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Abstract—Although rate-1/3 turbo codes achieve an outstanding 

performance in additive white Gaussian noise channels, their 

performance degrades for higher code rates. In this paper it is 

illustrated that puncturing both the systematic as well as the parity 

bits can result in a better performance than puncturing the parity 

bits only. In addition we suggest an interleaver design rule for 

punctured partially systematic turbo codes, which can further 

improve performance, without increasing the encoding and 

decoding complexity. 
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I.  INTRODUCTION 

When Berrou et al. [1, 2] introduced binary turbo codes, they 
considered puncturing of the parity bits in order to increase the 
code rate. Hagenauer et al. [3] suggested a number of puncturing 
patterns whereas Açikel et al. [4] as well as Kousa and Mugaibel 
[5] presented a set of guidelines for constructing good puncturing 
vectors. However these authors focused on puncturing parity bits 
only. Babich et al. [6] claimed that schemes where parity bits are 
punctured only perform better than schemes where parity and 
systematic bits are punctured but Land and Hoeher [7] suggested 
that performance can be improved by puncturing both parity and 
systematic bits, in the case of rate-1/2 turbo codes. 

In this paper, we first describe the turbo encoder and decoder 
when puncturing is applied. A binary input aditive white 
Gaussian noise (AWGN) channel is assumed and we focus on 
punctured turbo codes having rates of 1/2 and 2/3. We provide 
expressions for the calculation of their input-redundancy 
enumerating function and we illustrate with a specific example 
why performance is improved by puncturing both the systematic 
and parity bits as opposed to puncturing only the parity bits. 
Furthermore, we propose a design rule for the interleaver of 
partially systematic turbo codes, which further boosts the 
performance of the punctured turbo code. 

II. PUNCTURED BINARY TURBO CODES 

The binary turbo encoder is a parallel concatenation of two 
recursive systematic convolutional (RSC) encoders of rate 1/2, as 
described in [1, 2]. The source bits are input to the first 
constituent encoder, while the second encoder is fed by an 
interleaved version of the original data. The interleaver is 
assumed to be pseudorandom and has a size of N bits. The output 
of the turbo encoder consists of the systematic bits of the first 
encoder, the parity bits of the first encoder and the parity bits of 
the second encoder. 

In order to increase the code rate of 1/3, puncturing is applied. 
A value of 0 in a puncturing vector implies that the 
corresponding bit is punctured. Each puncturing vector of length 

N is based on a pattern of length ℓ, which is repeated N/ℓ times. 
The systematic stream, the parity stream of the first encoder and 
the parity stream of the second encoder are punctured using 
puncturing vectors, based on patterns Pu, Pp and Pp' respectively, 
and the resultant codewords are transmitted over the channel. 

The turbo decoder consists of two soft-input soft-output 
decoders. Both decoders use a-priori information to produce soft 
estimates of the source bits by processing the log-likelihood 
ratios (LLRs) of the receive systematic and parity bits. When the 
code rate is higher than 1/3, zero values are inserted at the 
positions where puncturing took place. 

The first decoder uses a-priori information to produce soft 
estimates of the transmitted bits by processing the LLRs of the 
receive systematic bits and the LLRs of the receive parity bits of 
the first RSC encoder. Extrinsic information is extracted from 
the soft estimates of the source bits and acts as a-priori 
information for the second decoder. Similarly, the second 
decoder processes the LLRs of the received interleaved 
systematic bits as well as the LLRs of the received parity bits of 
the second RSC encoder, to produce better estimates of the 
source bits as well as extrinsic information, which will be used 
as a-priori information by the first decoder at the next iteration. 

Decoding algorithms are usually based either on the 
Maximum A-Posteriori algorithm, also known as the BCJR 
algorithm [8], or the soft output Viterbi algorithm (SOVA) [9]. 

III. PARTIALLY SYSTEMATIC TURBO CODES 

In this work we focus on turbo codes in the form of parallel 
concatenated convolutional codes (PCCCs). Both constituent 
codes are terminated and the termination bits are also punctured. 

As described in [7], turbo codes can be systematic, partially 
systematic (some of the source bits are punctured) or non-
systematic. Hagenauer et al. [3], considered systematic turbo 
codes and suggested a number of puncturing patterns in order to 
achieve various code rates. We consider partially systematic 
turbo codes whose puncturing pattern is homogeneous, i.e., the 
puncturing bits are uniformly distributed among the systematic 
and the parity streams of the turbo encoder. 

A. Weight Enumerating Functions 

Before proceeding to the puncturing of rate-1/3 turbo codes, 
we first present expressions describing their performance [10, 
11]. These are applicable to terminated turbo codes, where the 
memory size is much smaller than the interleaver size. The 
constituent convolutional codes are assumed to be identical. 

In order to analyze the performance of turbo codes, the 
expressions that describe the constituent convolutional codes 
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need to be modified to describe the equivalent block codes. The 
conditional weight enumerating function (CWEF) of the 
equivalent block code can be expressed as: 

∑=
j

j

jw

C ZAZwA ,),(
 

(1) 

where Aw,j denotes the number of codewords generated by an 
input information word of Hamming weight w, whose parity bits 
have Hamming weight j. The CWEF of the PCCC encoder using 
a uniform interleaver of length N is given by: 
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From (2) we obtain the input-redundancy weight enumerating 
function (IRWEF) of the PCCC code: 
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from which the bit error rate (BER) can be derived. By setting 
W=H and Z=H, the weight enumerating function (WEF) assumes 
the form: 
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where Bh is the number of codewords with Hamming weight h 
(h=w+j). The WEF is related to the word error probability. 

In the case of a terminated turbo code of rate 1/3, an input 
stream of N bits generates three outputs of length N+ν bits each, 
where ν is the memory size of the constituent encoder. 
Expressions (1) and (2) do not provide accurate results, since 
they assume that the length of each output is equal to the 
interleaver size N. Therefore we need to extend these expressions 
to take into account the terminating bits. 

The conditional weight enumerating function (CWEF) of the 
equivalent block code for the case of a terminated convolutional 
code can be rewritten as: 
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where Aw,d,j denotes the number of codewords generated by an 
input information word of Hamming weight w, whose systematic 
bits (including the systematic terminating bits) have Hamming 
weight d whereas the parity bits (including the parity terminating 
bits) have Hamming weight j. The reason for the introduction of 
variable D is due to the fact that the weight of the systematic 
output of the code is not necessarily equal to the weight of the 
input information word. The additional ν terminating bits could 
further increase the weight of the systematic output (w≤d). 

The PCCC encoder transmits the N+ν systematic bits of the 
first constituent code only (see fig.1). For rate-1/3 turbo codes, 
the CWEF of the first constituent code AC1(w,D,Z) is given by 
(5). If we set D=1 in AC1(w,D,Z) we obtain the CWEF of the 
second constituent code, i.e., AC2(w,Z) = AC1(w,D=1,Z). However, 
in the case of punctured turbo codes, the CWEF of the second 
constituent code also needs to be calculated. 

The CWEF, IRWEF and WEF of the PCCC encoder, using a 
uniform interleaver of length N, assume the form: 
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where the codeword Hamming weight h is equal to d+j. 

 
Figure 1.  Schematic of a turbo code in the form of PCCC. 

B. Example: Puncturing a parallel concatenation of RSCs(1, 5/7) 

We illustrate the effect of puncturing by an example. The 
PCCC of our example uses two four-state, rate-1/2, RSC codes 
with recursive polynomial 7 and forward polynomial 5, i.e. 
RSC(1, 5/7). For this example we assume that the interleaver is 
only 4 bits long for simplicity. Similar results are observed for 
larger interleaver sizes. 

Initially, we consider a rate-1/3 systematic PCCC. The 
CWEF of the equivalent rate-1/2 block code for the first 
constituent code is: 
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It is observed that the free distance of the convolutional code is 5. 
By setting AC2(w,Z)=AC1(w,D=1,Z) and substituting into 
equations (6)-(8) we obtain the WEF of the PCCC code: 
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whose free distance is equal to 7. 

Hagenauer et al [3], used the puncturing patterns Pu=[11], 
Pp=[10] and Pp' =[01], to obtain a systematic turbo code of rate 
1/2. Patterns Pu and Pp define the code rate of the first constituent 
code, which is equal to 2/3. Taking into account puncturing, the 
CWEF of the rate-2/3 equivalent block code for the first 
constituent code is: 
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We observe that the free distance of the code is reduced from 5 to 
3. The CWEF of the equivalent block code for the second 
constituent code is: 
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Consequently the WEF of the rate 1/2 systematic PCCC code is: 
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so puncturing has reduced the free distance of the systematic 
turbo code from 7 to 3.  

We observe that the free distance of the turbo code is mainly 
determined by the free distance of the first constituent code, i.e. 
dfree=3, since puncturing of the second constituent code leads to 3 
parity words with zero Hamming weight. We also observe that 
the puncturing rate of the first constituent code is 1/4, i.e. 1 in 
every 4 bits is punctured (Pu=[11], Pp=[10]), while the puncturing 
rate of the second constituent code is 1/2 (Pp' =[01]). 

We now consider the case of partially systematic turbo codes. 
If the puncturing patterns Pu=[110], Pp=[101] and Pp' =[011] are 
used to obtain a turbo code of rate 1/2, the first constituent code 
has a code rate of 3/4 and its CWEF has the form: 
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Although the puncturing rate of the first constituent code was 
increased from 1/4 (systematic punctured code) to 1/3 (partially 
systematic code), the free distance of the code did not change.  

Furthermore, as seen in table I, the puncturing rate of the first 
constituent code has been increased by 1 bit every 12 codeword 
bits but the puncturing rate of the second code has been reduced 
by 2 bits every 12 parity bits. Therefore, it is more likely that the 
number of parity words with zero weight, generated by the 
second encoder, is reduced or even eliminated. 

Indeed, the CWEF of the equivalent block code for the 
second constituent code is: 
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which contains no parity words of zero weight. The WEF of the 
rate 1/2 partially systematic PCCC code is equal to: 
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The free distance of the partially systematic turbo code is 4, 
which is equivalent to a better word error performance, compared 
to the rate 1/2 systematic turbo code.  

The puncturing rate of each constituent code for the case of a 
rate k/n systematic or partially systematic PCCC obtained from a 
rate 1/3 PCCC code, are illustrated in table II. 

TABLE I.  PUNCTURING RATES OF THE  CONSTITUENT CODES OF A 
RATE-1/2 PCCC 

Puncturing Rate 
Constituent Code Rate 1/2 

 Systematic PCCC 

Rate 1/2  

Part. Sys. PCCC 

Variation 

First 
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
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TABLE II.  PUNCTURING RATES OF THE CONSTITUENT CODES OF A 
RATE-k/n PCCC 

Puncturing Rate 
Constituent Code Rate k/n 

Systematic PCCC 

Rate k/n 

Part. Sys. PCCC 

Variation 

First 
k

nk

4

3 −  
k

nk

3

3 −  
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 −
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k
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3
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k
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C. Simulation Results 
 

In fig.2, the performances of rate 1/2 systematic and partially 
systematic PCCCs are compared. Both use a random interleaver 
of size 1000 bits. The systematic PCCC uses the puncturing 
patterns Pu=[11], Pp=[10] and Pp' =[01], whereas the partially 
systematic PCCC applies the puncturing patterns Pu=[110], 
Pp=[101] and Pp' =[011]. The increase of the puncturing rate of 
the first encoder causes degradation to the performance of the 
first decoder, which affects the overall PCCC performance. 
However, as the number of iterations increases, the turbo decoder 
approaches the performance of a maximum likelihood (ML) 
decoder and the benefit of reducing the puncturing rate of the 
second encoder is noticeable. 

 

Figure 2.  Bit error rate of rate 1/2 systematic and partially systematic PCCCs 
after 1, 2, 3 and 8 iterations. The interleaver size is N=1,000. 

In fig.3, the performance of rate 2/3 systematic and partially 
systematic PCCC after 8 iterations has been included. The 
systematic code uses the puncturing patterns Pu=[1111], 
Pp=[1000] and Pp' =[0010], whereas the partially systematic code 
applies the puncturing patterns Pu=[1001], Pp=[1010] and Pp' 
=[0101]. The rate 2/3 systematic PCCC performs better at low 
Eb/N0 values, however the partially systematic PCCC finally 
outperforms the systematic PCCC when the Eb/N0 ratio is greater 
than 2.65 dB. 



 
Figure 3.  Bit error rate of rate 1/2 and 2/3 systematic and partially systematic 

PCCCs after 8 iterations. The interleaver size is N=1,000. 

IV. INTERLEAVER DESIGN  

The turbo decoder consists of two soft-input soft-output 
decoders that exchange information in order to produce better 
estimates of the transmitted bits. The performance of a 
constituent decoder depends on the IRWEF of the corresponding 
constituent code, which is a function of both the systematic and 
the parity weight AC(W,D,Z), and consequently the WEF BC(H)= 
AC(W=1,D=H,Z=H). 

A. Puncturing Pattern of the Constituent Codes  
 

Assume that (Pu, Pp) and (Pu, Pp') are two pairs of puncturing 
patterns that produce good punctured convolutional codes. In the 
case of punctured turbo codes, pair (Pu, Pp) is applied to the first 
constituent code and Pp' to the second constituent code. At the 
receiver, the receive systematic bits and the receive parity bits of 
the first constituent decoder conform to the puncturing pair (Pu, 
Pp), whereas the interleaved receive systematic bits and the 
receive parity bits of the second constituent decoder conform to a 
puncturing pair (Pu', Pp'). 

If the turbo code is systematic, Pu = [11…1]. Since no 
systematic bits are punctured, the second constituent decoder 
conforms to puncturing pair (Pu, Pp') since Pu' = Pu, which 
guarantees that performance of the second constituent code will 
also be good. In the case of a partially systematic turbo code, the 
second decoder uses the parity bits selected by the puncturing 
pattern of the second encoder Pp' as well as the interleaved 
systematic bits. Although the receive systematic bits conform to 
pattern Pu, the interleaved systematic bits conform to Pu', which 
is not necessarily equal to Pu. Therefore, it is not guaranteed that 
the second decoder will converge as quickly as it would, if the 
puncturing pair was (Pu, Pp'). 

Returning to our previous example, the WEF of the second 
encoder of a rate-1/2 systematic PCCC, using an interleaver of 
size 4 bits, is: 

654322 2561)( HHHHHHBC +⋅+⋅+⋅++=  (17) 

More specifically, the WEF of the second encoder of a rate-
1/2 partially systematic PCCC, using an interleaver of size 4 bits 
is illustrated in table III. The puncturing patterns used are 
Pu=[110] and Pp' =[011]. The random interleaver could take one 
of 4! = 24 possible configurations. A configuration of the form 
A1A2A3A4 maps the first bit to position A1, the second bit to 
position A2, etc. According to Pu, the 3

rd systematic bit should be 
punctured, however the bit at position A3 is eventually 
punctured.  In our example, the six last configurations would 
lead to poor performance. 

TABLE III.  WEF OF THE 2ND E NCODER OF A RATE-1/2 PARTIALLY 
SYSTEMATIC PCCC USING AN INTERLEAVER OF SIZE 4 

Interleaver 

Configurations 
Weight Enumerating Function 

1234, 1432, 
2134, 2431, 
4132, 4231, 
1324, 1423, 
2314, 2413, 
3124, 3214, 
3412, 3421, 
4123, 4213, 
4312, 4321 

65432 2561 HHHHH +++++  

1243, 1342, 
2143, 2341, 

3142, 3241 

 
543 3741 HHHH ++++  

 

B. Interleaver Design Rule 
 
In order to tackle this problem, the interleaver needs to be 

redesigned in such a way that pattern Pu eventually punctures 
the same positions of the systematic and the interleaved 
systematic streams. This can be achieved if the interleaver of 
size N restricts bit uk to lie in positions that differ by multiples of 
ℓ from position k, i.e., k±ℓ, k±2ℓ and so on, where ℓ is the length 
of the puncturing pattern. We call this interleaver an ℓ-bit 
periodic random interleaver. 
  

  
Figure 4.  Example of a 3-bit periodic random interleaver 

In our example, the length of each puncturing pattern is 3, 
therefore a 3-bit periodic random interleaver is used.  In fig.4, a 
schematic representation of such an interleaver is given. The bits 
that occupy positions 1, 4 and 7 in the systematic stream are 
mapped to one of positions 1, 4 and 7 in the interleaved 
systematic stream with equal probability. The same logic applies 
to all positions. An interleaver following this design rule could 
only use configurations 1234 and 4231 (see table III). 

A complete example of two rate-1/2 turbo codes is presented 
in fig.5.  In fig.5(a) the effect of a random interleaver is shown 
while in fig.5(b) the effect of a 3-bit periodic random interleaver 
is illustrated. At the receiver, zeroes are inserted at the punctured 
positions of the receive systematic stream. In the case of random 
interleaving, zeroes in the interleaved receive systematic stream 
appear at random positions. In the case of periodic random 
interleaving, zeroes in the interleaved receive systematic stream 
appear in the same positions as in the receive systematic stream. 
Therefore it is guaranteed that pattern Pu specifies the 
puncturing period and the puncturing positions in both the 
systematic and the interleaved systematic streams. 

C. Simulation Results 
 
The performance of a rate-1/2 partially systematic turbo code 

using a 3-bit periodic random interleaver is shown in fig.6. It can 
be observed that it outperforms the partially systematic turbo 
code using a random bit interleaver right from the first iteration. 
In fig.7 the performance of rate 1/3, 1/2 and 2/3 turbo codes is 



presented. At a rate 1/2, the proposed scheme performs only 0.3 
dB worse than the rate 1/3 turbo code at a BER=10-4. 

V. CONCLUSIONS AND FUTURE WORK 

We illustrated that terminated partially systematic PCCCs 
perform better than terminated systematic PCCCs for rates 1/2 
and 2/3. Further investigation needs to be made in order to 
explore whether there is a rate after which the performance of 
partially systematic PCCCs degrades, compared to systematic 
PCCCs. It is suspected that the increased puncturing rate of the 
first encoder considerably reduces the free distance of the code. 
Since it is the characteristics of the first constituent code that 
mainly affect the overall performance of the turbo code, it is 
expected that, for high code rates, the additional parity bits 
provided by the second encoder will not suffice to keep the value 
of the free distance of the turbo code as high as possible. 

An optimized method was also presented according to which, 
partially systematic turbo codes of rate 1/2 and 2/3 with 
improved performance are generated. The proposed method 
outperforms the systematic turbo codes as well as the partially 
systematic turbo codes, which use a random bit interleaver, after 
a number of iterations. Future work will include investigating 
optimal puncturing patterns so as to achieve higher rate codes 
with good performance. 
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Figure 5.  Effect of interleaving to the receive systematic bits of a  rate 1/2 
partially systematic turbo code. In (a) a random bit interleaver is used while in 

(b) a random 3-bit periodic interleaver is used. 

 
Figure 6.  BER comparisson of  rate 1/2  PCCCs after 1, 2, 3 and 8 iterations. 

The interleaver size is N=1,000. 

 
Figure 7.  Performance comparison of rate 1/3, 1/2 and 2/3 turbo codes after 8 

iterations. The interleaver size is N=1,000. 

 


