
Lattice-reduction-aided detection for
MIMO-OFDM-CDM communication systems

J. Adeane, M.R.D. Rodrigues and I.J. Wassell

Abstract: Multiple input multiple output-orthogonal frequency division multiplexing-code
division multiplexing (MIMO-OFDM-CDM) techniques are considered to improve the link
reliability/spectral efficiency of very high data rate communication systems. In particular,
lattice-reduction-aided receivers are proposed for MIMO-OFDM-CDM systems. Simulation
results show that the proposed receivers significantly outperform the conventional zero-forcing,
minimum mean-squared error, or vertical Bell Labs layered space–time receivers without severely
compromising system complexity.
1 Introduction

The major challenges in future wireless communication
system design are improved link reliability and spectral effi-
ciency. Multiple input multiple output (MIMO) technology
has recently become of great interest since it can improve
spectral efficiency without sacrificing link reliability [1–3]
or improve link reliability without sacrificing spectral effi-
ciency [4–6].

In very high data rate MIMO communication systems,
the radio channel introduces severe intersymbol interfer-
ence (ISI). In this case, single carrier-based MIMO
systems require highly complex equalisation techniques.
On the other hand, multicarrier-based MIMO systems, for
example, MIMO-orthogonal frequency division multiplex-
ing (OFDM), require less complex equalisation techniques
because the underlying frequency selective channel is trans-
formed into a set of parallel flat fading channels.

Recently, code division multiplexing (CDM) techniques
have been proposed as an alternative to conventional
coding techniques to exploit channel time and frequency
diversity in OFDM-based systems [7–9]. In this case, con-
secutive data symbols are spread using orthogonal spread-
ing codes over several OFDM subcarriers and symbols.
However, OFDM-CDM suffers from spreading code
interference due to loss of spreading code orthogonality in
fading channels. The problem is compounded in
MIMO-OFDM-CDM since it suffers from both spreading
code interference as well as spatial interference.
Consequently, efficient detection methods are demanded
for MIMO-OFDM-CDM systems.

In this context, a number of linear and nonlinear detection
techniques have previously been proposed. Maximum like-
lihood (ML) detectors are optimal but highly complex.
Linear detectors, for example, zero-forcing (ZF) and
minimum mean-squared error (MMSE), as well as non-
linear detectors, for example, vertical Bell Labs layered
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space–time (V-BLAST), are less complex but suboptimal
[7–9].
In this article, we propose a novel class of nonlinear

detection techniques based on lattice reduction [10–12]
for MIMO-OFDM-CDM systems. Lattice-reduction-aided
(LRA) receivers achieve nearly optimal performance with
low complexity.

2 System model

Figs. 1 and 2 show the block diagrams of an N � M
MIMO-OFDM-CDM communication system, where N
and M are the number of transmit and receive antennas,
respectively.
At the transmitter, at the nth transmit antenna chain, the

transmit data symbols are partitioned into blocks of P trans-
mit data symbols xn ¼ [xn(1), xn(2), . . . , xn(P)]

T, spread and
interleaved. The relation between the blocks of spread
symbols sn ¼ [sn(1), sn(2), . . . , sn(P)]

T and unspread
symbols xn ¼ [xn(1), xn(2), . . . , xn(P)]

T can be written as
follows

sn ¼ CPxn (1)

where CP is the P � P spreading code transform matrix. For
example, the P � P Hadamard transform matrix is given by

CP ¼
1ffiffiffi
P

p
CP=2 CP=2

CP=2 �CP=2

� �
, P ¼ 2a, a � 1 (2)

and

C1 ¼ 1 (3)

Note that columns of the Hadamard transform matrix
correspond to orthogonal spreading code sequences.
Subsequently, Nc interleaved and spread symbols are

imposed onto Nc OFDM subcarriers by means of an IFFT,
a cyclic prefix is inserted and finally the signal is D/A con-
verted and then upconverted to the desired radio frequency
(RF). Note that the duration of the cyclic prefix B is longer
than the duration of the impulse response of the radio fading
channel L to avoid ISI and intercarrier interference.
At the receiver, at the mth receive antenna chain, the

signal is downconverted from the RF, A/D converted, the
cyclic prefix is removed, and the Nc receive symbols are
IET Commun., 2007, 1, (3), pp. 526–531



Fig. 1 MIMO-OFDM-CDM transmitter
recovered from the Nc OFDM subcarriers by means of an
FFT.
Subsequently, the receive symbols are de-interleaved and

partitioned onto blocks of P receive symbols ym ¼ [ym(1),
ym(2), . . . , ym(P)]

T. Detection is based on the observation
of the various blocks of P receive symbols of the receive
antenna chains. It is assumed that the receiver maintains
perfect channel state information.
We note that it is possible to relate the input to the mth

demultiplexer at the receiver, ym ¼ [ym(1), ym(2), . . . ,
ym(P)]

T to the input to the various demultiplexers at the
transmitter, xn ¼ [xn(1), xn(2), . . . xn(P)]

T, n ¼ 1, . . . , N,
as follows

ym ¼
XN
n¼1

HmnCPxn þ wm (4)

where Hmn is a P � P diagonal matrix containing the
channel frequency responses between the nth transmit
antenna and mth receive antenna on the P subcarriers on
which the transmit data elements corresponding to xn
have been transmitted, and wm ¼ [wm(1), wm(2), . . . ,
wm(P)]

T is the noise at the mth receive antenna on the P sub-
carriers. We assume that the additive noise random vari-
ables are uncorrelated circularly symmetric complex
Gaussian.
Finally, it is possible to relate the input of the various

demultiplexers at the receiver y ¼ [y1
T, y2

T, . . . , yM
T ]T to the

input of the various demultiplexers at the transmitter
x ¼ [x1

T, x2
T, . . . , xN

T yM
T ]T as follows

y ¼ Hxþ w (5)
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where H is a (M P) � (N P) matrix given by

H ¼

H11CP � � � H1NCP

..

. . .
. ..

.

HM1CP . . . HMNCP

2
64

3
75 (6)

and w ¼ [w1
T, w2

T, . . . , wM
T ]T. We define the matrix H as the

MIMO-OFDM-CDM channel matrix.

3 LRA detection for MIMO-OFDM-CDM
communication systems

3.1 Conventional detection

3.1.1 Linear detection: In conventional linear detection,
the receive equalised signal yeq is initially obtained from the
receive unequalised signal y as follows

yeq ¼ Gy ¼ GHxþ Gw (7)

whereG is the matrix equaliser. The estimate of the transmit
data signal is subsequently obtained as follows

x̂ ¼ Q(yeq) (8)

whereQ(:) denotes the quantisation operation. For ZF equal-
isation, G ¼ Hy, where Hy

¼ (HHH)�1HH is the pseu-
doinverse of the extended MIMO-OFDM-CDM channel
matrixH. The ZF criterion suffers from noise enhance-ment
especially if H is rank-deficient or ill-conditioned. For
MMSE equalisation, G ¼ s2

xHH(HHH
þ s2

wIMP)
�1,

where s x
2 is the transmit data power, sw

2 the noise power
and IMP the (M P) � (M P) identity matrix. The
MMSE criterion does not suffer from noise enhancement.
Fig. 2 MIMO-OFDM-CDM receiver
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3.1.2 V-BLAST detection: Golden et al. [13] proposed
the V-BLAST space–time architecture that achieves a
very high spectral efficiency and a good trade-off between
complexity and performance. The V-BLAST space–time
architecture uses an ordered serial nulling plus cancellation
detection technique which progresses from the strongest to
the weakest data stream. This results in the maximisation of
the minimum post-detection signal-to-noise-ratio of the data
streams. Ha and Lee [9] proposed the V-BLAST detection
technique for MIMO-OFDM-CDM.

3.2 LRA detection

Yao and Wornell [10] first proposed LRA receivers for
2 � 2 MIMO systems. Berenguer et al. [12] later extended
the LRA receiver technique to general N � M
MIMO-OFDM systems, where M � N. In this article, we
propose LRA receivers for MIMO-OFDM-CDM communi-
cation systems.

In LRA techniques, the channel matrix H is seen as the
generator matrix of some lattice. Moreover, the channel
matrix columns are seen as the generator basis of the
same lattice. Let us consider for simplicity, the two-
dimensional case to illustrate the motivation behind LRA
techniques. Fig. 3 shows that if the angle between the
basis vectors h1 and h2 corresponding to the columns of
the generator matrix H is very narrow (i.e. the vectors are
highly correlated), even a small amount of noise can
cause a receive symbol to fall out of its own decision
region into another decision region thereby causing the
decoder to make a wrong decision. The objective of LRA
techniques is to determine a change of basis F, which trans-
forms the generator matrix of the lattice, H, into another
generator matrix of the same lattice, H0 ¼ HF, such that
the decision regions for a specific equaliser and decoder
are optimised, that is such that the basis vectors are closer
to orthogonal. The equalising and decoding operations are
subsequently performed in the new basis rather than in the
original basis. The decoded symbols are finally transformed
from the new to the original basis.

Consider a vector of transmit data symbols represented
by x in the original basis with elements in ZC , the set of
complex integers, and represented by xnew ¼ F21x in the
new basis also with elements in ZC . Consider also the
vector of receive symbols represented by y in the original
basis and represented by ynew ¼ F21y in the new basis. In
particular

ynew ¼ F�1y ¼ F�1H(FF�1)xþ F�1w

¼ F�1HFxnew þ F�1w ð9Þ

Fig. 3 Original basis, new basis and decision regions
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Now, conventional LRA uses the equaliser matrix
G ¼ (F�1HF)y to equalise the signal in the new basis.
Consequently, the equalised symbols in the new basis are
given by

yeqnew ¼ Gynew ¼ GF�1HFxnew þ GF�1w (10)

¼ xnew þ GF
�1
w (11)

and the decoded symbols in the new basis are given by

x̂new ¼ Q(yeqnew) (12)

Here, the quantisation operation Q(:) corresponds to a
rounding operation because the symbols in the lattice are
in ZC . The decoded symbols are finally transformed from
the new to the original basis producing the estimate
x̂ ¼ Fx̂new:
Lattice theory requires the original points in the

constellation to consist of symbols in ZC (i.e. to consist
of contiguous integers and contain the origin). However,
standard Q-QAM constellations (where <{x} [ {�

ffiffiffiffi
Q

p
þ

1, . . . ,
ffiffiffiffi
Q

p
� 1} and ={x} [ {�

ffiffiffiffi
Q

p
þ 1, . . . ,

ffiffiffiffi
Q

p
� 1})

neither consist of contiguous integers nor contain the origin.
One way to overcome this problem is by shifting the orig-

inal constellation points by l ¼ [1þ i, . . . ,1þ i]T and
scaling the resulting points by 1/2 [12].
Note that in the absence of noise, the vector of receive

symbols y 0 given a vector of shifted and scaled transmit
symbols x 0 is

y
0
¼ Hx

0
¼ H 1

2
[xþ l] (13)

which is equivalent to

y0 ¼
1

2
yþ

1

2
Hl (14)

Consequently, the required shifting and scaling operations
can be directly incorporated by manipulation of the vector
of receive symbols y.
To summarise, an LRA receiver first implements the

scale, shift, change to new basis operations and then per-
forms equalisation in the new basis, that is

y
eq
new ¼ (F�1HF)y|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

equalise in new basis

F
�1|{z}

change basis

1

2|{z}
scale

[yþ Hl|{z}
shift

] (15)

which, when N ¼ M and the channel matrix is full rank,
simplifies to

yeqnew ¼ F�1H�1 1

2
(yþHl) (16)

An LRA receiver finally implements the rounding,
change to original basis and undo scale and shift operations,
that is

x̂ ¼ 2FQ(yeqnew)� l (17)

The operations of an hybrid LRA-V-BLAST receiver are
equivalent to those of the conventional LRA receiver just
described. However, detection in the new basis follows
the usual V-BLAST ordered serial nulling and cancellation
operations [1, 13].

3.3 Basis reduction algorithm

This section describes the basis reduction algorithm for
MIMO-OFDM-CDM systems. Specifically, we consider
IET Commun., Vol. 1, No. 3, June 2007



the problem of determining a change of basis F to transform
the original basis vectors for the lattice, h1, h2, . . . , hN, into
another basis vectors for the same lattice h1

0, h2
0, . . . , hN 0 ,

which are closer to being mutually orthogonal. This basis
reduction problem uses some ideas behind Gram-Schmidt
(GS) orthogonalisation.
For simplicity, we will initially illustrate the concept for

the two-dimensional scenario where the columns of H, that
is, h1 and h2, are the basis vectors of the lattice. We will
initially discuss an ideal GS orthogonalisation and weakly
reduced GS orthogonalisation, and finally lattice reduction.

3.3.1 Ideal GS orthogonalisation: The GS process is a
method of orthogonalising a set of vectors in an inner
product space. The GS process determines from a set of
linearly independent vectors, another set of mutually
orthogonal vectors that span the same subspace as the
original vectors.
In the two-dimensional case, the ideal GS process works

as follows

h01 ¼ h1 (18)

h
0
2 ¼ h2 � mh1 (19)

where m ¼ kh1, h2l/kh1, h1l is the GS coefficient and ka, bl
¼aHb. Note that this operation can potentially change the
lattice associated with the original basis vectors h1 and h2
since m may not belong to ZC. Thus, this method cannot
be directly used in lattice reduction.

3.3.2 Weakly reduced GS orthogonalisation: The
weakly reduced GS orthogonalisation process is identical
to the ideal GS orthogonalisation method with the
additional constraint that the GS coefficient belongs to
ZC. Note that this method will not change the lattice associ-
ated with the original basis vectors h1 and h2. However, the
vectors of the reduced basis are only close to orthogonal.
Thus, this method can be in principle used in lattice
reduction.
The weakly reduced GS orthogonalisation rounds the real

and imaginary parts of the ideal GS coefficients separately,
that is m0 ¼ bme. In the two-dimensional case, assuming that
kh2k . kh1k, we have the possibility of reducing h2 with
respect to h1

h2 ¼ h2 � m0h1 (20)

Further reduction will occur if m0 , 0, that is,
j<{kh1,h2l}j . (1=2)kh1k

2 or j={kh1,h2l}j . (1=2)kh1k
2.

The algorithm repeats iteratively until no more reduction
is possible. An example of a pair of new bases produced
by this basis reduction algorithm is shown in Fig. 3.

3.3.3 Lattice reduction: Lenstra, Lenstra and Lovasz
(LLL) proposed an algorithm to reduce the lattice basis
h1, h2, . . . , hN in polynomial time [14]1. A detailed expla-
nation on the complexity of the algorithm can be found in
([14]. Briefly, if C is the bit-length of the coefficients of
the input basis and D is the dimension of the lattice, the
total number of arithmetic operations performed is
O(D4 log C). This has since been improved to
O(D3 log C) using integer and floating point number of
length O(Dþ log C ) [15]). For a given d, 1/4 , d , 1,
the LLL reduction algorithm modifies the original basis
h1, . . . , hN continuously using an iterative process similar
to the weakly reduced GS orthogonalisation so that the
IET Commun., Vol. 1, No. 3, June 2007
following conditions are satisfied (21) and (22)

mn,m �
1

2
for 1 � m , n � N (21)

dkĥk�1k
2
. kĥk þ mk,k�1ĥk�1k

2 (22)

where the GS vectors ĥ1, . . . , ĥN are equal to

ĥ1 ¼ h1

ĥn ¼ hn �
Xn�1

m¼1

mn,mĥm for n ¼ 2, . . . ,N (23)

and the GS coefficients, are equal to

mn,m ¼
kĥm, hnl
kĥm, ĥml

(24)

Fig. 4 shows an implementation of the LLL algorithm.
Note that the vectors fh1, . . . , hkg, the GS vectors
{ĥ1, . . . , ĥk}, and the corresponding GS coefficients mn,m

are continuously updated. Note also that the iterative
reduction process is carried out by the exchange of adjacent
vectors hk21 and hk until conditions (21) and (22) are satis-
fied. The algorithm stops when further reduction is not poss-
ible. In this case, the reduced basis fh1

0, . . . , hk
0g is taken to

be equal to updated fh1, . . . , hkg.
Finally, the parameter d controls both the speed of con-

vergence of the algorithm as well as the degree of orthogon-
ality of the reduced basis. In particular, the higher the value
of d, the higher the degree of orthogonality of the reduced
basis. However, the higher the value of d, the slower the
speed of convergence of the algorithm. The value d ¼ 0.7
constitutes a good tradeoff, so will be used subsequently.

4 Results and discussion

Simulations are conducted for MIMO-OFDM-CDM
systems with the following parameters: N ¼ M ¼ 2 and
N ¼ M ¼ 4 antennas, number of OFDM subcarriers
Nc ¼ 64, cyclic prefix length B ¼ 16, Hadamard spreading
codes with length P ¼ 4 and 8, a block interleaver with
interleaving depth p ¼ Nc/P and QPSK and 16-QAM
modulation. The radio fading channel is composed of
three independent and resolvable Rayleigh faded paths
with delays 0, 0.4 and 0.9 ms, and average powers 1, 0.3
and 0.1, respectively. Bit-error-rate (BER) results are
averaged over 50 independent channel realisations for
each SNR.

Figs. 5–8 show that the two proposed LRA receivers sig-
nificantly outperform both the conventional linear ZF and
MMSE receivers as well as the ZF and MMSE V-BLAST
receivers. For example, in Fig. 5, the conventional LRA
receiver outperforms ZF and MMSE receivers by more
than 15 and 10 dB, respectively, at a BER ¼ 1023. The con-
ventional LRA receiver also outperforms the conventional
MMSE V-BLAST receiver by 4 dB at a BER ¼ 1023. In
addition, the performance of LRA-V-BLAST is better
than conventional LRA by 1 dB at high SNR, however,
there is an additional complexity penalty associated with
the BLAST ordering process.

LRA receivers are also very effective for
MIMO-OFDM-CDM systems with arbitrary spreading
code length. Note that longer spreading code lengths can
potentially increase the (system) diversity order but at the
same time also increases the (system) interference [7, 8].
Figs. 5 and 6 demonstrate that LRA receivers exhibit
529



Fig. 5 BER performance of 2 � 2 MIMO-OFDM-CDM systems
with P ¼ 4, QPSK modulation

Fig. 7 BER performance of 4 � 4 MIMO-OFDM-CDM systems
with P ¼ 4, QPSK modulation

Fig. 4 LRA lattice-reduction algorithm

Fig. 6 BER performance of 2 � 2 MIMO-OFDM-CDM systems
with P ¼ 8, QPSK modulation

Fig. 8 BER performance of 2 � 2 MIMO-OFDM-CDM systems
with P ¼ 4, 16-QAM modulation
IET Commun., Vol. 1, No. 3, June 2007530



good BER performance both for P ¼ 4 and 8. Fig. 5 also
shows that the performance of the proposed LRA receivers
is close to that of the ML receiver (Note that the ML per-
formance curve is not shown in MIMO-OFDM-CDM
systems with a large number of transmit/receive antennas,
a large spreading code length or a high constellation order
because of excessive simulation time). In particular, the
slope of the BER against. SNR curves indicate that the
diversity order of LRA receivers is significantly higher
than that of ZF, MMSE or V-BLAST receivers, and identi-
cal to that of the ML receiver.
LRA receivers are also effective for

MIMO-OFDM-CDM systems with arbitrary numbers of
transmit and receive antennas. Note that a higher number
of transmit and receive antennas also increase the system
diversity order but again it also increases spatial interfer-
ence. However, Figs. 5 and 7 demonstrate that LRA recei-
vers significantly outperform conventional receivers both
for systems with N ¼ M ¼ 2 as well as systems with
N ¼ M ¼ 4.
In addition, LRA receivers also exhibit very good per-

formance for MIMO-OFDM-CDM systems based on differ-
ent constellations (Figs. 5 and 8). In particular, Yao and
Wornell [10] show that the performance of an LRA receiver
approaches that of an ML receiver as the constellation order
increases, or, as the ratio between the internal points and the
boundary points of the constellation increases.
LRA receivers are particularly appropriate for

MIMO-OFDM-CDM systems in the presence of slow
fading channels. In a slowly varying channel, the calculated
reduced basis is valid for a number of consecutive OFDM
symbols, which reduces the computational load. This
results in LRA receivers with similar complexity to conven-
tional linear receivers, since the bulk of the complexity of
LRA receivers is associated with the basis reduction
operation.
To conclude, we note that LRA-based receivers are very

promising for MIMO-OFDM-CDM systems. In particular,
LRA receivers considerably outperform conventional recei-
vers in systems characterised by a high number of transmit/
receive antennas, high spreading code length and high con-
stellation order, yet with low complexity when compared
with the ML receiver. In addition, Wubben et al. [11]
show that LRA receivers perform very well in the presence
of antenna correlation when the performance of convention-
al and V-BLAST receivers are poor. Since LRA receivers
use basis vectors which are closer to orthogonal, there is
less correlation between the columns ofH0 when compared
to that which is present in the original H and therefore the
LRA receivers perform much better than the linear receivers
in correlated channel. Therefore LRA is an attractive
IET Commun., Vol. 1, No. 3, June 2007
method to improve the BER performance when the
channel correlation is high.
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