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Abstract  

Turbo codes, in the form of parallel concatenated convolutional codes, consist of two recursive systematic 

convolutional encoders separated by an interleaver. Due to the presence of the interleaver, each constituent 

convolutional encoder accepts as input a block of information bits with a size equal to that of the interleaver 

rather than a continuous stream of information bits. By determining the transfer function of each terminated 

constituent convolutional code, which can be seen as a convolutional block code, an upper bound to the bit error 

rate performance of the turbo code is readily calculated. In this paper, we briefly present the conventional 

techniques for evaluating the transfer function of the convolutional block code and we propose a novel 

technique, according to which the state diagram of the convolutional code is modified so as to allow the direct 

evaluation of the transfer function of the convolutional block code.  

 

1 Introduction and Motivation 

Turbo codes, originally conceived by Berrou et al. 

over a decade ago [1, 2], are widely known for their 

astonishing performance in the additive white 

Gaussian noise (AWGN) channel. Methods to 

evaluate an upper bound to the bit error probability 

(BEP) of a parallel-concatenated coding scheme were 

proposed by Divsalar et al. [3] as well as Benedetto 

and Montorsi [4]. In addition, guidelines for the 

optimal design of the constituent convolutional codes 

were presented in [5]. An upper bound to the BEP has 

also been derived for the case of serially concatenated 

coding schemes [6]. In all previous cases the 

analytical bounding technique requires knowledge of 

the constituent codes. A more abstract approach, 

according to which the turbo code is seen as a whole 

and only input words of weight 2 and 3 are taken into 

account in the expression for the BEP, is presented in 

[7]. All methods provide accurate results for high 

values of Eb/N0, however the approaches in [3] and 

[4] are more suitable for the investigation and 

selection of constituent codes with the aim of 

improving the overall performance of the turbo code.  

The analytical techniques presented in [3] and [4] 

introduce the concept of the input-output weight 

enumerating function (IOWEF) associated with the 

terminated constituent convolutional codes of the 

turbo encoder. In [3] the evaluation of IOWEF 

involves a matrix inversion following the 

computation of the state transition matrix of the 

convolutional code. In [4] the IOWEF is calculated 

after evaluating a modified version of the transfer 

function of the convolutional code. 

The motivation for this paper is to propose a 

different method for the evaluation of the transfer 

function of the terminated convolutional code. More 

specifically, the transfer function of the terminated 

convolutional code is computed using an augmented 

version of the modified state diagram of the original 

convolutional code. Furthermore, we demonstrate 

how to derive only those terms of the transfer 

function associated with a specific block length as 

well as a specific range of input and output weights. 

In Section 2 of this paper, we briefly describe the 

conventional evaluation of the transfer function of a 

convolutional code, while in Section 3 we show how 

to determine the transfer function of the terminated 

convolutional code. In Section 4, we present our 

approach for the evaluation of the transfer function of 

the terminated convolutional code. In Section 5 we 

provide expressions for the performance of a turbo 

code. We conclude by presenting simulation results in 

Section 6 and a summary of the contributions in 

Section 7. 

2 Evaluation of the Transfer 
Function of Convolutional Codes 

A detailed description of the properties of 

convolutional codes as well as expressions required to 

evaluate the performance of the maximum likelihood 

(ML) decoder, are presented in [8]. In particular it is 

shown that an upper bound to the BEP of the ML 

decoder for binary phase shift keyed (BPSK) 

modulation in an AWGN channel can be obtained if 

the transfer function of the convolutional code is 

known. 



A generic form of the transfer function TC(W,D,L) 

of a convolutional code is: 
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where Tw,d,l denotes the number of paths that start 

from the zero state and remerge with the zero state 

after l steps, i.e., their length is l, and are associated 

with an input sequence of  weight w, and an output 

sequence of weight d. 

An example of a recursive convolutional encoder 

with code rate 1/2, recursive generator polynomial 5 

and forward generator polynomial 7, i.e., RSC(1,7/5), 

is shown in Fig.1(a). The state diagram of the code is 

illustrated in Fig.1(b). A branch corresponds to the 

transition from a state to another state. Each branch is 

labelled by the input word that caused the transition 

and the output word generated by the transition. 

Fig. 1 Block diagram (a) and state diagram (b) of 

RSC(1,7/5) 

Fig. 2 Modified state diagram of RSC(1,7/5) 

The modified state diagram of the convolutional 

code, presented in Fig.2, can be used to obtain its 

transfer function. In order to avoid circulation around 

the self-loop, we split the state 00 into two separate 

states, the start state XS and the end state XE. 

Furthermore, we label the branches according to the 

Hamming weight of the input and output words. The 

exponent of W corresponds to the weight of the input 

word whereas the exponent of D corresponds to the 

weight of the output word. Each branch also has term 

L, which represents a time step. We express each state 

of the diagram as a function of the other states, so as 

to obtain the state equations. Upon solving these 

equations for the ratio XE/XS, we obtain the transfer 

function for RSC(1,7/5): 
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which tells us that there is one path of length 3 

generated by an input sequence of weight 2 which 

produces an output sequence of weight 5 (i.e., 

W2D5L3), and so on. 

3 Derivation of the Transfer 
Function of Convolutional Block 
Codes 

A parallel concatenated convolutional code 

(PCCC) is formed by an interleaver of length N and 

two convolutional encoders [1, 2]. For simplicity, we 

assume identical constituent encoders that generate 

the same convolutional code. Since each constituent 

code is terminated after N input bits, we refer to it as 

convolutional block code C. It was shown in [3] and 

[4] that the performance of a PCCC depends upon the 

transfer function, or equivalently on the input-output 

weight enumerating function (IOWEF) of the convo-

lutional block code C, which assumes the form: 
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where Bw,d denotes the number of codewords with 

weight d generated by an input sequence of weight w. 

The trellis of the convolutional block code, whose 

input is a block of N bits, is the truncation at step N of 

the infinite length trellis of the original convolutional 

code. More specifically, the transfer function 

TC(W,D,L) of a convolutional code provides all paths 

that start from the zero state, diverge from the all-zero 

path at step 1 and at some point remerge with the zero 

state and remain at it. The IOWEF BC(W,D) of the 

convolutional block code provides all paths of length 

up to N that start from the zero state, can remerge 

with and diverge from the zero state more than once 

and terminate at the zero state. 

In the following two subsections, the techniques 

for the evaluation of the IOWEF of the convolutional 

block code, as described in [3] and [4], are briefly 

presented. 

3.1 Divsalar’s Technique 

Divsalar et al. [3] transform the information 

contained in the state diagram of the convolutional 

code into the transition matrix A(W,D,L). The 

information in the state diagram of the 4-state 

RSC(1,7/5) in Fig.1(b), can be summarised by the 

4×4 transition matrix, A(W,D,L) = [αij,1(W,D,L)], as 

follows:  
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where αij,1(W,D,L) contains all the information (i.e., 

input weight W, output weight D and length L) 

conveyed by the transition from state i to state j after 

one time step. The third index, which in this case is 1, 

denotes the number of time steps and is also equal to 

the exponent of L of the non-zero terms. Moreover, 

each input bit to the encoder of our example causes 

the trellis of the code to expand by one additional 

time step, therefore the third index is also equal to the 

block size of the input sequence. 

For a block of size N, the IOWEF of the 

convolutional block code can be found by considering 

only the (0,0) element of the matrix AN(W,D,L)= 

[αij,N(W,D,L)], i.e., 
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The (0,0) element α00,N(W,D,L), is a summation of 

terms that correspond to all paths that start from and 

terminate at the zero state after N time steps. 

Consequently all terms of α00,N(W,D,L) are functions 

of LN. By setting L=1, we derive the IOWEF BC(W,D) 

of the convolutional block code. 

Instead of calculating the N-th power of 

A(W,D,L), we compute the sum of all Ak(W,D,L) 

associated with all possible block sizes, i.e., k = 

0,1,…∞ : 
12 )),,((...),,(),,( −−=+++ LDWLDWLDW AIAAI  (6) 

Consequently, the (0,0) element of (I-A(W,D,L))-1 = 

[αij(W,D,L)] will be the sum of all (0,0) elements 

associated with all block sizes: 
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For a block of size k=N, we use (7) to derive element 

α00,N(W,D,L) by means of the recursion described in 

[3]. The IOWEF of the convolutional block code is 

found by substituting α00,N(W,D,L) in (5). 

3.2 Benedetto’s and Montorsi’s Technique 

The technique that Benedetto and Montorsi [4] 

proposed, requires the modification of the transfer 

function TC(W,D,L) of the convolutional code, as 

follows: 
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n,l,d,w

nldw

n,l,d,w

C LDWT),L,D,W(T , (8) 

where Tw,d,l,n is the number of paths (i.e., codewords) 

that start from the zero state and remerge with the 

zero state n times, having length l≤N, and are 

associated with an input sequence of  weight w and an 

output sequence of weight d. When a path merges 

with and then diverges from the zero state, it cannot 

stay at the zero state for more than one time-step. The 

transfer function TC(W,D,L,Ω) can be evaluated by 

elaborating on the algorithm described in [9]. 

Since convolutional codes are linear, the set of 

input and output weights of all paths from the path 

associated with the all-zero input sequence is the 

same as the set of weights of all paths with respect to 

any other path. Therefore, without loss of generality, 

we assume that the all-zero sequence is the input to 

the encoder. The all-zero input sequence forces the 

encoder to stay at the zero state and generate an all-

zero output sequence. The corresponding path in the 

trellis of the code is known as the all-zero path. 

 In this case, TC(W,D,L,Ω) provides those 

codewords associated with n remergings with the all-

zero path, which is equivalent to n successive error 

events. However, it does not account for the 

codewords with zeros before, after or between the 

error events. It was shown in [4] that the total number 

of codewords with zeros before, after or between the 

n error events of total length l≤N, can be obtained 

from a single codeword associated with n successive 

errors of length l. The total number of codewords is 

given by the following expression: 
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Therefore, for a given input weight w, codeword 

weight d, length l and n remergings, there are Tw,d,l,n 

codewords associated with n successive error events 

and K[l,n]⋅Tw,d,l,n codewords with zeros before, after 

or between the n error events. Consequently, the total 

number of codewords Bw,d with weight d generated by 

an input word of weight w can be obtained from: 
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The IOWEF BC(W,D) of the convolutional block code 

is obtained by substituting Bw,d from (10) into (3).  

4 Proposed Technique 

In this section we suggest a modification of the 

state diagram of the original convolutional code from 

which the IOWEF of a convolutional block code can 

be directly derived, instead of evaluating the modified 

transfer function of the convolutional code and then 

performing additional computations, as described in 

[4] and in the previous section. 

4.1 State Diagram of a Convolutional 
Block Code 

For consistency, we continue to pursue the 

example of Fig.1. By adding a new state X00 as well 

as the circulation loop, the state diagram of a 

convolutional block code shown in Fig.3 can be 

obtained from the modified state diagram presented 



previously in Fig.2. These additions enable an 

indefinite number of remergings with the zero state 

for an indefinite period of time. The new 

“augmented” diagram in Fig.3 also has a start state XS 

from which branches only emerge, and an end state 

XE where branches only terminate. 

Fig. 3  Augmented state diagram for the computation of 

the IOWEF of the convolutional block code RSC(1, 7/5) 

As usual, we derive the state equations and we 

solve them for the ratio XE/XS. The result will be a 

sum of two terms: 
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The first term f(L) is a function of L only and 

represents the set of all paths with zero input weight 

and zero codeword weight, i.e., all the all-zero paths 

for different block lengths. These paths start from 

state XS, stay at state X00 for an indefinite number of 

steps by circulating around the self-loop and finally 

terminate at state XE. The all-zero paths are not of 

interest in the computation of BC(W,D) and are 

ignored. 

The second term f(W,D,L) represents the set of all 

paths that start from the zero state and end at the zero 

state for various block lengths. It can be expressed as: 
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where Y(W,D,L) and X(W,D,L) are polynomials of W, 

D and L and can be expressed as: 
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where 
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xxx ldw
B

,,
are integers. 

Exploiting the property of binomial series: 
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we obtain: 
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The polynomial f(W,D,L) finally assumes the form: 
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where 
ldw

B
,,
 is a nonnegative integer. 

If we are interested in a specific block size N, we 

need to consider only the terms Ll of f(W,D,L) with 

l=N. We can rewrite (16) as follows: 
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For a given block size N, the IOWEF BC(W,D) of the 

convolutional block code is equal to: 

1
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4.2 Computation of the Required Terms 

After the construction of the state diagram of a 

convolutional block code and the evaluation of the 

polynomials Y(W,D,L) and X(W,D,L), we need only to 

compute those terms of f(W,D,L) that contain LN 

instead of computing all terms that contain Ll, for an 

arbitrary high l, and then isolating the terms with 

exponent l=N. 

In order to simplify (13), we define 
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and we substitute in (13). For the sake of clarity, we 

drop W and D in this subsection, since they are not of 

importance for the discussion. Consequently, 

expression (13) becomes: 
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We assume that ly and lx take values from the sets: 
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In order to find all terms of X(L) raised to an 

arbitrary power k, as required by (15), we use the 

multinomial formula: 
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or: 
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where the sum is taken over all nonnegative integers 

k1, k2, …, kP for which k1+ k2+…+kP = k. 

The wanted terms that contain LN are computed by 

following these steps: 
 
1. We first select a value for ly from the set in (21). 

Let’s assume that this value is Nl
iy
≤ . 

2. Based on (15), we are focused on X(L) raised to 

such powers that result in terms, which contain L 

raised to the power of )(
iy

lN − . 

3. Considering (23), the wanted exponents of X(L) 

can be found by solving for k1, k2, …, kP the 

Diophantine [10] equation: 
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We then add the elements of each set {k1, k2, …, 

kP} of nonnegative solutions to obtain the wanted 

exponents of X(L), i.e.: 

P
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 for each set {k1, …, kP} (25) 

4. We substitute each set {k1, k2, …, kP} as well as 

the corresponding sum k to (23) to compute only 

the terms that contain L raised to the power of 

Pxxx
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P
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5. This procedure is repeated until all M values have 

been assigned to ly. 
 

The selected terms compose the IOWEF of the 

convolutional block code, BC(W,D), with NW = N and 

ND = 2N, for a code rate of 1/2 and a block of size N. 

5 Performance of Turbo Codes on 
the AWGN Channel 

In this section, we briefly elaborate on the 

expressions described in [4], which describe the BEP 

performance of a PCCC. The IOWEF, BC(W,D), of a 

convolutional block code is computed as described in 

the previous section. The sum of those terms of the 

IOWEF associated with a specific input weight w, is 

known as the conditional weight enumerating 

function (CWEF), BC(w,D): 
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The CWEF of the parallel concatenation of two 

encoders that implement the convolutional code C, 

separated by a uniform random interleaver of size N, 

is given by: 
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The IOWEF of the PCCC, BP(W,D), is obtained 

from the CWEF, BP(w,D), using the following 

expression: 
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The ML upper bound of the PCCC is then 

approximated by: 
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where RP is the code rate of the PCCC. 

As Eb/N0 increases, the Q(.) function approaches 

zero for large output weights d. Therefore at high 

values of Eb/N0 the upper bound mainly depends on 

those terms of the IOWEF associated with low output 

weights. Due to the systematic nature of the turbo 

code, codewords of low weight d tend to be generated 

by input words of low weight w. If we are only 

interested in these ‘most significant’ terms, we can 

introduce additional constraints to the afore-

mentioned procedure so as to select these terms that 

contain LN and whose input weight and output weight 

fall within specific ranges. The selected terms 

compose the truncated IOWEF of the convolutional 

block code, with w∈[1…NW] and d∈[1…ND], for a 

code rate of 1/2 and a block of size N, where NW ≤ N 

and ND ≤ 2N. The truncated IOWEF of a rate-1/3 

PCCC can be computed by substituting the truncated 

IOWEF of the constituent convolutional block code 

into expressions (26)-(28). 

6 Results 

The proposed technique for the derivation of the 

IOWEF of a convolutional block code, described in 

the previous section, has been applied to RSC(1,7/5) 

and RSC(1,5/7) convolutional codes. The ML upper 

bound of the BEP performance of PCCCs employing 

them is obtained and compared with that presented in 

the literature. The simulation results obtained using 

iterative decoding and applying the BCJR decoding 

algorithm [11] after 8 iterations are plotted in Fig.4 

against the corresponding theoretical bound. 

Fig. 4  Theoretical upper bounds and simulation of the 

BEP performance of P1 and P2 turbo codes. 



For the results presented in Fig.4, both PCCCs use 

pseudorandom interleavers of size 100. The first turbo 

code, P1, employs RSC(1,7/5) as its constituent code 

whereas the second turbo code, P2, employs 

RSC(1,5/7). This comparison is also performed in [3] 

and [5] and the exact same ML upper bounds are 

derived. 

The IOWEF of both P1 and P2 consists of terms 

whose input weight takes values up to NW=100 and 

whose output weight takes values up to ND=300. The 

computation of a truncated version of the IOWEF 

with NW=35 and ND=35 requires considerably less 

processing time compared to that of the full IOWEF. 

Although the truncated IOWEF enables the 

calculation of the first 35 terms only of the ML upper 

bound, we estimate the first 100 terms by means of 

extrapolation, as described in [4]. In Fig.4, it can be 

observed that the ML upper bound, which is derived 

based on the full IOWEF, does not result in additional 

accuracy. 

7 Conclusions 

In this paper we propose a new technique to 

evaluate the IOWEF of a convolutional block code. 

The technique involves the construction of an 

augmented modified state diagram of the constituent 

convolutional code, the derivation of the state 

equations and the evaluation of the transfer function 

of the convolutional block code. 

The technique proposed by Divsalar et al. [3] 

requires the construction of the state diagram of the 

constituent convolutional code, the derivation of the 

state transition matrix and the computation of an 

inverse matrix, which is a function of the state 

transition matrix. 

The approach presented by Benedetto and 

Montorsi [4] has two stages. In the first stage, an 

intermediate transfer function of the convolutional 

code is evaluated, yielding terms having particular 

input and output weights. In the second stage, the 

IOWEF of the convolutional block code is computed, 

since each term of the IOWEF associated with a 

specific input and output weight, can be expressed as 

a function of the relevant terms of the intermediate 

transfer function, i.e., those associated with identical 

input and identical output weights. 

The technique we propose can be seen as a 

refinement of Benedetto’s and Montorsi’s approach. 

Owing to the introduction of the augmented state 

diagram, the IOWEF of the convolutional block code 

can be directly computed without the need of an 

intermediate transfer function. Furthermore, our 

approach can be easily extended to punctured turbo 

codes and enable us to accurately specify the best 

puncturing patterns, in terms of error rate perfor-

mance [12]. 
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