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Abstract— It is known that the frame error rate of turbo codes
on quasi-static fading channels can be accurately approximated
using the convergence threshold of the corresponding iterative
decoder. This paper considers quasi-static fading channels and
demonstrates that non-iterative schemes can also be character-
ized by a similar threshold based on which their frame error rate
can be readily estimated. In particular, we show that this thresh-
old is a function of the probability of successful frame detection
in additive white Gaussian noise, normalized by the squared in-
stantaneous signal-to-noise ratio. We apply our approach to un-
coded binary phase shift keying, convolutional coding and turbo
coding and demonstrate that the approximated frame error rate
is within 0.4 dB of the simulation results. Finally, we introduce
performance evaluation plots to explore the impact of the frame
size on the performance of the schemes under investigation.

I. INTRODUCTION

The performance analysis of transmission schemes on quasi-
static fading channels constitutes an important problem owning
to the fact that this channel model characterizes practical set-
tings that experience extremely slow fading conditions, such
as fixed wireless access systems [1]. In this context, bounding
techniques for the error rate of various transmission schemes
have been proposed; such schemes include block codes [2],
convolutional codes [3], [4], turbo codes [5], space-time trellis
codes [6], [7] and serially concatenated codes [5], [8].

El Gamal and Hammons [9] have proposed an analytical ap-
proximation to the frame error rate (FER) of iterative schemes,
such as turbo codes, on quasi-static fading channels; this tight
approximation is made possible owning to a simple character-
ization of an iterative decoder. In this paper, we will demon-
strate that non-iterative schemes, both uncoded and coded, can
also be characterized in a similar manner, hence their FER
performance can be estimated using the same approximation
technique.

The rest of the paper is organized as follows. The quasi-
static channel model as well as the standard technique to com-
pute the FER performance of a scheme on that channel are
briefly described in Section II. In Sections III-V, we derive
expressions based on which a threshold value, characteristic
of the system, can be determined that allows the computation
of a simple yet accurate approximation to the FER. Numerical
results are presented in Section VI, whilst a method to produce
performance evaluation plots is discussed in VII. Finally, the
main conclusions of our work are summarized in Section VIII.

II. SYSTEM MODEL

If x is a frame of symbols transmitted over a quasi-static
fading channel at a particular time instant and y is the receive
frame, the input-output relationship of the channel is given by

y = hx + n. (1)

The instantaneous fading coefficient h is a zero-mean, circu-
larly symmetric complex Gaussian random variable with vari-
ance σ2 = 1, whilst n is a sequence of zero-mean, mutually
independent, circularly symmetric complex Gaussian random
variables with variance N0. Note that h is constant for the du-
ration of the transmit frame but changes independently from
frame to frame.

The quality of a quasi-static fading channel is character-
ized by its corresponding average receive signal-to-noise ratio
(SNR). In particular, if Es is the energy per transmit symbol
and γ = |h|2Es/N0 is the instantaneous receive SNR, the av-
erage SNR, γ, at the input of the receiver is given by

γ = E [γ] = E
[
|h|2

]
(Es/N0) = σ2 (Es/N0) = Es/N0, (2)

where E [.] denotes the expectation operator.
The average FER on a quasi-static fading channel, denoted

as PQ
e (γ̄), can be computed by integrating the FER in additive

white Gaussian noise (AWGN), represented by PG
e (γ), over

the fading distribution [10]

PQ
e (γ̄) =

∫ ∞

0

PG
e (γ)pγ̄(γ)dγ. (3)

Now, the fading magnitude |h| has a Rayleigh distribution,
so that the instantaneous value of γ is chi-squared distributed
with two degrees of freedom [10], i.e.,

pγ̄(γ) = (1/γ̄) e−γ/γ̄ , for γ ≥ 0. (4)

Although (3) is an exact expression for PQ
e (γ̄), its eval-

uation could prove difficult depending upon the transmission
technique under consideration. In the following section we de-
scribe a simple approach that is often used to bound the FER
performance of a communication scheme.



III. APPROXIMATION TO THE FRAME ERROR RATE

Given an arbitrary SNR threshold γw, we can rewrite the ex-
pression for the average FER on a quasi-static fading channel
as follows

PQ
e (γ̄) = P (error|γ ≤ γw)P (γ ≤ γw)

+ P (error|γ > γw)P (γ > γw).
(5)

The SNR threshold γw, which we refer to as the waterfall
threshold, is used to divide the range of SNR values into a
low-SNR region and a high-SNR region. A common approach
to simplify (5) is to use a trivial bound of the form

P (error|γ ≤ γw) ≤ 1 (6)

for the low-SNR region and a conventional union bound for
the high-SNR region. This approach has been used to bound
the performance of many transmission schemes on quasi-static
fading channels, including convolutional codes [4] and turbo
codes [5]. Nevertheless, the value of γw needs to be chosen
appropriately to make the bound as tight as possible. The op-
timization process presented in [4], [5] and [8] produced quite
tight bounds but showed that there is room for improvement.

Turbo codes have also been considered in [9] and [11]; the
authors further simplified (5) by assuming that

P (error|γ ≤ γw) ≈ 1 and P (error|γ > γw) ≈ 0. (7)

Substituting (7) into (5) gives an approximation to the FER,
denoted as P̃Q

e (γ̄, γw). In particular,

PQ
e (γ̄) ' P (γ ≤ γw)

=
∫ γw

0

pγ̄(γ)dγ

= 1− e−γw/γ̄

, P̃Q
e (γ̄, γw).

(8)

It has been shown in [9] that P̃Q
e (γ̄, γw) very accurately de-

scribes the actual FER of a turbo code using a long interleaver
on a quasi-static fading channel, if the waterfall threshold γw

is set to be equal to the decoder convergence threshold γth.
The convergence threshold of iterative schemes, such as turbo
codes, can be determined using extrinsic information (EXIT)
chart analysis [12].

Motivated by the work of Bouzekri and Miller [4], [5], El
Gamal and Hammons [9] and Rodrigues et al. [11], we assume
that for any transmission scheme, whose conditional FER can
be reasonably described by (7), there is a value of γw for
which the average FER, PQ

e (γ̄), can be accurately approxi-
mated by P̃Q

e (γ̄, γw). Based on that assumption, we derive an
exact expression for the waterfall threshold in the following
section.

IV. EVALUATION OF THE WATERFALL THRESHOLD

Let ε denote the absolute difference between the actual
frame error probability PQ

e (γ̄) and the approximated frame
error probability P̃Q

e (γ̄, γw), i.e.,

ε =
∣∣∣PQ

e (γ̄)− P̃Q
e (γ̄, γw)

∣∣∣ , (9)

where γ̄ can be any nonnegative real number. In the previous
section we indicated that we expect the approximated FER of a
transmission scheme on a quasi-static fading channel to closely
represent the actual FER for a very wide range of γ̄ values,
provided that an appropriate value for the waterfall threshold is
chosen. Consequently, if P̃Q

e (γ̄, γw) perfectly coincides with
PQ

e (γ̄), expression (9) simplifies to

ε = PQ
e (γ̄)− P̃Q

e (γ̄, γw) = 0. (10)

In this section we derive an expression for the waterfall thresh-
old γw under the assumption that ε = 0, while in Section
VI we compare our analytic approach to simulation results in
order to test the validity of our assumption.

We set λ = 1/γ̄ and express PQ
e (γ̄) and P̃Q

e (γ̄, γw) as
functions of λ, i.e., PQ

e (λ) and P̃Q
e (λ, γw) respectively. The

change of variable will not have any effect on ε, hence

ε = PQ
e (λ)− P̃Q

e (λ, γw) = 0, (11)

for all values of λ ≥ 0. Equivalently, the area under the graph
of PQ

e (λ) should be equal to the area under P̃Q
e (λ, γw), for

λ ∈ [0 . . . Λ], where Λ →∞. Consequently, we can write

lim
Λ→∞

{∫ Λ

0

PQ
e (λ)dλ−

∫ Λ

0

P̃Q
e (λ, γw)dλ

}
= 0. (12)

Using (3) and (4), we expand the first integral in (12) into
∫ Λ

0

PQ
e (λ)dλ =

∫ Λ

0

∫ ∞

0

PG
e (γ)pλ(γ)dγdλ

=
∫ ∞

0

PG
e (γ)

∫ Λ

0

λe−λγdλdγ.

(13)

The frame error probability of a transmission scheme over an
AWGN channel can also be expressed as PG

e (γ) = 1−PG
d (γ),

where PG
d (γ) is the probability of successful frame detection.

Consequently, we can rewrite (13) as
∫ Λ

0

PQ
e (λ)dλ =

∫ ∞

0

∫ Λ

0

λe−λγdλdγ −

−
∫ ∞

0

PG
d (γ)

∫ Λ

0

λe−λγdλdγ.

(14)

Taking into account that [13]
∫ Λ

0

λe−λγdλ =
1
γ2
− e−Λγ

γ2
(1 + Λγ) (15)

and ∫ ∞

0

∫ Λ

0

λe−λγdλdγ = Λ, (16)

the first integral in (12) assumes the form
∫ Λ

0

PQ
e (λ)dλ = Λ−

∫ ∞

0

PG
d (γ)
γ2

dγ +

+
∫ ∞

0

PG
d (γ)

e−Λγ

γ2
(1 + Λγ) dγ.

(17)



The second integral in (12) can be evaluated as follows

−
∫ Λ

0

P̃Q
e (λ, γw)dλ = −

∫ Λ

0

(
1− e−λγw

)
dλ

= −Λ− e−Λγw

γw
+

1
γw

.

(18)

If we substitute (17) and (18) into (12), we observe that
terms Λ and −Λ cancel each other out. Furthermore, if we take
the limit as Λ →∞, all terms containing e−Λ are eliminated
since e−Λ → 0. The remaining terms give

−
∫ ∞

0

PG
d (γ)
γ2

dγ +
1
γw

= 0, (19)

which is equivalent to

γw =
(∫ ∞

0

PG
d (γ)
γ2

dγ

)−1

. (20)

We have thus shown that, under assumption (10), the waterfall
threshold is inversely proportional to the area under a curve,
which is defined by the probability of successful frame detec-
tion in AWGN normalized by the squared instantaneous SNR.

Depending on the expression for the detection probability
PG

d (γ), a closed-form solution for γw for a particular transmis-
sion technique may not exist. In that case, γw can be evaluated
either via numerical integration if there is an exact representa-
tion of PG

d (γ) or via Monte Carlo simulation if PG
d (γ) cannot

be accurately evaluated. In the following section we revisit
(20) to obtain a more practical expression for γw when Monte
Carlo simulation is required.

V. PRACTICAL COMPUTATION OF THE
WATERFALL THRESHOLD

Let γ′ be the actual SNR value for which PG
d (γ) = 0 if

γ < γ′ but PG
d (γ) > 0 otherwise. Based on the definition of

γ′, we can rewrite (20) as follows

γw =
(∫ ∞

γ′

PG
d (γ)
γ2

dγ

)−1

(21)

or, equivalently,

γw =
(

1
γ′
−

∫ ∞

γ′

PG
e (γ)
γ2

dγ

)−1

. (22)

It becomes evident in Fig. 1 that as γ grows, function
PG

d (γ)/γ2 gradually approaches 1/γ2, which slowly con-
verges towards zero. The advantage of (22) over (20) is that
PG

e (γ)/γ2 converges to zero much faster than PG
d (γ)/γ2,

hence an accurate value for γw can be obtained by considering
only a limited low-SNR range of integration.

Let us now consider the case when Monte Carlo simulation
is used to measure the FER performance of a transmission
scheme in AWGN. We assume that the SNR values γi, with
i=1, 2, . . . , N , are equally spaced and ordered, while the FER
is PG

e (γi)=1 for i < k but PG
e (γi)<1 otherwise. Elaborating
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Fig. 1. Normalized probabilities in AWGN. In this example, we have con-
sidered an input frame length of 512 bits and a system using a recursive
convolutional code with generator polynomials (1,17/15) in octal form.

on (22), we can obtain the following equivalent expression for
discrete SNR values

γw =


 1

γk −
(

γk−γk−1
2

) −
N∑

i=k

PG
e (γi)
γ2

i



−1

=

(
2

γk−1 + γk
−

N∑

i=k

PG
e (γi)
γ2

i

)−1

.

(23)

Substituting (23) into (8) gives us an approximation of the av-
erage FER of the transmission scheme on a quasi-static fading
channel.

Note that the complexity of the threshold-based FER com-
putation using (8) and either (20) or (23) is markedly less than
that of the exact FER computation based on (3), as we will
now demonstrate. Let us consider the case when the frame er-
ror probability in AWGN, PG

e (γ), is known for N values of γ
and our objective is to compute the FER for a quasi-static fad-
ing channel, PQ

e (γ̄), for M values of γ̄. The threshold-based
approach involves the evaluation of the waterfall threshold,
which has a computational complexity proportional to N , fol-
lowed by the calculation of the FER approximation, which has
a computational complexity proportional to M . Consequently,
the overall complexity of the threshold-based FER computa-
tion is of order O(N +M). In contrast, computation of the
exact FER requires N multiplications for each value of γ̄,
resulting in a complexity order of O(NM).

VI. NUMERICAL RESULTS

In this section we compare analytical to simulation results
for transmission over quasi-static fading channels. We consider
both uncoded and coded binary phase shift keying (BPSK);
coded transmission uses either a rate 1/2 recursive systematic
convolutional code with octal generator polynomials (1,17/15)
or a rate 1/3 turbo code with generator polynomials (1,5/7,5/7).
The input frame length L is either 256 bits or 1024 bits.
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Fig. 2. Frame error rate performance of various transmission schemes on a
quasi-static fading channel for input frame lengths of 256 and 1024 bits.

The waterfall threshold of uncoded BPSK was computed
numerically using (20), where the probability of successful
frame detection is captured by [14]

PG
d (γ) =

(
1−Q

(√
2γ

))L

. (24)

Here, Q(x) is the tail integral of a standard Gaussian density
with zero mean and unit variance, defined as

Q(x) =
∫ ∞

x

(
1/
√

2π
)

e−u2/2du. (25)

The threshold γw was found to be 5.782 dB for L=256 and
7.083 dB for L=1024.

In the case of coded transmission, the probability of erro-
neous frame detection in AWGN was obtained running Monte
Carlo simulations for a limited range of low SNR values (e.g.,
γ ∈ (0, 1] for turbo coding) and a small number of channel
realizations (a few thousands at most). The waterfall threshold
was then calculated using (23). In particular, when convolu-
tional coding is employed it was found that γw = −0.983
dB for L = 256, while γw = 0.023 dB for L = 1024. When
turbo coding is used, however, the frame length appears to
have minimal impact on the waterfall threshold; its value was
found to be γw =−4.401 dB when L=256 and γw =−4.312
dB when L = 1024. Hence, we expect that the input frame
length will not significantly affect the FER performance of
the turbo code.

Once the waterfall threshold of a scheme has been com-
puted, we substitute it into (8) to obtain an analytical expres-
sion for the approximated average FER for the quasi-static fad-
ing channel. The curves of the approximated FER expressions
for the systems under investigation are compared to simula-
tion results in Fig. 2. Observe that the analytic technique very
closely approximates (within 0.4 dB) the simulation results in
the various scenarios. Hence, both coded and uncoded, itera-
tive and non-iterative systems can indeed be characterized by
waterfall thresholds based on which tight approximations for
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Fig. 3. Performance plots for the convolutional and turbo codes under con-
sideration.

their frame error probability can be derived. It is also inter-
esting to note that, as expected, the FER performance of the
turbo code remains unaffected by the input frame length, or
equivalently the interleaver size. The same behavior has also
been reported in [5], [11].

Based on the comparison between analytical and simulation
results, we conclude that the technique presented in this paper
accurately estimates the FER performance of BPSK transmis-
sion schemes over quasi-static fading channels. Similar results
can be easily obtained using the same approach for higher
order modulations.

VII. DISCUSSION ON PERFORMANCE EVALUATION

An insight into the relative performance of two or more
transmission schemes on quasi-static fading channels can also
be obtained by plotting their normalized probabilities of suc-
cessful frame detection in AWGN, i.e, PG

d (γ)/γ2, and com-
paring the areas under the corresponding curves. In particular,
the larger an area is, the smaller is γw and, consequently, the
better the FER of the scheme under consideration is expected
to be, according to (8) and (20).

The normalized probabilities PG
d (γ)/γ2 of the coded BPSK

schemes that we considered in the previous section, namely
the rate 1/2 convolutional code and the rate 1/3 turbo code,
have been plotted in Fig. 3. We observe that as the input frame
length of the convolutional code increases, the area under the
normalized probability graph reduces and, as we have already
seen in Fig. 2, the FER performance of the convolutionally
coded scheme degrades. As anticipated, the area under the
normalized probability curve of the turbo code is clearly larger
than that of the convolutional code, hence the former scheme
yields better FER performance on quasi-static fading channels.
Most importantly however note that, in the case of the turbo
code, as the length of the input frame increases, the shape of
the curve changes such that its peak shifts leftward but at the
same time, moves upward. For L large, it is expected that the
peak will reach its maximum value, which is a point on 1/γ2;



0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

1

2

3

4

5

6

7

8
P

ro
ba

bi
lit

y 
of

 s
uc

ce
ss

fu
l f

ra
m

e 
de

te
ct

io
n 

in
 A

W
G

N
 n

or
m

al
iz

ed
 b

y 
γ2

γ

 

 
L=256
L=512
L=1024
L=2048
L→∞

1/γ2

γ
th

Fig. 4. Performance plots of a turbo code with generator polynomials
(1,5/7,5/7), for various interleaver sizes.

notice that the curve 1/γ2 corresponds to the ideal case where
PG

d (γ)=1 for all values of γ.
This trend is more clearly illustrated in Fig. 4, where the

normalized probability of the turbo code has been plotted for
various input frame lengths or, equivalently, interleaver sizes.
In all cases, the exact log-MAP algorithm was used, while all
probabilities were measured after 8 decoding iterations. We
can infer from Fig. 4 that the probability of successful frame
detection of the turbo code becomes a step function when
very large interleavers are used, i.e., L → ∞. In particular,
PG

d (γ) = 0 for γ < γth whereas PG
d (γ) = 1 for γ ≥ γth;

note that γth corresponds to the convergence threshold of the
iterative decoder [9]. Using (20), we can obtain the waterfall
threshold of the turbo code for L →∞, as follows

γw =
(∫ ∞

γth

1
γ2

dγ

)−1

= γth. (26)

Therefore, our approach is in complete agreement with the
findings of El Gamal and Hammons [9], i.e., the approximated
FER expression is an accurate representation of the actual FER
of a turbo code using a long interleaver on a quasi-static fading
channel, if the waterfall threshold is set to be equal to the
convergence threshold of the iterative decoder.

VIII. CONCLUSIONS

In this paper, we have considered various transmission
schemes, both uncoded and coded, iterative or non-iterative,
over quasi-static fading channels and we have demonstrated
that a waterfall threshold can be used to characterize them. We
have provided an exact interpretation of the waterfall thresh-
old, based on which an accurate approximation of the frame
error rate can be obtained. Finally, we have analytically con-
firmed that our approach is in agreement with the literature,
when turbo codes are considered; in particular, we have shown
that the waterfall threshold indeed coincides with the conver-
gence threshold of the corresponding iterative decoder, when
long interleavers are used.
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