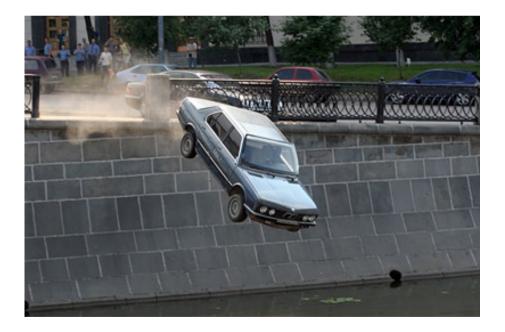
Distributed, vehicular computation for map generation

Jonathan J. Davies

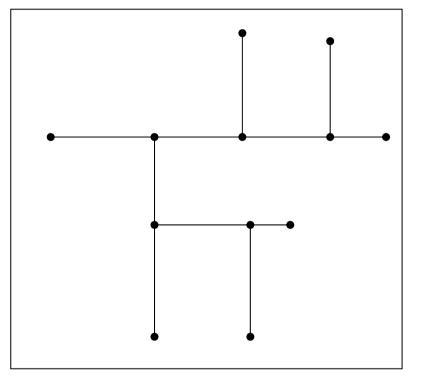
Alastair R. Beresford


{jjd27,arb33}@cam.ac.uk

University of Cambridge Computer Laboratory

When SatNav goes wrong

- Satellite Navigation units are becoming increasingly popular
- But their maps don't always match up with reality
 - Errors in the data
 - Recent changes to the road network
 - Temporary changes
- Can be disconcerting... or dangerous



Digital road maps

Two kinds of road map:

Rendered For human use

Topological (directed graph) For computer use Used for automated route-finding

How are digital road maps produced?

- Two major producers: Navteq, Tele Atlas
- Aerial photographs
 - Expensive to update frequently
 - Some road features not obvious from the sky
- Data from local councils, building contractors
 - Poor spatial and temporal accuracy
- Probe vehicles
 - Expensive
 - Tele Atlas drove 3.5 million miles in 2004
- Navteq spend over \$10m per year keeping their databases up to date

A new solution to map generation

- Two observations:
 - Many cars have GPS units
 - Bidirectional communication with vehicles is just around the corner
- Collect GPS traces from vehicles
- Convert these into a directed graph of the road network
- Two questions to be addressed:
 - How can we collect vast quantities of GPS traces?
 - How can we convert GPS traces into graphs?

Map generation: Why is it hard?

GPS is prone to errors, especially in cities

Producing road topology from GPS traces

- 1. Deduce where there is road and not road
- 2. Find the edges of the roads
- 3. Find the centrelines of the roads
 - Expressed an undirected graph
- 4. Determine which edges represent one-way roads
 - Makes the graph directed

For full details, see:

Jonathan J. Davies, Alastair R. Beresford, and Andy Hopper. Scalable, distributed, real-time map generation. IEEE Pervasive Computing, 5(4):47–54, Oct–Dec 2006.

Histogram

Blur

Threshold

Find Road Edges

Find Road Centrelines

Determine Roads' Directionality

Evaluation

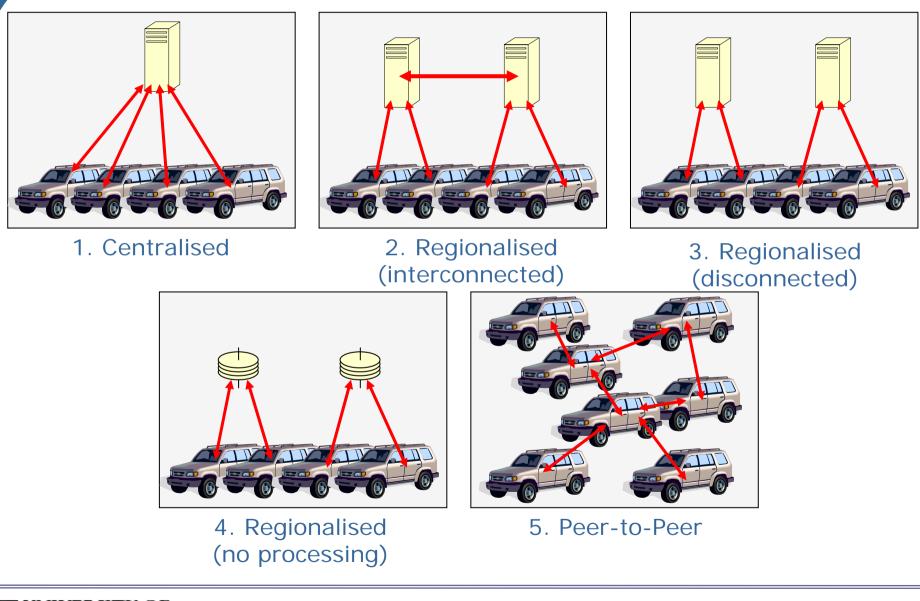
- We can produce a directed graph from GPS data
 - We also get the shape of the roads
 - (Could also derive speed information)
 - The more GPS data, the better
- But it's tricky...
 - Errors in GPS mean that the maps might contain inaccuracies
 - No metadata (e.g. road names) associated with the edges
- However, the technique is good for producing up-to-date maps
 - So it could be useful for updating existing maps

Recall

- Two questions to be addressed:
 - How can we collect vast quantities of GPS traces?
 - Coming up next...
 - How can we convert GPS traces into graphs?
 - Addressed

Large-scale, vehicle-centric applications

- Cars are gaining increasing communications capabilities
 - Thus, collection of GPS data will become possible
- Other similar applications involve the sharing, processing and dissemination of sensor data
 - e.g. weather data, traffic conditions, ...
- Such applications are challenging to program
 - The "central server" model is not scalable
 - But most applications are parallelisable to some degree



Parallelisation of map generation

Widespread data collection from vehicles

Automated task partitioning

- Can we automatically determine the best way for the application to execute?
 - Splitting the application into tasks
 - Determining which processing nodes are best employed for each task
 - Distributing the tasks
 - Dealing with failure and changes in the network
- What metrics should we optimise against?
 - Execution time
 - Privacy
 - Quality of result

Conclusions

- Generating maps from GPS traces is tricky
 - Errors in GPS mean that the maps might contain inaccuracies
 - However, the technique is good for producing up-to-date maps
- Programming parallel applications is hard
 - Currently finalising theory of task partitioning
 - Future work will involve writing a compiler and modifying Java to support such applications

Distributed, vehicular computation for map generation

Jonathan J. Davies

Alastair R. Beresford

{jjd27,arb33}@cam.ac.uk

University of Cambridge Computer Laboratory

