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Abstract— This paper proposes a semi-analytical framework
for estimating the erasure probability in single-hop multi-relay
networks. Specifically, we consider a system, in which relays do
not decode the information but simply forward coded packets
that have been previously received from the source. This allows
for uncoordinated, low-complexity processing at the relays. We
present a detailed analysis of the proposed network model, which
represents an instance of a new coding scheme that we refer to
as distributed fountain coding.

I. INTRODUCTION

Thanks to their versatility, fountain codes [1], [2] are a
natural coding solution for many network topologies, including
broadcast, multicast and many-to-one communications. This
paper describes our first effort to explore the application
of fountain codes to single-hop multi-relay networks. More
specifically, our system consists of a source that conveys coded
information to a destination, assisted by a bank of half-duplex
relays. Throughout the paper it is assumed that there is no
direct link between the source and the destination.

The application of fountain coding principles to various
topologies of relay networks has also been studied in [3], [4]
and [5]. In particular, each relay of the scheme described in
[3] acts like a receiver, until it decodes the source information;
then, it switches to a transmitter and broadcasts coded packets,
which are generated by the same fountain code used at the
source. Note that each receiving relay tries to decode the
source information by collecting coded packets from both the
source and the transmitting relays. In [4], a simple single-relay
scheme is described and information-theoretic tools are used to
assess its performance. In [5], a two-relay scheme is presented.
In odd time steps, one relay transmits while the other receives;
in even time steps, their roles are reversed. At any time step,
the source and the transmitting relay forward coded packets
to both the destination and the receiving relay. It is important
to note that a packet transmitted by a relay is generated by
modulo-2 adding (i.e., XORing) a random number of coded
packets, which have been successfully received in previous
time steps and stored in the memory of the relay. Thus,
unlike the previous schemes, relays do not decode the source
information; they only perform what can be called “linear
network coding”. Consequently, the computational complexity
at the relays is considerably reduced.

In this paper, we present a generalization of the scheme

described in [5]. We consider not only two but an arbitrary
number of relays. Furthermore, we do not use a pre-agreed
protocol that determines which relays transmit and which
relays receive; instead, each relay flips a possibly biased coin
at each time step and, according to the result, it either transmits
a coded packet to the destination or receives a coded packet
from the source. The main advantage of this probabilistic
approach is that no centralized control is required, since each
relay operates independently of the others.

Nevertheless, in order to simplify our analysis, we have
assumed that a transmitting relay randomly selects and for-
wards one of the coded packets that have been stored in its
memory. This is a particular case of a more general scheme,
in which relays are allowed to XOR stored coded packets. In
other words, in this paper we study an instance of what could
be called a distributed fountain code.

The paper is organized as follows: Section II introduces the
system model. In Section III and Section IV, we give a semi-
analytical method, based on Markov chains, to estimate the
main performance parameter of our proposed scheme, namely
the erasure probability. In Section V, we compare theoretical
to simulation results and discuss the impact of the scheme
parameters on the overall erasure probability. Finally, the main
conclusions of this work are summarized in Section VI.

II. SYSTEM MODEL

The basic system setup is depicted in Fig. 1. We consider
a wireless network that consists of a source node (S), a total
of M relay nodes and a destination node (D); all nodes are
equipped with a single antenna.

The source uses a binary random linear fountain code to
encode K packets, denoted as u1, u2, . . . , uK . At each time
step, labeled by n, the encoder generates a coded packet cn,
which is transmitted to the relays and the destination. It is
important to underline that the use of a fountain code at the
source is not a prerequisite for our analysis; the choice of the
transmission scheme does not affect our framework.

At time step n, some relays listen to the source with
probability pL, while the remaining relays transmit to the
destination. The relays that listen, perform a simple cyclic
redundancy check (CRC) on the received packet cn. A lis-
tening relay that has successfully recovered cn, stores it in a
buffer that can hold up to ν packets. If CRC decoding was
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Fig. 1. Wireless network configuration with a single source, M relays and
a single destination.

unsuccessful, cn is dropped. Each relay that is in transmitting
mode, randomly selects a coded packet from its memory
and forwards it to the destination. We assume that relays
use properly separated directional antennas, so that inter-relay
interference is prevented at the relays but not at the destination.

The destination performs successive interference cancela-
tion (SIC) to recover the received coded packets that were
sent by the source and the relays over block fading channels.
When K coded packets have been transmitted by the source in
an equal number of time steps, the destination starts to check
whether the received packets can be decoded. If the destination
successfully decodes the source packets after N ≥ K time
steps, it signals the source to cease transmission.

The quality of a channel in our system model is character-
ized by the corresponding average receive signal-to-noise ratio
(SNR). In particular, we assume that the fading coefficient of
a channel between nodes i and j at time step n is described
by hn(i, j), which is modeled as a zero-mean, circularly
symmetric complex Gaussian random variable with variance
σ2(i, j)=1. Each channel is also impaired by additive white
Gaussian noise of variance N0. Consequently, the instanta-
neous receive SNR at node j is given by

γn(i, j) = |hn(i, j)|2 PT(i)
N0

, (1)

where PT(i) is the transmit power of node i. Considering that
the average SNR is defined as γ(i, j) , E

[
γn(i, j)

]
, we obtain

γ(i, j) = E
[∣∣hn(i, j)

∣∣2
]PT(i)

N0
=

PT(i)
N0

, (2)

where E [.] denotes the expectation operator.
In order to simplify the analysis, we assume throughout this

paper that:
• The channels between the source S and the relays are

perfect, that is γ(S, j) →∞, for j =1, 2, . . . ,M .
• All nodes have equal transmit power PT(i) = PT and,

consequently, the relay-to-destination channels are statis-
tically similar, that is γ(j, D)=γ.

• The destination cannot obtain information directly from
the source, that is γ(S, D)=0.

Note, however, that our proposed framework can be extended
in a straightforward manner to relay networks, in which the
average SNR between the source and the relays or the source
and the destination take finite, non-zero values.

III. SYSTEM ANALYSIS USING MARKOV CHAINS

In this section, we describe the transmission process of a
packet from the source to the destination using a Markov
chain; furthermore, we exploit the properties of Markov chains
to compute the erasure probability of the packet.

A. Definitions for a system using a single relay of memory ν

We first consider the simple case when a single relay of
memory size ν is used. We can represent the life cycle of a
coded packet in the network, from transmission to successful
decoding or erasure, using an absorbing Markov chain as
shown in Fig. 2. In particular, SI is the initial state of the
chain, which represents the instant that the source transmits
the packet, and SS is the state of success, which signifies
successful decoding of the packet at the destination. Every
other Markov state s can be described by a nonnegative integer
ξ, which identifies the position that the packet of interest
occupies in the memory of the relay; that is, s = ξ, where
ξ=0, 1, . . . ν. The packet is initially stored in the first memory
position (s=1) but it is shifted to the following positions as
soon as new packets are received. If the zero state s = 0 is
reached, an erasure occurs. Note that the zero state and the
state of success are the absorbing states of the Markov chain,
while all other states are known as transient states.

The probability of transition between two states depends on
the probability of the relay being in listening or transmitting
mode, that is pL or 1−pL, respectively. Furthermore, if the
relay is in transmitting mode, the transition probability should
also be weighted by the probability that the destination is
unsuccessful in recovering the packet of interest. We denote
the latter probability as f(k1, k2), where k1 is the number of
relays that have the packet stored in their memory, whilst k2

is the number of those relays among the k1 relays that are in
transmitting mode. In the remainder of this section, we refer
to a transition probability that should have been weighted by
the probability of unsuccessful decoding, yet it has not been
multiplied by f(k1, k2), as unweighted.

Before proceeding to the general case of a network of M
relays, we first define the following matrices that will help
us construct the transition matrix of the complete Markov
chain. Let V(1) =(V (1)

i,j ) be a (ν+1)×(ν+1) matrix, specific
for the single-relay scenario; its (i, j) entry corresponds to
the unweighted transition probability from state si to state
sj , where (s1, s2, . . . , sν , sν+1) = (1, 2, . . . , ν, 0). Based on
Fig. 2, we obtain

V
(1)
i,j =





pL, if i=j−1
1− pL, if i=j <ν+1
1, if i=j =ν+1
0, otherwise.

(3)

Similarly, let v(1) =(v(1)
j ) be a row vector of length ν + 1,

specific for the case when M = 1. The j-th entry of the
vector, which conveys the unweighted probability of transition
from the initial state SI to state sj , can only take one of the
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Fig. 2. Markov chain for a single-relay network (M =1).

following values

v
(1)
j =





pL, if j = 1
1− pL, if j = ν + 1
0, otherwise.

(4)

B. Generalization for networks of M relays

We now consider the general case of a network that uses
M relays of memory size ν each. The corresponding Markov
chain consists of the initial state SI and the state of success
SS as well as ℘=(ν + 1)M states of the form

s = (ξ1, ξ2, . . . , ξM ). (5)

Here ξk, k = 1, . . . ,M , denotes the position in the memory
of the k-th relay in which the packet is stored. As previously
mentioned, ξk takes values between 0 and ν. An erasure occurs
when the packet is flushed from the memory of all relays and
the Markov chain is absorbed by state s = (0, . . . , 0), which
we refer to as the all-zero state.

The unweighted transition probabilities in the Markov pro-
cess of a M -relay network can also be expressed in the form of
two matrices, namely V(M) and v(M), which have dimensions
℘×℘ and 1×℘ respectively. It can be shown that V(M) and
v(M) are directly related to matrices v(1) and V(1), presented
in (3) and (4), as follows

V(M) =

M times︷ ︸︸ ︷
V(1) ⊗V(1) ⊗ . . .⊗V(1)

=
(
V(1)

)[M ]
(6)

and
v(M) =

(
v(1)

)[M ] (7)

where ⊗ and [·] denote the Kronecker product and Kronecker
exponentiation, respectively.

We now introduce two new matrices, denoted as b = (bj)
and B=(Bi,j), which are the weighted versions of v(M) and
V(M). However, weighting has no effect on v(M), since the
transition probabilities from the initial state to any other state
only depend on pL, hence

b = v(M) (8)

always. On the other hand, weighting will affect the value of
some elements of V(M), depending on the start state and the
end state of the corresponding transitions. More specifically,
the (i, j) entry of B will assume the following value

Bi,j =





V
(M)
i,j , if wH(si) = dH(si, sj)

V
(M)
i,j f

(
wH(si), wH(si)− dH(si, sj)

)
,

if wH(si) > dH(si, sj),

(9)

where wH(s) denotes the Hamming weight of a state s and
dH(s, s′) represents the Hamming distance between states s
and s′. The single-relay case (M =1) can be easily confirmed
by examining Fig. 2.

C. Derivation of the erasure probability

Having obtained matrices b and B, we can construct the
complete (℘+2)× (℘+2) transition matrix T as follows

T =




0(℘+1)×1

b
rS

B 0
01×(℘+1) 1




. (10)

Note that rS is a column vector of length ℘ that provides the
probabilities of transition from all transient states to the state
of success, SS, and can be easily evaluated, considering that
the elements of each row in T should sum to one. Furthermore,
each element of the first column of T corresponds to the
probability of transition from a particular state to the initial
state SI, which is always zero (see Fig. 2).

If we regroup the elements of T, we can express the
transition matrix in canonical form [6]

T =
(

Q r0 rS

02×℘ I2

)
, (11)

where Q is a ℘ × ℘ matrix that contains the transition
probabilities between transient states, whilst the entries of the
length-℘ column vector r0 correspond to all probabilities of
transition from the transient states to the all-zero state.

The probability that the Markov chain will be absorbed by
the all-zero state, starting from any of the ℘ transient states,
is expressed in the form of column vector t=[t1, t2, . . . , t℘],
which can be obtained as follows [6]

t = (I℘ −Q)−1 r0. (12)

The probability that a transmitted packet will be erased, given
that the Markov process originated from the initial state, is
conveyed by the first element of t, that is

Pe = t1. (13)

IV. COMPUTATION OF f(k1, k2)

As mentioned in Subsection III-A, f(k1, k2) is the probabil-
ity that the destination does not successfully recover the packet
of interest, given that there are k1 relays possessing the packet
in their memories and that k2 out of them are in transmitting



mode. However, before deriving an expression for f(k1, k2),
we first evaluate the SIC performance of the system, which
can be quantified by the probability that the destination has
successfully recovered some of the packets that were received
at a particular time step.

Proposition 1: Let T be the number of packets that were
transmitted to the destination by an equal number of relays
at a given time step. The probability that the destination will
recover ` packets out of the T received packets is

qT
` = β` − β`+1, for `=0, 1, . . . , T (14)

where βT+1 = 0 and

β` =
T !

(T − `)!
2−

`(2T−`−1)
2 e−

2`−1
γ . (15)

Proof: If γ1, γ2, . . . , γT are the instantaneous SNR val-
ues associated with the T received packets, we denote as
γ̂1, γ̂2, . . . , γ̂T the ordered sequence of the same SNR values,
such that γ̂1 ≥ γ̂2 ≥ · · · ≥ γ̂T . Taking into account that the
probability density function (pdf) of each SNR value is given
by g(γ̂λ) = e−γλ/γ/γ, where λ = 1, 2 . . . , T , we can obtain
the joint pdf of the ordered SNR values using the properties
of ordered statistics. In particular,

g(γ̂1, . . . , γ̂T ) = T !
T∏

λ=1

g(γ̂λ). (16)

The probability of recovering the ` “strongest” packets, de-
noted as qT

` , can be derived by integrating the joint pdf in
(16), provided that the limits of integration for each individual
SNR value are properly defined. Using the definition of the
achievable rate R as the criterion for successful (R≥ 1) or
unsuccessful (R<1) packet recovery [5]

R = C

(
γ̂λ∑T

i=λ+1 γ̂i + 1

){ ≥ 1, for 1 ≤ λ ≤ `

< 1, for ` < λ ≤ T,
(17)

where C(z), log2(1 + z), we can express qT
` as follows

qT
` = T !

∫ +∞

PT
i=2 γ̂i+1

g(γ̂1)dγ̂1 · . . . ·
∫ +∞

PT
i=`+1 γ̂i+1

g(γ̂`)dγ̂`

·
∫ PT

i=`+2 γ̂i+1

γ̂`+2

g(γ̂`+1)dγ̂`+1 ·
∫ +∞

γ̂`+3

g(γ̂`+2)dγ̂`+2

· . . . ·
∫ +∞

γ̂T

g(γ̂T−1)dγ̂T−1 ·
∫ +∞

0

g(γ̂T )dγ̂T .

(18)

Computation of all integrals yields (14).

In order to facilitate our analysis, we assume that the
memory of all relays is full and, thus, the probability that
a relay will randomly select a packet and forward it to the
destination is 1/ν. Having derived an expression for qT

` , we
now proceed to the computation of f(k1, k2).

Proposition 2: The probability that the destination will fail
to recover a particular packet, when k1 relays possess it but

no more than k2 ≤ k1 of those relays have transmitted it, is
given by

f(k1, k2) =
M−k1∑
m=0

(
M − k1

m

)
pM−k1−m

L (1− pL)m

×
k2∑

r=0

(
k2

r

)(
1
ν

)r (
1− 1

ν

)k2−r

×
m+k2∑

`=0

(
m+k2−r

`

)
(
m+k2

`

) qm+k2
` .

(19)

Proof: The probability f(k1, k2) can be computed by
taking the average with respect to m, r and `, where m is
the number of transmitting (thus, interfering) relays that do
not possess the packet of interest in their memories, r is the
number of relays that transmit the packet of interest and ` is
the number of successfully recovered packets. The fraction in
the last row of (19) is the probability that the packet of interest
is not among the ` recovered packets.

V. RESULTS

We note that the model described in Section III does not
consider the correlation between life cycles of neighboring
packets. However, the ergodic principle grants that the average
behavior of a packet can be well predicted by our model,
provided that sufficiently long transmission bursts occur.

Let us consider a network with M =2 relays, each having
a memory size of ν = 1. The source encodes K = 100
packets. The relationship between the erasure probability and
the probability of listening, pL, is shown in Fig. 3 for various
relay-to-destination SNR values, γ. Solid lines were obtained
using our theoretical model; circles correspond to simulation
measurement of the erasure probability over all packets in
a realization, which is then averaged over all realizations;
squares correspond to simulation measurement of the erasure
probability for a given packet over all realizations, which is
then averaged over all packets. Observe that simulation results
are very close to theoretical predictions, confirming the ergodic
nature of the system.

As another example, consider the case when M =3, ν =10
and K =100. As we can see in Fig. 4, the discrepancy between
theoretical and simulation results is now more appreciable,
although the matching is still acceptable. In this example, the
value of ν is closer to K, which implies a stronger correlation
between the life cycles of neighboring packets in a single
realization. We can see in both Fig. 3 and Fig. 4 that there is
an optimal value for pL, denoted as p∗L, which minimizes the
erasure probability. The value of p∗L depends weakly on the
relay-to-destination SNR and lies slightly below 0.5.

Having observed a good matching between simulations and
theoretical results, we now use our theoretical model to explore
the dependence of the minimum achievable erasure probability,
which is observed when pL =p∗L, on the number of relays and
the memory size. In Fig. 5, the minimum erasure probability is
depicted as a function of the memory size, when M =3 relays.
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Fig. 3. Theoretical and simulation results for the erasure probability as a
function of the probability of listening. Two relays and a unitary memory size
are considered. For the simulations, K =100 source packets are encoded.
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Fig. 4. Theoretical and simulation results for the erasure probability as a
function of the probability of listening. Three relays and a memory size of
ten are considered. For the simulations, K =100 source packets are encoded.

Various values for γ are considered, while the value of p∗L is
also reported on the curves. It can be seen that the erasure
probability slightly decreases with ν, but reaches a constant
value as ν increases. We observed a similar behavior for
different values of M . The relationship between the minimum
erasure probability and the number of relays, for a memory
size of ν =5, is presented in Fig. 6. Comparing the two figures,
we note that changes to the number of relays have a greater
impact on the erasure probability than changes to the memory
size. Note, however, that the slope of the curves in Fig. 6
gradually diminishes as M increases.

VI. CONCLUSION

In this paper, we presented a model for single-hop relay
networks, in which relays randomly select coded packets that
were previously received, CRC validated and stored in their
memory, and forward them to the destination. Using a semi-
analytical method based on Markov chains, we demonstrated
that the erasure probability of the system can be minimized
by selecting proper values for the probability of listening, the
number of relays and the memory size at each relay.
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Note that the proposed scheme can be seen as an instance of
distributed fountain codes; its generalization, in which relays
can also XOR packets, will be carried out in future work.
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