work in [3], where elements of a 

technique such as the tennis serve are recognized in video footage.  However this is 
done by high-level scene analysis.  The work of [1] evaluates overall quality in Karate 
using many markers and requiring models of prototype performances that are 
morphed to new performances.  Results are presented for one person performing 20 
different Karate moves.  Recognition accuracy varies over technique but is on average 
85%.  The author of [6] discussed the need for individual aspects of a performance to 
be assessed, but proposed that an automated rule-based system would struggle with 
the flexible or fuzzy nature of the existing rubrics.   

3   Description of the System 

The system provides binary classification of a population of strokes taken from a 
number of different performances.  Strokes are separated based on the quality of an 
arbitrary aspect of the rowing technique used.  It is able to learn the judgment rule 
from a set of labeled performances and provide validation of how well it generalizes 
over an unseen population of strokes.   

3.1   Motion Capture 

The VICON motion capture system [11] was used with 10 cameras and default 
parameter values to track the position of single points on multiple objects augmented 
with 3 or more retro-reflective markers (see Fig. 1).  The sample rate was set to 
200Hz.  The objects are automatically identified using unique markers topologies.   

Fig. 1. Ergometer and rower augmented with VICON markers.  The erg, its seat and its handle 
were 3 objects.  Parts of the body were captured for future use.   

 



Some markers on body parts and the seat were occluded for short periods of time 
no longer than half a second, which is approximately a quarter of the period of a 
stroke.  Conventional video was also used to record the performances for review later.   

3.2   Preprocessing 

Occluded portions of the trajectories are recovered using linear interpolation.  All 
trajectories are transformed from the motion capture co-ordinate system to an erg-
coordinate system (see Fig. 2) to make analysis of the data more intuitive.   

 
Markers of the seat were used to define the X-axis as 
the seat moves along it, and the X-Y plane from which 
the normal gives the Z-axis.  The seat exhibited a 
measured deviation of less than one mm from the 
averaged X-axis.  This work only uses markers on the 
handle, seat and erg-frame.  This trajectory is 
segmented into separate strokes using an algorithm that 
detects the main troughs in the handle’s X-coordinate.  
The first and last strokes were discarded in case they 
were unrepresentative as the athletes were warming 
up/down.   

3.3   Feature Extraction 

The tempo-spatial features listed below are used to represent the handle trajectory for 
a stroke.  The stroke rate (number of strokes every minute) is made invariant as it is 
taken to be independent of the aspects of technique used in this study.   

 
• Distance travelled • Length • Height • Shape moments 
• Speed moments  • Wobble • Drive smoothness • Recovery smoothness 
• Shape smoothness  • Ratio • Drive angle • Recovery angle 

 
Abstract Features.  The trajectory’s distance was computed, as was the length (along 
X-axis) and height (along Y-axis).  Moments of the 2D shape formed by orthogonally 
projecting the trajectory onto the X-Y plane were also computed, using the projected 
co-ordinates for each sample s, as values hx(s) and hy(s) and summing over all 
samples s, from the trajectory.  The following were computed for shape: λ11, λ12, λ21, 
λ

02, λ20 (1).  The instantaneous, mean-subtracted speed at each sample point s, was 
used as the function ψ(s) to compute the speed moments: µ

 11, µ 12, µ 21, µ 02, µ20 (1).   
 

λ
pq = ∑ (hx(s)p hy(s)q) ,     µpq = ∑ (hx(s)p hy(s)q 

ψ(s)) ,   (1) 

 
Physical Performance Features.  The following were chosen based on preliminary 
experiments to investigate how well they disambiguated a small set of performances 
of differing overall quality.  Wobble (lateral variance) was computed as the variance 

Fig. 2. Erg co-ordinate system 



in the distance each trajectory sample is from the best fit line when they are projected 
into the X-Z plane.  Smoothness of the drive and recovery in time were computed by 
low-pass filtering the mean-subtracted, instantaneous speed of the handle at 3Hz (as 
the raw motion data was too noisy), identifying large accelerations by taking the 
second derivative and summing the absolute values of this signal.  Smoothness of the 
shape was computed by forming a signal from the distances of each subsequent 
trajectory sample point, to the centroid of the trajectory and low-pass filtering at 6Hz, 
followed by measuring the flatness of the absolute value of the second differential of 
this signal by counting the number of samples that are less than 0.4 ms-2.  All 
smoothness measures were normalized to the length of the stroke.   
 
Rowing Features.  Ratio is the ratio of the time spent on the recovery to the time 
spent on the slide.  Drive and recovery angles are the angles between the best fit line 
and X axis when the points are projected into the X-Z plane.   

3.4 Supervised Learning 

Normalization and Negation.  Each feature used in the model has parameters 
computed to adjust its values to be roughly within the same range as all other features 
in order to weight and compare them more easily.  This is done for each stroke by 
subtracting the minimum and dividing by the difference between the maximum and 
minimum values of the feature, in the non-normalized training set.  If the values from 
the training set for a single feature correlate highly but negatively with each strokes’ 
labeled scores, the normalized feature’s complement is used instead of the original 
feature, i.e. the original feature value is subtracted from 1.  The labeled score for each 
stroke is normalized to 0 (bad) and 1 (good).   
 
Classifiers.  Each stroke from a population is automatically scored using a linear 
combination of a weighted bias and the weighted features.  The weights of the model 
are learnt using one of two different methods: The first solves the system of 
simultaneous equations formed from the feature vectors of each stroke as rows of a 
matrix multiplied by a column vector of weights, which is made equal to a 
corresponding column vector of labeled scores for each stroke.  It is solved using the 
Moore-Penrose pseudo-inverse of the feature matrix.  The second method uses 
gradient descent to adjust the weights, which are initially set to zero after each 
iteration through the whole training set.  A learning rate of 0.001 is used for 750 
iterations to minimize the sum of the square of the differences between the labeled 
and machine scores of the training set.  The training is repeated for a number of times 
using different training sets formed by leaving out a different set of strokes from the 
whole original population.  These unseen stroke(s) are classified using the trained 
model and their scores recorded.  Each stroke is left out exactly once.  When 
considering multiple performers all strokes from one performer are left out at once.  
This “leave-one-out” validation (whether it be one stroke or one athlete) gives 
machine scores for each stroke in the population, ensuring it hasn’t been used to train 
the classifier that scores it.  The scores are summarized using Pearson's coefficient for 
the correlation between the coach and the machine scores and by using the percentage 



of strokes misclassified.  The latter is computed by thresholding the two classes for 
the machine scores at a point which minimizes the misclassification.  This value is 
calculated exhaustively.   
 
Sensitivity Analysis.  For the second training method the optimum number of 
iterations is chosen by repeatedly calculating the percentage of misclassified strokes, 
having trained using a different number of iterations, increasing by 50 each time from 
50 to 750.  For both methods, an optimum feature set is chosen that minimizes the 
percentage of misclassified strokes by repeating the sensitivity analysis for the 
number of iterations, for different feature sets.  Each set is formed using exhaustive 
backwards-selection by removing the least important features until only 1 is left.  The 
initial set is all the features and importance is measured by summing the weights over 
all training sets when using the optimum number of iterations.  The class threshold, 
number of iterations and feature set that give the smallest misclassification error are 
assumed when presenting the results for different represented populations of strokes.   

4   Empirical Validation of System 

These experiments gave an indication of the system’s capabilities in real-world 
coaching scenarios.  Each stroke was scored by using the score a single amateur coach 
gave to the whole performance it was from and by reviewing the videos the coach 
considers at least 95% of the strokes of a performance to be representative of the 
quality they assigned to the whole performance.  The coach (lead author) has been 
rowing for 2 years and was confident of assessing basic technique in novice rowers.  
Strokes by different rowers are differentiated as a person’s physique and skill level 
effect the set of strokes recorded as does their conscious decisions for how to row and 
how much attention to pay the coach.  Six novice, male rowers in their mid-twenties, 
between 60kg and 90kg were used with very little or no rowing experience.  They 
were not initially fatigued and rowed at a comfortable rate in an uncontrived manner.  
The amount of input from the coach during a performance affects the consistency of a 
the technique during a performance and can increase how much of the stroke must be 
ignored or generalized over when only interested in scoring one aspect.   
 

Each rower was given a basic explanation of how to row and gave an initial 
performance.  A number of things were usually wrong with this performance so a 
coaching process was then repeated until no obvious faults existed or the rower was 
exhausted: the coach evaluated the last performance and taught the rower how to 
improve an aspect. The rower then gave another performance during which the coach 
helped them to maintain the improved technique for the increasing number of 
corrected aspects.  Each performance lasted for approximately 30 strokes and the 
corrected aspects were maintained for at least 95% of the strokes.   

 
The final features chosen for each experiment are recorded to investigate their 

usefulness.  For either training method all features are used in at least 60% of the final 



features sets.  Shape and speed moments λ
02, λ20 

µ
 02 and µ20 were the only four used 

in at least 90% of the final feature sets for both algorithms.   

4.1   Coaching Single Aspects for Individuals 

Coaches often try to improve a single aspect of technique at a time in order to 
simplify the training process.  This requires the coach to judge the quality of this 
aspect and issue prompts to the rower when necessary as they try to correct only this 
aspect.  As only one aspect was focused on for each consecutive performance during 
the data collection, the system effectiveness at this task is shown by using pairs of 
consecutive performances from each novice as sample populations, see Table 1.   

Table 1. Percentages of misclassified strokes for all experiments when coaching single and 
multiple aspects of the technique of individual rowers.   

Moore-Penrose 
training 

Gradient Descent 
training Rower 

Coached aspect 
(chronological 

order) Single 
aspect 

All 
aspects 

Single 
aspect 

All 
aspects 

Separate arms/legs 0 0 0 0 1 
Overreaching 0 0 0 1 

2 Separate arms/legs 0 - 3 - 
Separate arms/legs 0 0 0 0 3 

Overreaching 0 0 2 1 
Overreaching 0 0 0 0 
Shins vertical 0 0 0 0 4 

Early open back 0 0 2 1 
Leaning back 0 3 0 6 
Quick hands 0 4 0 7 
Rushing slide 0 2 0 6 

5 

Early open back 3 0 5 0 
Overreaching 0 0 0 0 

Separate arms/legs 0 0 1 3 6 
Quick hands 0 0 1 1 

4.2 Coaching Multiple Aspects Simultaneously for Individuals 

It can be more efficient to issue coaching calls on multiple aspects depending on what 
the rower does wrong.  This requires a coach to make judgments about one aspect, no 
matter what the qualities of other aspects are.  As data were collected on each rower 
whilst several aspects of the stroke were performed at different qualities, realistic 
combinations of different qualities for several aspects were observed as were realistic 
amounts of variation in strokes with the same level of quality for one aspect.  Using 
all performances from each individual, results of the system judging the quality of 
each coached aspect for strokes where multiple aspects are changing are shown in 
Table 1.   



4.3 Coaching Single Aspects across Different Individuals 

In order to coach a new athlete who has not been seen before the system can only base 
a decision of how well they row on performances of other people.  Being able to do 
this would provide more evidence of being able to recognize the quality of an aspect 
when other parts of the stroke are performed differently as in §4.2.  By having enough 
examples, representative populations of strokes can be formed using consecutive pairs 
of performances form multiple people, all of whom are improving the same aspect.  
Table 2 shows the recognition results and the number of rowers used for each aspect.   

Table 2. Percentages of misclassified strokes for aspects across a number of different athletes. 

Rowers Aspect  Moore-Penrose training Gradient Descent training 
2 Quick hands 9 5 
2 Early open back 33 29 
3 Separate arms/legs 21 21 
4 Overreaching 12 12 

5   Discussion, Conclusions and Further Work 

Analysis of the final feature sets shows it is wise to make use of all the features.  The 
common choice of the four moment features suggests they may capture fundamental 
and important characteristics of quality of technique and analysis of relative weights 
would confirm their suitability as good candidates for recognizing other sports.   

Fig. 3. Judging strokes from unseen people for the aspect “Quick Hands”: machine score (left), 
correlation values using gradient descent up to 2500 iterations, for different feature sets (right).   

Given the small amount of evidence for coaching higher numbers of aspects, when 
coaching up to four, for an single athletes, very low misclassification was found.  The 
Moore-Penrose solution gave slightly better results.  The minimum possible training 



error does minimize the generalized misclassification results and gradient descent 
does not find it in time at this learning rate.  Recognition of strokes from unseen 
people gave quite low (5-21%) misclassification for three of the experiments.  The 
fourth training set was only one person.  The gradient descent method was slightly 
better this time:  Tightening the model to fit the training data too closely by using 
Moore-Penrose had adverse effects on the generalization to unseen performances as 
shown in Fig. 3 where too many iterations caused the highest correlating feature sets 
to correlate less well, even though the training error was observed never to increase.  
Inter-variation of data from different athletes is observed to be generally greater than 
an athlete’s intra-variation, suggesting why the results are significantly worse for 
unseen athletes.  Further work including scoring each stroke separately, using more 
markers and estimating the weights differently or using other widespread classifiers.  
Semantically sophisticated analysis of physical performance would be possible if 
ontological elements from a domain of sports techniques were identifiable.  
Encouraging classification results are achieved for qualitative assessment of rowing 
technique but the limits of the recognition algorithms are not yet fully characterized.   
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