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Abstract

Convolutional block codes, which are commonly used as constituent codes in turbo code configu-

rations, accept a block of information bits as input rather than a continuous stream of bits. In this paper,

we propose a technique for the calculation of the transfer function of convolutional block codes, both

punctured and nonpunctured. The novelty of our approach lies in the augmentation of the conventional

state diagram, which allows the enumeration of all codeword sequences of a convolutional block code.

In the case of a turbo code, we can readily calculate an upper bound to its bit error rate performance if

the transfer function of each constituent convolutional block code has been obtained. The bound gives

an accurate estimate of the error floor of the turbo code and, consequently, our method provides a useful

analytical tool for determining constituent codes or identifying puncturing patterns that improve the bit

error rate performance of a turbo code, at high signal-to-noise ratios.
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I. INTRODUCTION

Turbo codes, originally conceived by Berrou et al. [1], [2] are widely known for their aston-

ishing performance on the additive white Gaussian noise (AWGN) channel. A tight upper bound

on the bit error probability of a turbo code can be easily computed, if the distance properties of

the code, conveyed by its transfer function, are known. Calculation of the transfer function of a

turbo code is computational infeasible for long deterministic interleavers but the assumption of

a uniform interleaver, a concept introduced by Benedetto and Montorsi [3], drastically simplifies

the calculations and reduces the computational burden. Methods to evaluate the transfer function

of a parallel concatenated convolutional coding scheme have been proposed by Divsalar et al.

[4] as well as Benedetto and Montorsi [3]. In addition, guidelines for the optimal design of the

constituent convolutional codes were presented in [5].

When bandwidth efficiency is of critical importance, the use of high-rate codes is imperative.

High-rate turbo codes can be easily obtained by puncturing selected bits from the output of a

turbo encoder. Based on the research carried out by Hagenauer [6] on rate-compatible punctured

convolutional codes and the work of Haccoun and Bégin [7] on punctured convolutional codes,

design criteria for punctured turbo codes were proposed by Barbulescu and Pietrobon [8], Fan

Mo et al. [9], Açikel and Ryan [10], and Babich et al. [11]. Simulation-based analyses to

identify a relationship between the structure of a puncturing pattern and the performance of the

corresponding punctured turbo code were also carried out by Land and Hoeher [12], Blazek et al.

[13] and Crozier et al. [14]. In turn, an analytic approach to evaluate the performance of punctured

turbo codes was developed by Kousa and Mugaibel [15]. The approach is based on a modification

of Divsalar’s technique that takes the puncturing pattern into account. Although elegant, the

proposed approach is only applicable to turbo codes using short interleavers. Furthermore, the

authors draw conclusions on rate-1/2 turbo codes assuming that only the parity check outputs

of the turbo encoders are punctured.

Inspired by Benedetto and Montorsi’s technique, this paper proposes an alternative method

based on the concept of the “augmented” state diagram, for the evaluation of the transfer function

of turbo codes, both punctured and nonpunctured. The augmented state diagram for nonpunctured

constituent convolutional codes and its counterpart for punctured constituent convolutional codes

are considered in Sections II and III, respectively. The transfer function of a constituent code
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can be readily obtained using our approach, however as the length of the input sequence or,

equivalently, the size of the interleaver increases, computation becomes intensive. Thus, Section

IV proposes a modification of the augmented state diagram that results in a less computationally

intensive process. Section V considers the application of the proposed technique to identify

puncturing patterns that lead to high-rate turbo codes yielding low error floors. Finally, the main

conclusions of this work are summarized in Section VI.

II. NONPUNCTURED CONVOLUTIONAL BLOCK CODES

A. Preliminaries

A codeword sequence generated by a convolutional encoder is often described by a monomial

of the form WwUuZzL`, where W , U and Z are indeterminate variables that correspond to the

input, systematic output and parity check output sequences, respectively, whilst L corresponds

to the associated path of the codeword sequence in the trellis diagram. The exponent of either

W , U or Z, namely w, u or z respectively, denotes the Hamming weight of the corresponding

sequence, i.e., its Hamming distance from the all-zero sequence. Finally, the exponent of L

corresponds to the length of the generated trellis path.

Due to the linear properties of convolutional codes, it is common practice to assume that the

all-zero sequence is input to the convolutional encoder and, consequently, the all-zero codeword

sequence is generated and transmitted. Conceptually, both the input and the output sequences are

of infinite length. In addition, it is assumed that the encoder is initialized to the zero memory

state. The transfer function T (W,U,Z, L) of a convolutional code enumerates all codeword

sequences of the form WwUuZzL`, represented by paths in the trellis diagram that start from

the zero state and remerge with it only once, after ` trellis steps.

The transfer function of a convolutional code can be obtained from its state diagram, after

labeling each branch according to the input, systematic and parity check weights it conveys and

splitting the zero state into two separate states, namely the start state XS and the end state XE .

As an example, the weight-labeled state diagram of a rate-1/2 recursive systematic convolutional

(RSC) encoder, with memory size ν = 2, feedback generator polynomial 78 and feedforward

generator polynomial 58 is shown in Fig. 1. For brevity, we use the notation RSC(1,5/7) to

describe the afore-mentioned code. Note that both polynomials are expressed in octal form.

Using the weight-labeled state diagram, we can express each memory state as a function of the
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other states and, hence, obtain the so-called state equations. Upon solving these equations for

the ratio XE/XS , we obtain the transfer function T (W,U,Z, L).

When the input information sequence has finite length, the corresponding convolutional code

can be seen as a block code. Throughout this paper we assume that the trellis of a convolutional

block code (CBC) is terminated, i.e., the information sequence contains bits that force the trellis

path of fixed length N to return to the zero state [16]. In contrast to T (W,U,Z, L), the transfer

function B(W,U,Z) of a CBC enumerates all codeword sequences that correspond to paths of

length N ; hence, paths that remerge with the zero state more than once and stay at it for a

consecutive number of trellis steps are also considered. In the subsequent section, we introduce

the concept of the augmented state diagram, which can be used to derive the transfer function

of a CBC.

B. The Augmented State Diagram: a Novel Approach

For consistency, we consider the case of the binary RSC(1,5/7) code to demonstrate the method

for obtaining the augmented state diagram of a CBC from the weight-labeled state diagram of

the original convolutional code. In order to allow a path to revisit the zero state, we have inserted

a node X0, which is different from the states XS and XE , as illustrated in Fig. 2. States which

are connected to XS or XE , have also been connected to this “intermediate” zero state X0 in a

similar manner. The self-loop has been appended, since a path can remain at X0 for an indefinite

period of time. Furthermore, two branches, both with zero input and output weight, are added

to connect XS with X0 and X0 with XE , so as to permit paths to diverge from the all-zero

sequence at a time step other than the very first, or to remerge with the all-zero sequence at

a time step other than the very last. The resultant augmented state diagram of the RSC(1,5/7)

block code, depicted in Fig. 2, is used to derive the system of state equations.

Upon solving the state equations for the ratio XE/XS , we obtain

XE

XS

= fzero(L) + f(W,U,Z, L). (1)

The first term, fzero(L), is the sum of all paths that correspond to all-zero sequences of various

lengths. These paths start from state XS , stay at state X0 for an indefinite number of steps by

circulating around the self-loop and finally terminate at state XE . Since the transfer function,

B(W,U,Z), enumerates all codeword sequences other than the transmitted sequence, and since
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we have assumed that the all-zero sequence has been transmitted, term fzero(L) is not of interest,

hence it is ignored.

The second term on the right hand side of (1) enumerates all paths of various lengths that start

from the zero state, end at the zero state and are different from the all-zero path. Essentially,

these paths represent all single-error and multiple-error events. Term f(W,U,Z, L), which we

call the extended transfer function of a CBC, can be expressed as

f(W,U,Z, L) =
∞∑

`=1

f`(W,U,Z)L`, (2)

where the conditional extended transfer function, f`(W,U,Z), enumerates all codeword se-

quences having specific path length `. More specifically, f`(W,U,Z) is defined as

f`(W,U,Z) ,
∑

w,u,z

Bw,u,z,`W
wUuZz, (3)

where Bw,u,z,` denotes the number of codeword sequences of particular path length `, having

input, systematic and parity check weights w, u and z, respectively. Consequently, for an input

information sequence of length N , the transfer function B(W,U,Z) of a binary CBC is, by

definition, equivalent to f`(W,U,Z) for ` = N , that is

B(W,U,Z) , fN(W,U,Z). (4)

For example, let us assume that we want to compute the transfer function of the RSC(1,5/7)

block code for an input block length of N =4. Using the augmented state diagram depicted in

Fig. 2, we obtain the extended transfer function

f(W,U,Z, L) = f3(W,U,Z)L3 + f4(W,U,Z)L4 + f5(W,U,Z)L5 + . . .

= W 3U3Z2L3 + (W 2U2Z4 + 2W 3U3Z2)L4+

+ (2W 2U2Z4 + 3W 3U3Z2 + W 3U3Z4 + W 4U4Z2)L5 + . . .

(5)

For an input information sequence of length N = 4, the desired transfer function B(W,U,Z)

coincides with the conditional extended transfer function f4(W,U,Z), hence

B(W,U,Z) , f4(W,U,Z)

= W 2U2Z4 + 2W 3U3Z2.
(6)

In practice, fN(W,U,Z) can be directly derived from the ratio XE/XS while avoiding the

calculation of unnecessary terms [17]. In particular, we can use the properties of binomial series
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to express the ratio XE/XS as a sum of products of polynomials; consequently, only those

products that generate monomials containing LN need to be calculated. These products can be

identified and computed using the multinomial theorem. A detailed description of the derivation

process is given in the Appendix 1.

The technique we propose can be seen as a refinement of Benedetto’s and Montorsi’s approach

[3]; they both have similar complexity, whilst they are less complex than Divsalar’s method [4].

However, our technique can be implemented in a straightforward manner since it is based on

the conventional state diagram of convolutional codes and, more importantly, it can be easily

extended to punctured convolutional codes, as it will become evident in the following section.

III. PUNCTURED CONVOLUTIONAL BLOCK CODES

A. Preliminaries

In certain applications, such as satellite communications, link reliability is of prime importance

and, consequently, low rate codes are used to achieve it. However, bandwidth occupancy is of

much greater importance in wireless communications and so high-rate codes are preferred. A

high-rate convolutional code can be obtained by periodic elimination, known as puncturing, of

particular codeword bits from the output of a parent low rate convolutional encoder. If the parent

convolutional encoder generates n0 output sequences, we define which output bits are eliminated

at each time-step by means of a puncturing pattern P. The puncturing pattern, which is repeated

periodically every M time steps, is represented by a n0 ×M matrix

P =




p1,1 . . . p1,M

... pi,j
...

pn0,1 . . . pn0,M




, (7)

where pi,j ∈ {0, 1}, with i = 1, . . . , n0 and j = 1, . . . , M . For pi,j = 0 the corresponding

output bit is punctured otherwise it is transmitted. Note that puncturing does not compromise

1One could argue that B(W, U, Z) can also be generated by enumerating all linear combinations of the terms contained

in T (W, U, Z, L) that produce paths of length N . Although this combinatorial approach is a possible alternative, it is more

computational expensive than our method. As it will become evident in the Appendix, for a given CBC, our method uses a

fixed number of equations that contain a constant number of terms. As N increases, only the number of solutions returned by

the equations increases. On the contrary, the combinatorial approach tries to solve a problem, both the terms and solutions of

which grow with N .
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the computational complexity of the decoder, whilst a variety of code rates can be achieved by

using different puncturing patterns.

The puncturing pattern P can either be seen as a matrix of row vectors [Pr
1 . . . Pr

n0
]T

or as a matrix of column vectors [Pc
1 . . . Pc

M
]; in the former representation Pr

i is the row

puncturing vector (RPV) of the i-th output of the parent convolutional encoder, whilst in the

latter representation Pc
j is the column puncturing vector (CPV) of the j-th puncturing step.

We use the latter representation throughout the following subsection, where we introduce the

modified augmented state diagram for punctured CBCs.

B. Revisiting the Augmented State Diagram

In this section, we extend the technique based on the augmented state diagram to the case of

punctured CBCs. For consistency, we consider the rate-1/2 RSC(1,5/7) code, having a memory

size of ν = 2 and, consequently, 4 available states. In order to construct the augmented state

diagram of the punctured RSC(1,5/7) block code, we need to introduce the CPV into the labeling

procedure of each branch. Recall that in the case of the augmented state diagram of nonpunctured

convolutional codes, a branch connecting two states, e.g., Xk1 and Xk2 with k1,k2 ∈ [0, 2ν−1],

is labeled using the notation WwUuZzL. Let us concentrate on the same transition from Xk1 to

Xk2 when puncturing occurs. If Pc
j = [p1,j p2,j]

T is the active CPV at a specific step, the label

of the branch will change to WwUu′Zz′L, where u′ and z′ are the weights of the punctured

output codewords given by

u′ = u · p1,j, z′ = z · p2,j. (8)

We observe that the values of u′ and z′ depend on the value of the active CPV, hence the label

of the branch that connects Xk1 with Xk2 cannot be constant.

To overcome this problem we introduce M sets of states, namely Y1, . . . ,YM . Each set Yj

contains all possible states of the convolutional encoder, i.e., Yj ={X(j)
0 , . . . , X

(j)
2ν−1}, where the

index j next to a state Xk denotes the set which state Xk belongs to. When Pc
j is the active

CPV, a transition from state Xk1 to state Xk2 in the conventional state diagram corresponds to

a transition from state X
(j−1)
k1

to state X
(j)
k2

in the modified augmented state diagram. As time

progresses CPVs are repeated periodically, i.e., Pc
1,Pc

2,. . . ,Pc
M ,Pc

1,. . . , resulting in transitions to

states that belong to sets Y1,Y2,. . . ,YM ,Y1,. . . , respectively. Therefore, the problem of having



8

M labels assigned to a single branch that connects states Xk1 and Xk2 is overcome by having

M branches each one of which pairs state Xk1 of a set with state Xk2 of the subsequent set.

So as to better understand the concept of the augmented state diagram of a punctured CBC,

we give an example for a puncturing period of M = 2. In order to increase the code rate of

RSC(1,5/7) from 1/2 to 2/3, we use the puncturing pattern

P =



1 1

1 0


 , (9)

which can be decomposed into two CPVs, namely Pc
1 = [1 1]T and Pc

2 = [1 0]T. The

augmented state diagram of the rate-2/3 RSC(1,5/7) block code is presented in Fig. 3. Solid

branches originating from states in set Y2 and terminating at states in set Y1, represent transitions

during which Pc
1 is the active CPV. Since both elements of Pc

1 are equal to 1, the outputs of the

encoder are not punctured therefore the labels of those branches are identical to the labels of

the corresponding branches of the augmented diagram in Fig. 2. Dashed branches, originating

from states in set Y1 and terminating at states in set Y2, represent transitions during which Pc
2

is the active CPV. In this case, the parity check output of the encoder is punctured, therefore

term Z does not appear in any of the branch labels. To complete the augmented diagram, states

XS and XE have to be included. Since the encoder starts from state XS , Pc
1 is the active CPV

during the transition from XS to a state in set Y1 at the first time-step. At the last time-step,

the encoder returns to the zero state, i.e., a transition to state XE occurs. In order to terminate

the code, those states of each set which are connected to state X0 of a different set, must also

be connected to state XE .

In the general case of a binary CBC which is punctured using a pattern of period M , we

obtain (M × 2ν + 1) state equations which we solve for the ratio XE/XS . Similarly to the case

of nonpunctured convolutional codes presented in Section II, the transfer function B(W,U,Z) of

a punctured CBC for a particular input block size N can be derived from the extended transfer

function f(W,U,Z, L) by isolating the conditional extended transfer function fN(W,U,Z).

Although the augmented state diagram in this form can be used to derive the transfer function

of a punctured CBC for any input block size, computational complexity becomes more intensive

as the puncturing period M increases, since the number of branches terminating at XE or,

equivalently, the number of terms in the state equation for XE is proportional to M . However,
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if we are interested in computing the transfer function for a specific input block length N , we

can work out the active CPV when the paths of length N terminate at state XE , retain only

the associated branches ending at that state and remove all others. For example, let us assume

that we only consider odd-length input sequences to the punctured rate-2/3 RSC(1,5/7) block

code, whose augmented state diagram is depicted in Fig. 3. We observe that odd-length paths

terminate at XE when Pc
1 is active, either through the branch connecting X

(2)
0 to XE or the

branch connecting X
(2)
1 to XE . Hence, we can remove the branches connecting X

(1)
0 and X

(1)
1

to XE , before deriving the state equations. As a result, the terms in the state equation for XE

have been reduced from 4 to 2 in our example, or from 2M to 2 in the case of a binary CBC

using a puncturing pattern of period M .

In the special case where the length of the input sequence N is an integer multiple of the

puncturing period M , i.e., N = κM , the augmented state diagram of (M × 2ν + 2) states

can collapse into a state diagram of (2ν + 2) states. In particular, only the states in set YM

of the original augmented state diagram as well as the start state XS and the end state XE

need to be considered; each sequence of M consecutive branches originating from a state X
(M)
k

or terminating at a state X
(M)
k can be replaced by a single composite branch. Effectively, the

original augmented state diagram of a punctured binary CBC collapses to an augmented state

diagram of only (2ν + 2) states, where 2M composite branches originate from each state. Each

composite branch is labeled using a monomial, which is the product of the monomials associated

with the constituent branches. If two or more composite branches of the same direction connect

two states, a single branch can be used to replace them; in that case, the monomials of all

removed composite branches are added together to give a polynomial, which is used to label

the new branch. The collapsed augmented state diagram of the rate-2/3 punctured RSC(1,5/7)

block code for M =2 and even N is presented in Fig. 4. As an example, the transition sequence

X
(2)
3 → X

(1)
1 → X

(2)
2 in the original augmented state diagram (Fig. 3) has been replaced by

a single transition X3 → X2 in the collapsed augmented state diagram (Fig. 4), conveying a

codeword given by the product ZL · L=ZL2.

By analogy, a collapsed trellis diagram can be derived from the collapsed augmented state

diagram. A path of length ` in the conventional trellis diagram is represented by a path of

length `/M in the collapsed trellis diagram, since M successive branches in the conventional

trellis diagram compose a composite branch in the collapsed trellis diagram. We will refer to the
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collapsed trellis diagram again in the following section, which discusses complexity reduction

techniques when long input sequences are considered.

IV. COMPLEXITY CONSIDERATIONS FOR LONG INPUT BLOCKS

Enumeration of all codeword sequences generated by a convolutional block encoder, and thus

derivation of its transfer function B(W,U,Z) based on the augmented state diagram, becomes

computational intensive as the length of the input sequence, or equivalently the length of all

possible trellis paths, increases. Nevertheless, we can adopt the approach introduced by Benedetto

and Montorsi [3], [18] to compute an intermediate transfer function, defined as

T (W,U,Z, L, Ω) =
∑

w,u,z,`,n

Tw,u,z,`,nW
wUuZzL`Ωn. (10)

Contrary to the transfer function B(W,U,Z), the intermediate transfer function T (W,U,Z, L, Ω)

of a CBC for input blocks of length N , only enumerates those paths having length ` ≤ N ,

that leave the zero state at step one, re-visit the zero state n times but never stay at it, and

terminate at the zero state; note that Tw,u,z,`,n in (10) denotes the multiplicity of a path having

particular weights w, u and z, trellis length ` and n remergings with the all-zero sequence. Due

to these restrictions, the intermediate transfer function T (W,U,Z, L, Ω) enumerates a smaller

number of codeword sequences compared to the transfer function B(W,U,Z) and hence it is

less computational demanding. However, the additional information stored in the indeterminate

variables L and Ω of T (W,U,Z, L, Ω) can be used to fully acquire B(W,U,Z).

Both the augmented state diagram of a nonpunctured CBC and the collapsed augmented state

diagram of a punctured CBC can be easily modified to give the less computational intensive

intermediate transfer function T (W,U,Z, L, Ω). First, we need to remove the branch that connects

XS to X0 since all paths must leave the zero state at step one. The self-loop at X0, as well as

the branch that connects X0 to XE , need also to be removed in order to force paths that re-visit

the zero state to leave it at the following time step. Finally, the labels of those branches that

lead to a remerging into the zero state, either X0 or XE , should be updated to include variable

Ω, as well. The simplified version of the collapsed augmented state diagram presented in Fig. 4

is depicted in Fig. 5. Upon solving the state equations for the ratio XE/XS we obtain

XE

XS

= T (W,U,Z, L, Ω). (11)
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A codeword sequence WwUuZzL`Ωn conveyed by T (W,U,Z, L, Ω) corresponds to a trellis

path that remerges n successive times with the path of the transmitted all-zero codeword se-

quence; hence, the total number K[`, n] of codeword sequences having path length N with zeroes

before, after or between the n remergings can be obtained from a single codeword sequence of

path length ` ≤ N associated with n successive remergings, as follows [3]

K[`, n] =

(
N − ` + n

n

)
=

(N − ` + n)!

(N − `)!n!
. (12)

The above expression can be directly used when the intermediate transfer function of a

nonpunctured CBC has been obtained from the simplified augmented state diagram. However,

it can be modified to also encompass punctured CBCs, provided that the path length of the

generated codeword sequences is an integer multiple of the puncturing period, that is N =κM ; in

that case the simplified collapsed augmented state diagram can be used to derive the intermediate

transfer function T (W,U,Z, L, Ω) of the punctured CBC. Let us assume that WwUuZzL`Ωn is

now a codeword sequence generated by the punctured CBC in question. Here, n refers to the

number of successive remergings of the corresponding path with the all-zero sequence in the

collapsed trellis diagram. Moreover, ` represents the length of the path in the conventional trellis

diagram, where ` ≤ N ; the equivalent length in the collapsed trellis diagram is `/M . Having

depicted the sequence WwUuZzL`Ωn as a path in the collapsed trellis diagram, we can now use

(12) to obtain the number of codeword sequences having path length N/M also in the collapsed

trellis diagram. In particular, we obtain

K[`, n] =

(
N−`
M

+ n

n

)
=

(
N−`
M

+ n
)
!

(
N−`
M

)
!n!

, (13)

which is a variant of (12) for punctured CBCs.

If T (W,U,Z, L, Ω) has revealed that there are Tw,u,z,`,n codeword sequences of length ` ≤ N ,

then the total number of codeword sequences of length exactly equal to N with zeroes before,

after or between the n remergings is given by the product K[`, n] · Tw,u,z,`,n. Therefore, the

transfer function B(W,U,Z) of a CBC can be computed by substituting the total number of

codeword sequences Bw,u,z, obtained by [3]

Bw,u,z =
∑

`,n

K[`, n]Tw,u,z,`,n, (14)
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into

B(W,U,Z) =
∑

w,u,z

Bw,u,zW
wUuZz, (15)

where each codeword sequence WwUuZz has overall path length N .

In this section we used the approach presented in [3], [18] to accelerate computation of

the transfer function B(W,U,Z) by simplifying the augmented state diagram of a CBC, both

punctured and nonpunctured. In the case of punctured CBCs, simplification can only take place

when the length of the input information sequence N is an integer multiple of the puncturing

period M ; in that case, we can reduce the original augmented state diagram to its collapsed

version and then simplify it so as to obtain the desired intermediate transfer function. Finally,

we must emphasize that (14) is applicable only when no loops of zero output weight remain in

the simplified augmented state diagram. If such loops do exist, (14) will only compute a fraction

of the total number of codeword sequences having path length N . Nevertheless, note that state

diagrams having loops of zero output weight correspond to catastrophic codes; such codes should

be avoided since a finite number of transmission errors can cause an infinite number of errors

in the decoded information sequence [19].

V. APPLICATION TO TURBO CODES ON AWGN CHANNELS

A. Turbo Codes

A turbo code P is the parallel concatenation of convolutional codes (PCCC) separated by

random interleavers. However, the most common configuration uses two RSC codes of memory

size ν each, separated by a random interleaver of size N [1]. An information sequence of length N

is input to both the first constituent systematic encoder C1 of rate 1/2 and the random interleaver.

The interleaved information sequence is then input to the second convolutional encoder C2 of

rate 1. The output of the rate 1/3 turbo encoder consists of the systematic and parity check

sequences of C1 and the parity check sequence of C2. Rates higher than 1/3 can be obtained by

puncturing the three outputs of a parent rate-1/3 turbo encoder using a 3 × M pattern of the

form

P =




Pr
1

Pr
2

Pr
3




=




p1,1 . . . p1,M

p2,1 . . . p2,M

p3,1 . . . p3,M




. (16)
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Note that punctured turbo codes are classified as systematic, partially systematic or nonsystematic

depending on whether all, some or none of their systematic bits are transmitted [12]. It was shown

in [3] and [4] that the transfer function BP(W,U,Z) of a turbo code, punctured or nonpunctured,

can be obtained using the transfer functions of its constituent codes, namely BC1(W,U,Z) and

BC2(W,U,Z). Below, we briefly describe the steps required to obtain BP(W,U,Z).

Let us use C to refer to one of the constituent codes, either C1 or C2; the transfer function

BC(W,U,Z) of the constituent code, which can be obtained using our method based on the

concept of the augmented state diagram, assumes the form given in (15). However, (15) can be

rewritten as

BC(W,U,Z) =
∑
w

BC
w(U,Z)Ww, (17)

where

BC
w(U,Z) =

∑
u,z

BC
w,u,zU

uZz (18)

is the so-called conditional weight enumerating function (CWEF) and provides all codeword

sequences of specific input weight w. A relationship between the CWEF of a turbo code and the

CWEFs of the constituent codes can be easily derived only if we assume the use of a uniform

interleaver of size N , an abstract probabilistic concept introduced in [3]. More specifically, if

BC1
w (U,Z) and BC2

w (U,Z) are the CWEFs of the constituent terminated RSC block codes, the

CWEF of the terminated turbo code, BP
w (U,Z), is given by [3], [5]

BP
w (U,Z) =

BC1
w (U,Z) ·BC2

w (U = 1, Z)(
N

w

) , for every value of w. (19)

Recall that the systematic output sequence of the second constituent encoder is not transmitted,

hence it is eliminated by setting U =1 in BC2
w (U,Z). The transfer function of the turbo code

BP(W,U,Z) can be computed from the CWEF, BP
w (U,Z), in a manner identical to (17).

Therefore, first we can use our proposed technique to derive the transfer function of each

constituent terminated CBC for input sequences of length N and then compute the transfer

function of the corresponding terminated turbo code for a uniform interleaver of size N .

Using the union bound argument [20], the bit error probability (BEP), denoted as Pb, of a

turbo code for maximum likelihood (ML) soft decoding on an AWGN channel can be upper
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bounded as follows

Pb ≤ P u
b =

∑

w,d

w

N
BP

w,dQ

(√
2EbRP

N0

d

)
, (20)

where P u
b is the union bound on the BEP, Eb is the energy per information bit, N0 is the noise

power spectral density and RP is the code rate. The sum runs over all valid values of input

weight w and overall output weight u + z =d. The coefficients BP
w,d can be obtained from the

coefficients BP
w,u,z of the transfer function BP(W,U,Z) using

BP
w,d =

∑
u,z

u+z=d

BP
w,u,z. (21)

The Q(·) function is defined as

Q(ξ) =
1√
2π

∫ ∞

ξ
e−r2/2dr. (22)

A complete overview of bounding techniques for block and turbo codes has been presented in

[21]. In this monograph, the authors explain that union bounds are accurate only at high signal-

to-noise ratio (SNR) values but their weakness is pronounced at the low SNR regime. Improved

upper bounds, which are derived by properly defining the region around the transmitted code-

words, are considerably tighter than the union bound at low SNR values. However, computation

of both the standard union bound and the improved upper bounds relies on the transfer function

of the examined code. For our work, we elected to use the union bound argument because of

its simplicity; nevertheless, once the transfer function of the examined code has been obtained

using our proposed approach, expressions that provide more tight upper bounds could be used.

In the following two subsections, we concentrate on terminated punctured turbo codes and

we demonstrate that we can use our method to obtain union bounds on their BEP as well as to

identify puncturing patterns that lead to high-rate turbo codes yielding low error floors.

B. Evaluation of Performance Upper Bounds

Having obtained the transfer function BP(W,U,Z) of a terminated turbo code P , we can

compute the coefficients BP
w,d and hence an upper bound on the BEP for ML soft decoding,

using (21) and (20), respectively, as we have previously explained. However, it is not always

convenient to provide the two-dimensional coefficients BP
w,d of turbo codes for a range of w

and d values; instead, we use an alternative but equivalent single dimensional representation,
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which only depends on the output weight d. More specifically, we define a single-dimensional

coefficient Dd as [3]

Dd =
∑
w

w

N
BP

w,d, (23)

consequently, (20) assumes the form

Pb ≤ P u
b =

∑

d

DdQ

(√
2EbRP

N0

d

)
. (24)

The first 15 coefficients Dd, which were derived based on our proposed method for various

rate-1/2 systematic turbo codes, are shown in Table I. Two parent rate-1/3 turbo codes are

considered; the first PCCC consists of two RSC(1,5/7) encoders and, using the notation of RSC

codes, it is denoted as PCCC(1,5/7,5/7) for brevity; the second turbo code is fully described

by the generator polynomials PCCC(1,17/15,17/15). Coefficients for three interleaver sizes have

been computed, namely 100, 1,000 and 10,000 bits. In all cases, the RPVs of the puncturing

pattern are Pr
1 =[1 1], Pr

2 =[1 0] and Pr
3 =[0 1]; this particular pattern is often used [1], [22]

to generate rate-1/2 systematic turbo codes from parent rate-1/3 codes.

Theoretical upper bounds on the average ML decoding performance and simulation results for

the rate-1/2 systematic PCCCs of Table I, are presented in Fig. 6 and Fig. 7. The performance of

suboptimal iterative decoders employing the exact-log maximum a-posteriori (MAP) decoding

algorithm [23] after 8 iterations is compared with the corresponding union bounds. As expected,

the performance of systematic punctured turbo codes quickly converges to the error floor region

[1], [22], identified by the union bound on the average ML decoding performance of the

corresponding turbo code for high Eb/N0 values [3], provided that puncturing is distributed

equally between parity check bits and is well scattered [15], as in our case.

We have thus demonstrated that our technique can be used to derive the transfer function of

a terminated turbo code and hence obtain a tight upper bound on its BEP for ML decoding,

which coincides with the error floor of the code. Note that the error floor of a turbo code can be

lowered if the operation mode of the constituent encoders switches from terminated coding to

continuous coding [24]; in continuous coding, both constituent CBCs maintain the states they are

in when encoding of an input sequence is completed and start from those states when encoding

of the next input sequence begins. The transfer function of a turbo code operating in continuous

mode can only be obtained by using the notion of the hyper-trellis, as described in [3], [24].

Our method can be used to derive the labels of the hyper-trellis branches, provided that the start
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states and end states of the augmented state diagrams of both constituent codes correspond to

the hyper-states of each branch.

In this paper we have not considered continuous coding because its performance is almost

identical to that of terminated coding when constituent CBCs of small memory size (ν = 2 or

3 in our simulations) and interleavers of size larger than ten times that of the memory size are

studied [3]. The performance advantage of continuous over terminated coding only becomes

significant when the memory size of the constituent codes is ν =5 or higher [24]. Nevertheless,

future work could investigate the effect of continuous coding on the performance of punctured

turbo codes that use constituent codes of large memory size.

C. Identification of Good Puncturing Patterns

A different application of our technique is the identification of “good” puncturing patterns,

i.e., patterns that generate punctured turbo codes exhibiting low error floors. In particular, we

study the evolution of the coefficients Bw,d, obtained using our method, as the interleaver size

of a turbo code gradually increases. We then extrapolate our conclusions to turbo codes using

long interleavers.

Let us assume that our objective is to identify good patterns of period M that increase the

rate of a parent turbo code from 1/3 to RP . Initially, we set the size of the interleaver to a small

value (N <100) and we compute the transfer function of the punctured turbo code of rate RP

for all valid patterns of period M . Next, we use (20) to derive the required Eb/N0 ratio for a

targeted P u
b , for each possible pattern configuration. We also evaluate the free effective distance,

deff, which conveys the minimum output weight of a codeword sequence for an input sequence

of weight two; thus, the smallest value of d for which a coefficient B2,d is non-zero corresponds

to deff. As was demonstrated in [5], [25] and [26], the free effective distance has a major impact

on the performance of a turbo code, when long interleavers are employed.

When all valid patterns are exhausted, we group them according to the free effective distance

that the corresponding turbo codes have achieved; each group contains patterns that lead to

punctured turbo codes yielding the same deff, arranged in ascending order of Eb/N0 for a

particular P u
b . We then increase the size of the interleaver by a small value and we repeat

the same computations, grouping and ordering. If a subsequent increase in the interleaver size

does not change the ordering of the puncturing patterns, we conclude our search and we use
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that ordering to draw conclusions for punctured turbo codes using long interleavers.

In Table II, we have listed seven puncturing patterns, which we have selected among all

possible patterns of period M =4. A punctured PCCC obtained by any of these patterns achieves

the maximum free effective distance and requires the lowest Eb/N0 value for P u
b =10−6, among

all PCCCs using patterns of the same puncturing distribution between systematic and parity

check bits, when an interleaver size of 36 bits is considered. Four of the patterns lead to rate-

1/2 turbo codes, whilst the remaining three give rate-2/3 turbo codes. Furthermore, two of the

resultant punctured PCCCs are systematic (Sys) while the other five are partially systematic (PS)

with a decreasing number of transmitted systematic bits. We observe that for N =36, the union

bound on the BEP of the PS turbo codes reaches a value of 10−6 for a lower Eb/N0 ratio than

that of the systematic turbo codes. We also observe that PS turbo codes with a reduced number

of transmitted systematic bits achieve a high free effective distance. Hence, we would expect

that PS turbo codes using long interleavers achieve a lower error floor than that of systematic

turbo codes of the same rate, especially those codes with few transmitted systematic bits.

Indeed, we observe in Fig. 8 that the conclusions drawn from Table II concur with simulation

results of punctured turbo codes using interleavers of size N = 1, 000. As expected, PS turbo

codes achieve a lower error floor than systematic turbo codes of the same rate; in particular, as

the number of transmitted systematic bits is reduced, the error floor of a suboptimal iterative

decoder is lowered at the expense of an expanded non-convergence region. Hence, in accordance

with the findings of Land and Hoeher [12], it can be more advantageous to put more puncturing

to the systematic sequence than to the parity check sequences; however, our results have also

confirmed the observations by Blazek et al. [13] and Crozier et al. [14], who claimed that the

performance benefits of PS turbo codes are mainly for higher Eb/N0 values and number of

iterations.

We thus demonstrated that our proposed method can be used to quickly identify puncturing

patterns that lead to high-rate turbo codes exhibiting low error floors. Nevertheless, puncturing

affects the convergence behavior of iterative decoding [27]; hence, convergence towards the

error floor region should also be investigated using techniques such as the extrinsic information

transfer (EXIT) chart analysis, proposed by ten Brink in [28].
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VI. CONCLUSION

In this paper, we have introduced the augmented state diagram based on which the transfer

function of a CBC, either punctured or nonpunctured, can be evaluated. We have also addressed

the complexity of the approach by showing that a simplification process can take place allowing

us to compute the transfer function of a CBC for long input sequences. A tight upper bound

on the average ML performance of a turbo code, which uses CBCs as constituent codes, can be

then computed to accurately predict the error floor of the suboptimal iterative decoder.

Our analysis validated the observations of existing literature, which studied the relationship

between the suboptimal performance of iterative decoding and the error floor region of punctured

turbo codes. More specifically, partially systematic turbo codes achieve a lower error floor than

systematic turbo codes of the same rate, at the expense of a decelerated convergence of their

performance towards the ML bound. Recent results [27], [29] have shown that partially systematic

turbo codes that yield error floors even lower than those of their parent rate-1/3 turbo codes can

be identified using our proposed method.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their valuable comments and

suggestions that helped improve this manuscript.

APPENDIX

ENUMERATION OF MONOMIALS CONTAINING LN

The extended transfer function f(W,U,Z, L) can be expressed as [19]

f(W,U,Z, L) =
Y(W,U,Z, L)

1−X (W,U,Z, L)
, (25)

owing to the inherent loops of the augmented state diagram of a CBC, where Y(W,U,Z, L)

and X (W,U,Z, L) are polynomials of W , U , Z and L. If we group together all monomials

containing the indeterminate variable L raised to the same power, we can write Y(W,U,Z, L)

and X (W,U,Z, L) as

Y(W,U,Z, L) =
`ψ∑

`=`1

y`(W,U,Z)L`, X (W,U,Z, L) =

`′χ∑

`=`′1

x`(W,U,Z)L`, (26)
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where y`(W,U,Z) and x`(W,U,Z) are polynomials of W , U , Z whilst ` is a nonnegative integer

that takes values from sets {`1, . . . , `ψ} and {`′1, . . . , `′χ}, respectively; note that the elements

of each set are arranged in increasing order. For the sake of clarity, we drop the indeterminate

variables W , U and Z, since they are not of importance for the remainder of this section.

For example, we adopt the notation Y(L) and y` instead of Y(W,U,Z, L) and y`(W,U,Z),

respectively.

Exploiting the property of binomial series, we can rewrite (25) as

f(L) = Y(L) ·
∞∑

k=0

X k(L)

=
(
y`1L

`1 + . . . + y`ψ
L`ψ

)
·
∞∑

k=0

X k(L).

(27)

The terms of X k(L) for an arbitrary power k can be computed using the multinomial formula

X k(L) =




`′χ∑

`=`′1

x`L
`




k

=
∑

k1,...,kχ

k1+...+kχ=k

[
k!

k1! . . . kχ!

(
x`′1L

`′1
)k1 · . . . ·

(
x`′χL`′χ

)kχ

]

=
∑

k1,...,kχ

k1+...+kχ=k

[
k!

k1! . . . kχ!

(
xk1

`′1
· . . . · xkχ

`′χ

)
· L(`′1k1+...+`′χkχ)

]
,

(28)

where the sum is taken over all nonnegative integers k1,. . .,kχ for which k1 + . . . + kχ = k.

If we are only interested in enumerating paths of length N , represented by monomials in f(L)

containing the term LN , a process based on (27) and (28) could be followed. In particular:

1) We select a value for ` from the ordered set {`1, . . . , `ψ} provided that it is ` ≤ N . Initially

we set ` = `1, therefore we only consider the product y`1L
`1 in Y(L).

2) We focus on X k(L) in (27), where k takes such values that X k(L) contains monomials

having L raised to the power of (N − `1). Consequently, the product in (27) will result in

monomials containing LN .

3) Based on (28), we derive the desired values of k by solving the Diophantine equation [30]

`′1k1 + `′2k2 + . . . + `′χkχ = N − `1 (29)
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for k1, k2, . . ., kχ. We then add the elements of each set {k1, k2, . . . , kχ} of nonnegative

solutions in order to obtain the desired values of k, that is

k = k1 + k2 + . . . + kχ, for each set of solutions {k1, k2, . . . , kχ}. (30)

4) We substitute each set {k1, k2, . . . , kχ} as well as the corresponding sum k into (28) so as

to obtain only those monomials that contain L raised to the power of (N − `1).

5) We complete the process by multiplying the sum of monomials in X (L) with y`1L
`1 .

The same process is repeated until all values which are less than or equal to N from the set

{`1, . . . , `ψ} are assigned to `.
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Fig. 1: Weight-labeled state diagram of the rate-1/2 RSC(1,5/7) code.
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Fig. 2: Augmented state diagram of the nonpunctured rate-1/2 RSC(1,5/7) block code.
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Fig. 3: Augmented state diagram of the punctured rate-2/3 RSC(1,5/7) block code.
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Fig. 4: Collapsed augmented state diagram of the punctured rate-2/3 RSC(1,5/7) block code for

even-length input blocks.
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Fig. 5: Simplification of the collapsed augmented state diagram of Fig.4.
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Fig. 6: Comparison between bounds and simulation results of rate-1/2 systematic

PCCC(1,5/7,5/7) configurations after 8 iterations.
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Fig. 7: Comparison between bounds and simulation results of rate-1/2 systematic

PCCC(1,17/15,17/15) configurations after 8 iterations.
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Fig. 8: Simulation results after 10 iterations for various punctured rate-1/2 and rate-2/3 PCCC

configurations. An interleaver size of 1,000 bits is used.
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TABLE I: Coefficients Dd for the calculation of the union bound on the BEP of two systematic

rate-1/2 PCCCs. Three interleaver sizes are considered.

PCCC(1,5/7,5/7) PCCC(1,17/15,17/15)

d N =100 N =1, 000 N =10, 000 N =100 N =1, 000 N =10, 000

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 4.45 · 10−4 4.49 · 10−6 4.49 · 10−8 0 0 0

4 2.35 · 10−5 2.39 · 10−8 2.39 · 10−11 9.20 · 10−5 9.56 · 10−8 9.59 · 10−11

5 1.11 · 10−2 1.16 · 10−4 1.16 · 10−6 0 0 0

6 8.54 · 10−2 8.93 · 10−3 8.99 · 10−4 1.13 · 10−2 9.91 · 10−4 9.98 · 10−5

7 9.23 · 10−2 1.00 · 10−3 1.01 · 10−5 4.84 · 10−2 5.38 · 10−4 5.43 · 10−6

8 0.257 2.38 · 10−2 2.39 · 10−3 6.18 · 10−2 3.98 · 10−3 3.99 · 10−4

9 0.394 3.99 · 10−3 4.00 · 10−5 0.143 1.55 · 10−3 1.58 · 10−5

10 0.995 4.36 · 10−2 4.03 · 10−3 0.259 8.43 · 10−3 8.02 · 10−4

11 2.303 1.92 · 10−2 1.89 · 10−4 0.606 4.58 · 10−3 4.52 · 10−5

12 6.178 0.199 1.795 · 10−2 1.247 1.68 · 10−2 1.37 · 10−3

13 15.471 0.121 1.198 · 10−3 3.134 1.44 · 10−2 1.34 · 10−4

14 37.189 0.820 7.280 · 10−2 7.591 4.31 · 10−2 2.91 · 10−3

15 91.838 0.582 5.653 · 10−3 18.195 5.37 · 10−2 4.85 · 10−4
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TABLE II: Rate-1/2 and 2/3 configurations for PCCC(1,5/7,5/7). The interleaver size N is 36

bits.

Configuration Pr
1 Pr

2 Pr
3 deff Eb/N0 for Pu

b =10−6

Rate-1/2 Sys. [1 1 1 1] [1 0 1 0] [0 1 0 1] 6 6.438 dB

Rate-1/2 PS(3) [1 1 1 0] [1 0 1 1] [0 1 1 0] 6 6.243 dB

Rate-1/2 PS(2) [0 1 0 1] [1 1 1 0] [1 1 0 1] 7 6.291 dB

Rate-1/2 PS(1) [0 0 1 0] [1 1 0 1] [1 1 1 1] 7 5.959 dB

Rate-2/3 Sys. [1 1 1 1] [1 0 0 0] [0 0 1 0] 2 7.313 dB

Rate-2/3 PS(3) [1 0 1 1] [0 1 0 0] [0 1 1 0] 4 7.168 dB

Rate-2/3 PS(2) [1 1 0 0] [0 0 1 1] [0 1 1 0] 4 6.786 dB


