
A Novel Technique for the Evaluation of the Transfer Function of

Parallel Concatenated Convolutional Codes

Ioannis Chatzigeorgiou 1, Miguel R.D. Rodrigues 1, Ian J. Wassell 1, Rolando Carrasco 2
1 Computer Laboratory, University of Cambridge, UK. E-mail: {ic231, mrdr3, ijw24}@cam.ac.uk
2 Dept. of EE&C Engineering,University of Newcastle upon Tyne, UK. E-mail: r.carrasco@ncl.ac.uk

Abstract

Turbo codes, in the form of parallel concatenated convolutional codes, consist of two recursive systematic

convolutional encoders separated by an interleaver. Due to the presence of the interleaver, each constituent

convolutional encoder accepts as input a block of information bits with a size equal to that of the interleaver

rather than a continuous stream of information bits. By determining the transfer function of each terminated

constituent convolutional code, which can be seen as a convolutional block code, an upper bound to the bit error

rate performance of the turbo code is readily calculated. In this paper, we briefly present the conventional

techniques for evaluating the transfer function of the convolutional block code and we propose a novel

technique, according to which the state diagram of the convolutional code is modified so as to allow the direct

evaluation of the transfer function of the convolutional block code.

1 Introduction and Motivation

Turbo codes, originally conceived by Berrou et al.

over a decade ago [1, 2], are widely known for their

astonishing performance in the additive white

Gaussian noise (AWGN) channel. Methods to

evaluate an upper bound to the bit error probability

(BEP) of a parallel-concatenated coding scheme were

proposed by Divsalar et al. [3] as well as Benedetto

and Montorsi [4]. In addition, guidelines for the

optimal design of the constituent convolutional codes

were presented in [5]. An upper bound to the BEP has

also been derived for the case of serially concatenated

coding schemes [6]. In all previous cases the

analytical bounding technique requires knowledge of

the constituent codes. A more abstract approach,

according to which the turbo code is seen as a whole

and only input words of weight 2 and 3 are taken into

account in the expression for the BEP, is presented in

[7]. All methods provide accurate results for high

values of Eb/N0, however the approaches in [3] and

[4] are more suitable for the investigation and

selection of constituent codes with the aim of

improving the overall performance of the turbo code.

The analytical techniques presented in [3] and [4]

introduce the concept of the input-output weight

enumerating function (IOWEF) associated with the

terminated constituent convolutional codes of the

turbo encoder. In [3] the evaluation of IOWEF

involves a matrix inversion following the

computation of the state transition matrix of the

convolutional code. In [4] the IOWEF is calculated

after evaluating a modified version of the transfer

function of the convolutional code.

The motivation for this paper is to propose a

different method for the evaluation of the transfer

function of the terminated convolutional code. More

specifically, the transfer function of the terminated

convolutional code is computed using an augmented

version of the modified state diagram of the original

convolutional code. Furthermore, we demonstrate

how to derive only those terms of the transfer

function associated with a specific block length as

well as a specific range of input and output weights.

In Section 2 of this paper, we briefly describe the

conventional evaluation of the transfer function of a

convolutional code, while in Section 3 we show how

to determine the transfer function of the terminated

convolutional code. In Section 4, we present our

approach for the evaluation of the transfer function of

the terminated convolutional code. In Section 5 we

provide expressions for the performance of a turbo

code. We conclude by presenting simulation results in

Section 6 and a summary of the contributions in

Section 7.

2 Evaluation of the Transfer
Function of Convolutional Codes

A detailed description of the properties of

convolutional codes as well as expressions required to

evaluate the performance of the maximum likelihood

(ML) decoder, are presented in [8]. In particular it is

shown that an upper bound to the BEP of the ML

decoder for binary phase shift keyed (BPSK)

modulation in an AWGN channel can be obtained if

the transfer function of the convolutional code is

known.

A generic form of the transfer function TC(W,D,L)

of a convolutional code is:

∑=
ldw

ldw

ldw

C LDWTLDWT
,,

,,),,(, (1)

where Tw,d,l denotes the number of paths that start

from the zero state and remerge with the zero state

after l steps, i.e., their length is l, and are associated

with an input sequence of weight w, and an output

sequence of weight d.

An example of a recursive convolutional encoder

with code rate 1/2, recursive generator polynomial 5

and forward generator polynomial 7, i.e., RSC(1,7/5),

is shown in Fig.1(a). The state diagram of the code is

illustrated in Fig.1(b). A branch corresponds to the

transition from a state to another state. Each branch is

labelled by the input word that caused the transition

and the output word generated by the transition.

Fig. 1 Block diagram (a) and state diagram (b) of

RSC(1,7/5)

Fig. 2 Modified state diagram of RSC(1,7/5)

The modified state diagram of the convolutional

code, presented in Fig.2, can be used to obtain its

transfer function. In order to avoid circulation around

the self-loop, we split the state 00 into two separate

states, the start state XS and the end state XE.

Furthermore, we label the branches according to the

Hamming weight of the input and output words. The

exponent of W corresponds to the weight of the input

word whereas the exponent of D corresponds to the

weight of the output word. Each branch also has term

L, which represents a time step. We express each state

of the diagram as a function of the other states, so as

to obtain the state equations. Upon solving these

equations for the ratio XE/XS, we obtain the transfer

function for RSC(1,7/5):

...)(

),,(

57462

464352

+++

+=

LDWDW

LDWLDWLDWT C

 (2)

which tells us that there is one path of length 3

generated by an input sequence of weight 2 which

produces an output sequence of weight 5 (i.e.,

W2D5L3), and so on.

3 Derivation of the Transfer
Function of Convolutional Block
Codes

A parallel concatenated convolutional code

(PCCC) is formed by an interleaver of length N and

two convolutional encoders [1, 2]. For simplicity, we

assume identical constituent encoders that generate

the same convolutional code. Since each constituent

code is terminated after N input bits, we refer to it as

convolutional block code C. It was shown in [3] and

[4] that the performance of a PCCC depends upon the

transfer function, or equivalently on the input-output

weight enumerating function (IOWEF) of the convo-

lutional block code C, which assumes the form:

∑

∑∑
=

=
= =

dw

dw

dw

N

w

N

d

dw

dw

C

DWB

DWBDWB
W D

,

,

1 1

,

),(

 (3)

where Bw,d denotes the number of codewords with

weight d generated by an input sequence of weight w.

The trellis of the convolutional block code, whose

input is a block of N bits, is the truncation at step N of

the infinite length trellis of the original convolutional

code. More specifically, the transfer function

TC(W,D,L) of a convolutional code provides all paths

that start from the zero state, diverge from the all-zero

path at step 1 and at some point remerge with the zero

state and remain at it. The IOWEF BC(W,D) of the

convolutional block code provides all paths of length

up to N that start from the zero state, can remerge

with and diverge from the zero state more than once

and terminate at the zero state.

In the following two subsections, the techniques

for the evaluation of the IOWEF of the convolutional

block code, as described in [3] and [4], are briefly

presented.

3.1 Divsalar’s Technique

Divsalar et al. [3] transform the information

contained in the state diagram of the convolutional

code into the transition matrix A(W,D,L). The

information in the state diagram of the 4-state

RSC(1,7/5) in Fig.1(b), can be summarised by the

4×4 transition matrix, A(W,D,L) = [αij,1(W,D,L)], as

follows:





















=

DLWDL

WDLDL

LLWD

LWDL

LDW

00

00

00

00

),,(
2

2

A
(4)

where αij,1(W,D,L) contains all the information (i.e.,

input weight W, output weight D and length L)

conveyed by the transition from state i to state j after

one time step. The third index, which in this case is 1,

denotes the number of time steps and is also equal to

the exponent of L of the non-zero terms. Moreover,

each input bit to the encoder of our example causes

the trellis of the code to expand by one additional

time step, therefore the third index is also equal to the

block size of the input sequence.

For a block of size N, the IOWEF of the

convolutional block code can be found by considering

only the (0,0) element of the matrix AN(W,D,L)=

[αij,N(W,D,L)], i.e.,

1,00
),,(),(

=
=

LN

C LDWDWB α . (5)

The (0,0) element α00,N(W,D,L), is a summation of

terms that correspond to all paths that start from and

terminate at the zero state after N time steps.

Consequently all terms of α00,N(W,D,L) are functions

of LN. By setting L=1, we derive the IOWEF BC(W,D)

of the convolutional block code.

Instead of calculating the N-th power of

A(W,D,L), we compute the sum of all Ak(W,D,L)

associated with all possible block sizes, i.e., k =

0,1,…∞ :
12)),,((...),,(),,(−−=+++ LDWLDWLDW AIAAI (6)

Consequently, the (0,0) element of (I-A(W,D,L))-1 =

[αij(W,D,L)] will be the sum of all (0,0) elements

associated with all block sizes:

∑
∞

=

=
0

,0000
),,(),,(

k

k
LDWLDW αα . (7)

For a block of size k=N, we use (7) to derive element

α00,N(W,D,L) by means of the recursion described in

[3]. The IOWEF of the convolutional block code is

found by substituting α00,N(W,D,L) in (5).

3.2 Benedetto’s and Montorsi’s Technique

The technique that Benedetto and Montorsi [4]

proposed, requires the modification of the transfer

function TC(W,D,L) of the convolutional code, as

follows:

∑ Ω=Ω
n,l,d,w

nldw

n,l,d,w

C LDWT),L,D,W(T , (8)

where Tw,d,l,n is the number of paths (i.e., codewords)

that start from the zero state and remerge with the

zero state n times, having length l≤N, and are

associated with an input sequence of weight w and an

output sequence of weight d. When a path merges

with and then diverges from the zero state, it cannot

stay at the zero state for more than one time-step. The

transfer function TC(W,D,L,Ω) can be evaluated by

elaborating on the algorithm described in [9].

Since convolutional codes are linear, the set of

input and output weights of all paths from the path

associated with the all-zero input sequence is the

same as the set of weights of all paths with respect to

any other path. Therefore, without loss of generality,

we assume that the all-zero sequence is the input to

the encoder. The all-zero input sequence forces the

encoder to stay at the zero state and generate an all-

zero output sequence. The corresponding path in the

trellis of the code is known as the all-zero path.

 In this case, TC(W,D,L,Ω) provides those

codewords associated with n remergings with the all-

zero path, which is equivalent to n successive error

events. However, it does not account for the

codewords with zeros before, after or between the

error events. It was shown in [4] that the total number

of codewords with zeros before, after or between the

n error events of total length l≤N, can be obtained

from a single codeword associated with n successive

errors of length l. The total number of codewords is

given by the following expression:

!)!(

)!(
],[

nlN

nlN

n

nlN
nlK

−
+−

=






 +−
= (9)

Therefore, for a given input weight w, codeword

weight d, length l and n remergings, there are Tw,d,l,n

codewords associated with n successive error events

and K[l,n]⋅Tw,d,l,n codewords with zeros before, after

or between the n error events. Consequently, the total

number of codewords Bw,d with weight d generated by

an input word of weight w can be obtained from:

∑ ⋅=
nl

nldwdw
TnlKB

,

,,,,
],[(10)

The IOWEF BC(W,D) of the convolutional block code

is obtained by substituting Bw,d from (10) into (3).

4 Proposed Technique

In this section we suggest a modification of the

state diagram of the original convolutional code from

which the IOWEF of a convolutional block code can

be directly derived, instead of evaluating the modified

transfer function of the convolutional code and then

performing additional computations, as described in

[4] and in the previous section.

4.1 State Diagram of a Convolutional
Block Code

For consistency, we continue to pursue the

example of Fig.1. By adding a new state X00 as well

as the circulation loop, the state diagram of a

convolutional block code shown in Fig.3 can be

obtained from the modified state diagram presented

previously in Fig.2. These additions enable an

indefinite number of remergings with the zero state

for an indefinite period of time. The new

“augmented” diagram in Fig.3 also has a start state XS

from which branches only emerge, and an end state

XE where branches only terminate.

Fig. 3 Augmented state diagram for the computation of

the IOWEF of the convolutional block code RSC(1, 7/5)

As usual, we derive the state equations and we

solve them for the ratio XE/XS. The result will be a

sum of two terms:

)L,D,W(f)L(f
X

X

S

E += (11)

The first term f(L) is a function of L only and

represents the set of all paths with zero input weight

and zero codeword weight, i.e., all the all-zero paths

for different block lengths. These paths start from

state XS, stay at state X00 for an indefinite number of

steps by circulating around the self-loop and finally

terminate at state XE. The all-zero paths are not of

interest in the computation of BC(W,D) and are

ignored.

The second term f(W,D,L) represents the set of all

paths that start from the zero state and end at the zero

state for various block lengths. It can be expressed as:

)L,D,W(X

)L,D,W(Y
)L,D,W(f

−
=
1

, (12)

where Y(W,D,L) and X(W,D,L) are polynomials of W,

D and L and can be expressed as:

∑

∑

=

=

xxx

xxx

xxx

yyy

yyy

yyy

ldw

ldw

ldw

ldw

ldw

ldw

LDWBLDWX

LDWBLDWY

,,

,,

,,

,,

),,(

),,(

 (13)

where
yyy ldwB ,, ,

xxx ldw
B

,,
are integers.

Exploiting the property of binomial series:

...xxx
x

++++=
−

321
1

1
, (14)

we obtain:

...

L)D,Y(W,L)D,(W,X

L)D,Y(W,L)D,X(W,

LDWYLDWf

2

+

⋅+

⋅+

=),,(),,(

 (15)

The polynomial f(W,D,L) finally assumes the form:

∑=
ldw

ldw

ldw
LDWBLDWf

,,

,,
),,(

(16)

where
ldw

B
,,
 is a nonnegative integer.

If we are interested in a specific block size N, we

need to consider only the terms Ll of f(W,D,L) with

l=N. We can rewrite (16) as follows:

),,()

),,(

,,
,,

,,
,,

,,

,,

LDWf(W,D,L f

LDWBLDWB

LDWBLDWf

NlNl

Nl

ldw

ldw

ldw

Nl

ldw

ldw

ldw

ldw

ldw

ldw

=≠

=≠

+=

+=

=

∑∑

∑

(17)

For a given block size N, the IOWEF BC(W,D) of the

convolutional block code is equal to:

1
),,(),(

===
LNl

C LDWfDWB (18)

4.2 Computation of the Required Terms

After the construction of the state diagram of a

convolutional block code and the evaluation of the

polynomials Y(W,D,L) and X(W,D,L), we need only to

compute those terms of f(W,D,L) that contain LN

instead of computing all terms that contain Ll, for an

arbitrary high l, and then isolating the terms with

exponent l=N.

In order to simplify (13), we define

∑

∑
=

=

xx

xx

xxx

yy

yy

yyy

dw

dw

ldwx

dw

dw

ldwy

DWBlDWx

DWBlDWy

,

,,

,

,,

),,(

),,(

 (19)

and we substitute in (13). For the sake of clarity, we

drop W and D in this subsection, since they are not of

importance for the discussion. Consequently,

expression (13) becomes:

∑

∑

⋅=

⋅=

x

x

y

y

l

l

x

l

l

y

LlxLX

LlyLY

)()(

)()(

 (20)

We assume that ly and lx take values from the sets:

},...,,...,,{

},...,,...,,{

21

21

Pj

Mi

xxxxx

yyyyy

llll l

llll l

∈

∈
 (21)

In order to find all terms of X(L) raised to an

arbitrary power k, as required by (15), we use the

multinomial formula:

∑
=++









⋅⋅=

kkk

kk

kl

x

kl

x

P

k

P

P

PPx

P

x LlxLlx
kk

k
LX

...

,..., 1

1

1

11

1
))((...))((

!!...

!
)(

(22)

or:

()∑
=++

++









⋅⋅⋅=

kkk

kk

klkl

x

k

x

k

P

k

P

P

PPxx

P

P Llxlx
kk

k
LX

...

,...,

)...(

1

1

1

11

1

1)(...)(
!!...

!
)(

(23)

where the sum is taken over all nonnegative integers

k1, k2, …, kP for which k1+ k2+…+kP = k.

The wanted terms that contain LN are computed by

following these steps:

1. We first select a value for ly from the set in (21).

Let’s assume that this value is Nl
iy
≤ .

2. Based on (15), we are focused on X(L) raised to

such powers that result in terms, which contain L

raised to the power of)(
iy

lN − .

3. Considering (23), the wanted exponents of X(L)

can be found by solving for k1, k2, …, kP the

Diophantine [10] equation:

)(...
21 21 iP yPxxx

lNklklkl −=+++ (24)

We then add the elements of each set {k1, k2, …,

kP} of nonnegative solutions to obtain the wanted

exponents of X(L), i.e.:

P
kkkk +++= ...

21
 for each set {k1, …, kP} (25)

4. We substitute each set {k1, k2, …, kP} as well as

the corresponding sum k to (23) to compute only

the terms that contain L raised to the power of

Pxxx
klklkl

P
+++ ...

21 21

.

5. This procedure is repeated until all M values have

been assigned to ly.

The selected terms compose the IOWEF of the

convolutional block code, BC(W,D), with NW = N and

ND = 2N, for a code rate of 1/2 and a block of size N.

5 Performance of Turbo Codes on
the AWGN Channel

In this section, we briefly elaborate on the

expressions described in [4], which describe the BEP

performance of a PCCC. The IOWEF, BC(W,D), of a

convolutional block code is computed as described in

the previous section. The sum of those terms of the

IOWEF associated with a specific input weight w, is

known as the conditional weight enumerating

function (CWEF), BC(w,D):

∑=
d

d

dw

C DBDwB
,

),((26)

The CWEF of the parallel concatenation of two

encoders that implement the convolutional code C,

separated by a uniform random interleaver of size N,

is given by:









⋅

=
−

w

N

DwBD
DwB

Cw

P

2)),((
),(

(27)

The IOWEF of the PCCC, BP(W,D), is obtained

from the CWEF, BP(w,D), using the following

expression:

∑∑ ==
dw

dwP

dw

w

wPP DWBWDwBDWB
,

,),(),(
(28)

The ML upper bound of the PCCC is then

approximated by:











⋅≤∑ d

N

ER
QB

N

w
P bP

dw

P

dwb

0,

,

2
 , (29)

where RP is the code rate of the PCCC.

As Eb/N0 increases, the Q(.) function approaches

zero for large output weights d. Therefore at high

values of Eb/N0 the upper bound mainly depends on

those terms of the IOWEF associated with low output

weights. Due to the systematic nature of the turbo

code, codewords of low weight d tend to be generated

by input words of low weight w. If we are only

interested in these ‘most significant’ terms, we can

introduce additional constraints to the afore-

mentioned procedure so as to select these terms that

contain LN and whose input weight and output weight

fall within specific ranges. The selected terms

compose the truncated IOWEF of the convolutional

block code, with w∈[1…NW] and d∈[1…ND], for a

code rate of 1/2 and a block of size N, where NW ≤ N

and ND ≤ 2N. The truncated IOWEF of a rate-1/3

PCCC can be computed by substituting the truncated

IOWEF of the constituent convolutional block code

into expressions (26)-(28).

6 Results

The proposed technique for the derivation of the

IOWEF of a convolutional block code, described in

the previous section, has been applied to RSC(1,7/5)

and RSC(1,5/7) convolutional codes. The ML upper

bound of the BEP performance of PCCCs employing

them is obtained and compared with that presented in

the literature. The simulation results obtained using

iterative decoding and applying the BCJR decoding

algorithm [11] after 8 iterations are plotted in Fig.4

against the corresponding theoretical bound.

Fig. 4 Theoretical upper bounds and simulation of the

BEP performance of P1 and P2 turbo codes.

For the results presented in Fig.4, both PCCCs use

pseudorandom interleavers of size 100. The first turbo

code, P1, employs RSC(1,7/5) as its constituent code

whereas the second turbo code, P2, employs

RSC(1,5/7). This comparison is also performed in [3]

and [5] and the exact same ML upper bounds are

derived.

The IOWEF of both P1 and P2 consists of terms

whose input weight takes values up to NW=100 and

whose output weight takes values up to ND=300. The

computation of a truncated version of the IOWEF

with NW=35 and ND=35 requires considerably less

processing time compared to that of the full IOWEF.

Although the truncated IOWEF enables the

calculation of the first 35 terms only of the ML upper

bound, we estimate the first 100 terms by means of

extrapolation, as described in [4]. In Fig.4, it can be

observed that the ML upper bound, which is derived

based on the full IOWEF, does not result in additional

accuracy.

7 Conclusions

In this paper we propose a new technique to

evaluate the IOWEF of a convolutional block code.

The technique involves the construction of an

augmented modified state diagram of the constituent

convolutional code, the derivation of the state

equations and the evaluation of the transfer function

of the convolutional block code.

The technique proposed by Divsalar et al. [3]

requires the construction of the state diagram of the

constituent convolutional code, the derivation of the

state transition matrix and the computation of an

inverse matrix, which is a function of the state

transition matrix.

The approach presented by Benedetto and

Montorsi [4] has two stages. In the first stage, an

intermediate transfer function of the convolutional

code is evaluated, yielding terms having particular

input and output weights. In the second stage, the

IOWEF of the convolutional block code is computed,

since each term of the IOWEF associated with a

specific input and output weight, can be expressed as

a function of the relevant terms of the intermediate

transfer function, i.e., those associated with identical

input and identical output weights.

The technique we propose can be seen as a

refinement of Benedetto’s and Montorsi’s approach.

Owing to the introduction of the augmented state

diagram, the IOWEF of the convolutional block code

can be directly computed without the need of an

intermediate transfer function. Furthermore, our

approach can be easily extended to punctured turbo

codes and enable us to accurately specify the best

puncturing patterns, in terms of error rate perfor-

mance [12].

References

[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near

Shannon limit error-correcting coding and decoding:

Turbo-codes”, in Proc. International Conference on

Communications (ICC ’93), Geneva, Switzerland,

May 1993, pp. 1064-1070.

[2] C. Berrou and A. Glavieux, “Near optimum error

correcting coding and decoding: Turbo codes,” IEEE

Trans. Commun., vol. 44, no. 10, pp. 1261-1271,

Oct. 1996.

[3] D. Divsalar, S. Dolinar, R. J. McEliece and F.

Pollara, “Transfer function bounds on the

performance of turbo codes”, JPL, Cal. Tech., TDA

Progr. Rep. 42-121, Aug. 1995.

[4] S. Benedetto, G. Montorsi, “Unveiling turbo codes:

some results on parallel concatenated coding

schemes”, IEEE Trans. Inform. Theory, vol. 42, no.

2, pp. 409-428, Mar. 1996.

[5] S. Benedetto and G. Montorsi, “Design of parallel

concatenated convolutional codes”, IEEE Trans.

Commun., vol. 44, no. 5, pp. 591-600, May 1996.

[6] S. Benedetto, D. Divsalar, G. Montorsi and F.

Pollara, “Serial concatenation of interleaved codes:

performance analysis, design and iterative

decoding”, IEEE Trans. Inform. Theory, vol. 44, no.

3, pp. 909-926, May 1998.

[7] W. E. Ryan, “Concatenated codes and iterative

decoding” in Wiley Encyclopedia of Telecom-

munications (J. G. Proakis, ed.), New York: Wiley

and Sons, 2003, pp. 556-570.

[8] A. J. Viterbi, "Convolutional codes and their

performance in communication systems" Trans.

Commun. Tech., vol. 19, no. 5, pp. 751-772, Oct.

1971.

[9] S. Benedetto, M. Mondin and G. Montorsi,

“Performance evaluation of trellis-coded modulation

schemes” Proc. IEEE, vol. 82, no. 6, pp. 833-855,

June 1994.

[10] I. G. Bashmakova, Diophantus and Diophantine

Equations, Washington DC: Math. Assoc. America,

1997.

[11] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv,

“Optimal decoding of linear codes for minimising

symbol error rate”, IEEE Trans. Inform. Theory, vol.

IT-20, pp. 284-287, Mar. 1974.

[12] I. Chatzigeorgiou, M.R.D. Rodrigues, I. J. Wassell

and R. Carrasco, “A novel technique for the

evaluation of the transfer function of punctured turbo

codes”, in Proc. Intl. Conf. Comm. (ICC’06),

Istanbul, Turkey, July 2006 (to appear).

