
A Novel Technique To Evaluate the Transfer
Function of Punctured Turbo Codes

Ioannis Chatzigeorgiou, Miguel R. D. Rodrigues, Ian J. Wassell
Digital Technology Group, Computer Laboratory

University of Cambridge, United Kingdom
Email: {ic231, mrdr3, ijw24}@cam.ac.uk

Rolando Carrasco
Department of EE&C Engineering

University of Newcastle, United Kingdom
Email: r.carrasco@ncl.ac.uk

Abstract— A novel approach for the calculation of the transfer
function of a terminated punctured convolutional code, which can
be seen as a convolutional block code, is presented in this paper.
The transfer function of the convolutional block code can be
then used to evaluate the transfer function of a punctured turbo
code and derive a tight upper bound on the bit error probability.
Furthermore, the approach is used to find puncturing patterns
that generate punctured turbo codes with optimal performance.

I. INTRODUCTION

Turbo codes, originally conceived by Berrou et al. [1]
are widely known for their astonishing performance on the
additive white Gaussian noise (AWGN) channel. Methods to
evaluate an upper bound on the bit error probability (BEP) of
a parallel-concatenated coding scheme have been proposed by
Divsalar et al. [2] as well as Benedetto and Montorsi [3]. In
addition, guidelines for the optimal design of the constituent
convolutional codes were presented in [4].

The rate of a turbo code can be increased by puncturing
the outputs of the turbo encoder. Guidelines and design
considerations for punctured turbo codes have been derived by
analytical [5], [6], [7] as well as simulation-based approaches
[8], [9], [10]. The upper bounds on the BEP are evaluated
based on [3], while Kousa and Mugaibel [7] propose a
combination of [2] and [3].

The motivation for this paper is to propose an alternative
method for the evaluation of the transfer function of a
constituent convolutional block code in a turbo encoder, which
is essential for the calculation of an upper bound on the
BEP. More specifically, the transfer function of a convolutional
block code is computed using an augmented version of the
modified state diagram of the original convolutional code. The
augmented state diagram can then be further manipulated so
as to yield the transfer function of a punctured convolutional
block code.

II. TRANSFER FUNCTION OF CONVOLUTIONAL CODES

A detailed description of the properties of convolutional
codes as well as expressions required to evaluate the
performance of the maximum likelihood (ML) decoder, are
presented in [11]. In particular, it is shown that an upper bound
on the BEP of the ML decoder for binary phase shift keyed

This work is supported by EPSRC under Grant GR/S46437/01.

(BPSK) modulation on an AWGN channel can be obtained if
the transfer function of the convolutional code is known.

A generic form for the transfer function T (W,D, L) of a
convolutional code is:

T (W,D, L) =
∑

w,d,l

Tw,d,lW
wDdLl, (1)

where Tw,d,l denotes the number of paths that start from the
zero state and remerge with the zero state after l steps, i.e.,
their length is l, and are associated with an input sequence of
weight w, and an output sequence of weight d.

An example of a recursive convolutional encoder with
code rate 1/2, recursive generator polynomial 3 and forward
generator polynomial 2, i.e., RSC(1,2/3), is shown in Fig.1(a).
The state diagram of the code is illustrated in Fig.1(b). A
branch corresponds to the transition from a state to another
state. Each branch is labelled by the input word that caused
the transition and the output word generated by the transition.

The modified state diagram of the convolutional code,
presented in Fig.1(c), can be used to obtain its transfer
function. In order to avoid circulation around the self-loop,
we split the state X0 into two separate states, the start state
XS and the end state XE . Furthermore, we label the branches
according to the Hamming weight of the input and output
words. The exponent of W corresponds to the weight of the
input word whereas the exponent of D corresponds to the
weight of the output word. Each branch also has term L, which
represents a time-step. We express each state of the diagram
as a function of the other states, so as to obtain the state
equations. Upon solving these equations for the ratio XE/XS ,

1


1/11


0/01


0


1/10


0/00


Systematic bits


Parity bits


Input bits


(a)
 (b)


X
1


X
0


X
S
 X
E


1

WD
 
2
L


DL


WDL

X
1


0
0


(c)


Fig. 1. Block diagram (a), state diagram (b) and modified state diagram (c)
of RSC(1,2/3)



we obtain the transfer function for RSC(1,2/3):

T (W,D,L) = W 2D3L2 + W 2D4L3

+ W 2D5L4 + W 2D6L5 + . . . ,
(2)

which tells us that there is one path of length 2 generated
by an input sequence of weight 2 which produces an output
sequence of weight 3 (i.e. W 2D3L2), and so on.

III. TRANSFER FUNCTION OF
CONVOLUTIONAL BLOCK CODES

A. Weight Enumerating Functions

A parallel concatenated convolutional code (PCCC) is
formed by two convolutional encoders, each of memory ν,
and an interleaver of length N−ν [1]. The input to the PCCC
is a block of N information bits, including the ν bits used
for trellis termination. We refer to each constituent terminated
convolutional code, as a convolutional block code. It was
shown in [2] and [3] that the performance of a PCCC depends
upon the transfer functions, or equivalently on the input-output
weight enumerating functions (IOWEFs), of the constituent
convolutional block codes. The IOWEF of a convolutional
block code assumes the form:

B(W,D) =
∑

w,d

Bw,dW
wDd, (3)

where Bw,d denotes the number of codeword sequences with
weight d generated by an input sequence of weight w.

In the case of a rate-k0/n0 convolutional code, k0 input bits
cause a transition from a state to another state, at a time-step.
A block of N input bits will cause N/k0 transitions after
N/k0 time-steps, resulting in a path of length N/k0. When
k0 = 1, the values for the total number of time-steps, the
path length and the block size coincide. The trellis of the
corresponding convolutional block code is the truncation of
the trellis of the rate-k0/n0 original convolutional code at step
N/k0. More specifically, the transfer function T (W,D, L) of a
convolutional code provides all paths that start from the zero
state, diverge from the all-zero path at step 1 and at some
point remerge with the zero state and remain at it. The IOWEF
B(W,D) of the convolutional block code provides all paths
of length N that start from the zero state, can remerge with
and diverge from the zero state more than once and terminate
at the zero state.

Although the IOWEF B(W,D) of a convolutional block
code relates the weight of an input sequence with the weight of
the generated codeword sequences composed of the n0 output
sequences of the encoder, it does not provide any information
about the weight of each individual output sequence. We define
the generalized input-output weight enumerating function
(G-IOWEF) of a rate-k0/n0 convolutional block code, as
follows:

B(W, Z1, . . . , Zn0) =
X

w,z1,...,zn0

Bw,z1,...,zn0
W wZz1

1 . . . Z
zn0
n0 , (4)

where Bw,z1,...,zn0
denotes the number of codeword sequences

with weight z1 + . . . + zn0 generated by an input sequence of

weight w. The value of zi, i = 1, . . . , n0, corresponds to the
weight of the i-th output sequence of the encoder. The IOWEF
can be derived from the G-IOWEF by setting:

Bw,d =
∑

z1+...+zn0=d

Bw,z1,...,zn0
(5)

and substituting Bw,d in (3), which is equivalent to setting
Z1 = . . . = Zn0 = D in (4).

The G-IOWEF of a rate-1/2 RSC block code assumes the
form:

B(W,U,Z) =
∑

w,u,z

Bw,u,zW
wUuZz, (6)

where Bw,u,z denotes the number of codeword sequences
with weight u + z generated by an input sequence of weight
w. The value of u corresponds to the weight of the output
systematic sequence, whereas z corresponds to the weight of
the output parity check sequence of the encoder. Similarly, the
IOWEF of the convolutional block code can be derived from
the G-IOWEF by setting:

Bw,d =
∑

u+z=d

Bw,u,z (7)

and substituting Bw,d in (3).
The G-IOWEF can describe both unpunctured and

punctured convolutional block codes. However, in the case
of unpunctured convolutional block codes, the additional
information provided by the G-IOWEF is redundant, thus the
IOWEF is preferred.

B. Proposed Technique

In this subsection we suggest a modification of the state
diagram of a convolutional code, from which the IOWEF
or the G-IOWEF of the corresponding convolutional block
code can be directly derived. We focus on the derivation
of the G-IOWEF because it is straightforward to extend our
technique to the case of punctured convolutional codes.

For consistency, we continue to pursue the example of Fig.1.
By adding a new state X0 as well as the circulation loop, the
state diagram of the convolutional block code shown in Fig.2
can be obtained from the modified state diagram presented
previously in Fig.1(c). These additions enable an indefinite
number of remergings with the zero state for an indefinite

X
S
 X
E


WUZ
L
 WUL


0
0


1


WUZ
L


ZL


0


WUL


L


X
1


X
0


L
 L


Fig. 2. Augmented state diagram
of the convolutional block code
RSC(1,2/3).

0
0


X
S
 X
E

Y


Fig. 3. Generic diagram of a
convolutional block code.



period of time. The new “augmented” diagram in Fig.2 also
has a start state XS from which branches only emerge, and
an end state XE where branches only terminate. Furthermore,
since we are interested in the G-IOWEF of the convolutional
block code, the format of the label of each branch changed
from WwDdL to WwUuZzL, where u = w and z = d− u,
based on the definition of the G-IOWEF in (6) and its relation
with the IOWEF in (7).

A generic representation of the augmented state diagram
of a convolutional block code is shown in Fig.3, where the
box labeled Y represents the set of all possible states of the
convolutional encoder. The link that connects the start state
XS with Y in the generic diagram, represents the set of all
branches of the augmented diagram that connect XS with
different states of the convolutional encoder. The same logic
applies to the link that connects Y with the end state XE . The
circle within Y denotes that the states which belong to the set
are interconnected.

As usual, we derive the state equations and we solve them
for the ratio XE/XS . The result will be a sum of two terms:

XE

XS
= f(L) + f(W,U,Z, L). (8)

The first term f(L) is a function of L only and represents
the set of all paths with zero input weight and zero codeword
weight, i.e., all the all-zero paths for different block lengths.
These paths start from state XS , stay at state X0 for an
indefinite number of steps by circulating around the self-loop
and finally terminate at state XE . The all-zero paths are not
of interest in the computation of B(W,U,Z) and are ignored.

The second term f(W,U,Z, L) represents the set of all
paths that start from the zero state and end at the zero state
for various block lengths. It can be expressed as:

f(W,U,Z, L) =
∑

w,u,z,l

Bw,u,z,lW
wUuZzLl, (9)

where Bw,u,z,l is a nonnegative integer.
If we are interested in a specific block size N , we need to

consider only the terms Ll of f(W,U,Z, L) with l = N . We
can rewrite (9) as follows:

f(W, U, Z, L) =
X

w,u,z,l
l6=N

Bw,u,z,lW
wUuZzLl+

+
X

w,u,z,l
l=N

Bw,u,z,lW
wUuZzLl

= fl6=N (W, U, Z, L) + fl=N (W, U, Z, L).

(10)

For a given block size N , the G-IOWEF B(W,U,Z)
of the convolutional block code can be derived from
fl=N (W,U,Z, L) by setting L = 1, i.e.,

B(W,U,Z) = fl=N (W,U,Z, L)
∣∣∣
L=1

. (11)

Different techniques for the evaluation of the IOWEF of
a convolutional block code were also presented by Divsalar
et al. [2] as well as Benedetto and Montorsi [3]. Divsalar
et al. [2] suggested the derivation of the state transition

matrix of the convolutional code and the computation of an
inverse matrix, which is a function of the state transition
matrix. Benedetto and Montorsi [3] proposed a two-stage
technique. In the first stage, an intermediate transfer function
of the convolutional code is evaluated, yielding terms having
particular input and output weights. In the second stage, the
IOWEF of the convolutional block code is computed, since
each term of the IOWEF associated with a specific input
and output weight, can be expressed as a function of the
relevant terms of the intermediate transfer function, i.e., those
associated with identical input and identical output weights.

The technique we propose [12] can be seen as a refinement
of Benedetto’s and Montorsi’s approach. Owing to the
introduction of the augmented state diagram, the IOWEF
or the G-IOWEF of the convolutional block code can be
directly computed without the need of an intermediate transfer
function. More importantly, our approach can be easily
extended to punctured convolutional codes.

IV. PUNCTURED CONVOLUTIONAL CODES

A rate-k/n punctured convolutional code is obtained by
periodic elimination of specific codeword bits from the output
of a rate-k0/n0 convolutional encoder. A puncturing pattern
P can be represented by a n0 ×M matrix as follows:

P =




p11 . . . p1M

...
. . .

...
pn0,1 . . . pn0,M


 , (12)

where M is the puncturing period and pij ∈ {0, 1}, with i =
1, . . . , n0 and j = 1, . . . ,M . For pij = 0 the corresponding
output bit is punctured.

For the case of a punctured RSC code with two output
streams, i.e., n0 = 2, the puncturing pattern P of the code
consists of the puncturing pattern PU of the systematic stream
and the puncturing pattern PZ of the parity stream:

P =
[
PU

PZ

]
=

[
p11 p12 . . . p1M

p21 p22 . . . p2M

]
. (13)

The puncturing patterns of both the systematic and parity
streams are row vectors. The puncturing pattern P can also
be seen as a matrix that consists of column vectors, namely
column puncturing vectors (CPVs) Pj , with j = 1, . . . ,M ,
that determine which bits will be punctured at each time-step.
Accordingly, the puncturing pattern P can be expressed as:

P = [P1 P2 . . . PM ] =
[
p11 p12 . . . p1M

p21 p22 . . . p2M

]
. (14)

V. TRANSFER FUNCTION OF
PUNCTURED CONVOLUTIONAL BLOCK CODES

In this section we extend the concept of the augmented
state diagram to include the case of punctured convolutional
codes. For simplicity, we continue to consider the rate-1/2
RSC(1,2/3) code. In order to construct the augmented state
diagram of the punctured RSC(1,2/3) block code, we need to
introduce the CPV into the labeling procedure of each branch.
We see in Fig.2 that a transition from state Xi to state Xk,



{i, k} ∈ {0, 1}, is labeled WwUuZzL, where w is the weight
of the input word that caused a transition, which generated
a systematic output with weight u and a parity output with
weight z. Let us concentrate on the same transition from Xi

to Xk when puncturing occurs. If Pj , j = 1, . . . , M , is the
active CPV at a specific time-step, the label of the branch will
change to Ww′Uu′Zz′L, where w′, u′ and z′ are related to
w, u, z as well as the elements of Pj , i.e., p1j and p2j , as
follows:

w′ = w, u′ = u · p1j , z′ = z · p2j . (15)

The values of u′ and z′ depend on the active CPV, therefore
the label of the branch that connects Xi with Xk cannot be
a constant term, since it can assume up to M different values
due to the M available CPVs.

To overcome this problem, we introduce M sets of states.
Each set Yj contains all possible states of the convolutional
encoder. When Pj is the active CPV, a transition to state Xi

in set Yj occurs. At the next time-step, Pj+1 becomes the
active CPV and a transition from state Xi in set Yj to state
Xk in set Yj+1 takes place. As time progresses, the CPVs are
repeated periodically, i.e. P1,P2,. . . ,PM ,P1,. . . , resulting in
transitions to states that belong to sets Y1,Y2,. . . ,YM ,Y1,. . . ,
respectively. Therefore, the problem of having M different
terms associated with a branch that connects state Xi with
state Xk, is overcome by having M branches, each one of
which pairs state Xi of a set with state Xk of a different set.

So as to better understand the concept of the augmented
state diagram of a punctured convolutional block, we give
an example for a puncturing period of M = 2. In order to
increase the code rate of RSC(1,2/3) from 1/2 to 2/3, we use
the following puncturing pattern:

P =
[
1 1
1 0

]
, with P1 =

[
1
1

]
and P2 =

[
1
0

]
, (16)

where P1 and P2 are CPVs. Since 1 in 4 codeword bits is
punctured, 3 codeword bits are transmitted for every M =
2 information bits, therefore the code rate of the punctured
convolutional code is 2/3.

The augmented state diagram of the rate-2/3 RSC(1,2/3)
block code is presented in Fig.4. P1 is the active CPV
during the transitions, represented by solid lines in Fig.4, that
originate from states in set Y2 and terminate at states in set
Y1. Since both elements of P1 are equal to 1, the outputs
of the encoder are not punctured, therefore the labels of the
branches that connect the states of set Y2 with the states of set
Y1 are identical to the labels of the corresponding branches
of the augmented diagram in Fig.2. P2 is the active CPV
during the transitions, represented by dashed lines in Fig.4,
that originate from states in set Y1 and terminate at states
in set Y2. In this case, the parity output of the encoder is
punctured, therefore term Z does not appear in any of the
branch labels. To complete the augmented diagram, states XS

and XE have been included. Since the encoder starts from
state XS , P1 is the active CPV during the transition from XS

to a state in set Y1 at the first time-step. At the last time-step,

X
S


X
E


WUZ
L
 WUL


0
0


1


0


X
1


X
0


L

L


WUL


1


0


X
1


X
0


L


L

ZL


L

L


WUL


WUZL
WUL


WUL


Y
1
 Y
2


Fig. 4. Augmented state diagram of the rate-2/3 RSC(1,2/3) block code.

0
0


X
S
 X
E


Y
1

P
1
 P
2
 Y
2


P
1


P
2


P
1


Fig. 5. Generic diagram of a punctured convolutional block code (M = 2).

0
0


X
S
 X
E


Y
1

P
1
 P
2


P
2


Y
2
 Y
3

P
3


Y
M


P
1


P
3
 P
 4


P
 1


Y
M
-1

P
M


P
M



Fig. 6. Generic diagram of a punctured convolutional block code.

the encoder returns to the zero state, i.e., a transition to state
XE occurs. In order to terminate the code, those states of each
set which are connected to state X0 of a different set, must
also be connected to state XE .

A generic representation of the augmented state diagram
of a convolutional block code, which is punctured using a
pattern of period M =2, is shown in Fig.5. Both sets Y1 and
Y2 contain all possible states of the convolutional encoder. A
link between two sets represents the collection of branches
of the augmented diagram that connect the states of the two
different sets. Each link is labeled with the associated CPV.
The same logic applies to the link that connects the start state
XS with Y1 as well as the links that connect all sets to the
end state XE .

The general case of a convolutional block code, which is
punctured using a pattern of period M , is shown in Fig.6. As
previously, we derive the state equations and we solve them
for the ratio XE/XS . The result for the case of a punctured
convolutional block code, of rate k0/n0 before puncturing,
is a sum of two terms, f(L) and f(W,Z1, . . . , Zn0 , L).
For simplicity, as in (8), we consider an RSC code of rate



1/2 before puncturing, therefore the second term becomes
f(W,U,Z, L). The first term f(L) is a function of L and can
be ignored. The second term f(W,U,Z, L), which represents
the set of all paths that start from the zero state and end at
the zero state for various block lengths, is also a sum:

f(W,U,Z, L) =
M∑

j=1

fPj (W,U,Z, L). (17)

The polynomial fPj (W,U,Z, L) represents all paths of length
l = j,M + j, 2M + j, . . ., which terminate at state XE when
Pj is the active CPV.

In order to compute the G-IOWEF of the convolutional
block code for a specific block size N > 1, we need to
consider only the terms Ll of f(W,U,Z, L) with l = N .
Taking into account (10) and (17), we conclude that the
G-IOWEF B(W,U,Z) assumes the form:

B(W,U,Z) = f
Pj

l=N (W,U,Z, L)
∣∣∣
L=1

(18)

for j = N − kM, (19)

where k = 0, 1, 2, . . ., j ∈ {1, 2, . . . , M} and N > 1.
In practice, we do not need to calculate all polynomials

fPj (W,U,Z, L), for j ∈ {1, 2, . . . , M}, so as to derive the
G-IOWEF of the convolutional block code for a block size of
N . We can remove the links that connect XE with all sets
except for the link associated with Pj , where j is derived
from (19). For example, for M =6 and N =10, we find from
(19) that j =4 for k =0, therefore we only need to keep the
link between set Y3 and XE , associated with P4. Thus, when
we solve the state equations for XE/XS , we directly derive
the required polynomial fP4(W,U,Z, L) instead of the sum
of polynomials f(W,U,Z, L).

VI. PCCCS ON THE AWGN CHANNEL

We assume that P is a rate-1/3 PCCC formed by two
rate-1/2 convolutional encoders, C1 and C2, each of memory
ν and a uniform interleaver of length N − ν. The systematic
and parity streams of the first encoder as well as the parity
stream of the second encoder are punctured using the patterns
PC1

U , PC1
Z and PC2

Z , respectively. The puncturing pattern PP

of the PCCC assumes the form:

PP =



PC1

U

PC1
Z

PC2
Z


 =




p11 p12 . . . p1M

p21 p22 . . . p2M

p31 p32 . . . p3M


 , (20)

where M is the puncturing period.
The G-IOWEF of each punctured constituent code is given

by:

BC1(W,U,Z) =
∑

w,u,z

BC1
w,u,zW

wUuZz,

BC2(W,U=1, Z) =
∑
w,z

BC2
w,zW

wZz,
(21)

respectively. The systematic stream of the second encoder is
not transmitted, therefore it does not contribute to the overall

weight of the turbo codewords and it is eliminated by setting
U=1 in BC2(W,U,Z).

The G-IOWEF BP (W,U,Z) of the punctured PCCC can be
derived from the G-IOWEFs BC1(W,U,Z) and BC2(W,U=
1, Z) of the constituent codes, elaborating on the expressions
in [3]. The IOWEF BP (W,D) of the punctured PCCC finally
assumes the form:

BP (W,D) =
∑

w,d

BP
w,dW

wDd, (22)

where the non-negative integers BP
w,d are derived by

combining the G-IOWEF BP (W,U,Z) with (7).
The ML upper bound of the punctured PCCC is then

approximated by:

PB ≤
∑

w,d

w

N
BP

w,dQ

(√
2RP Eb

N0
· d

)
(23)

where RP is the code rate of the punctured PCCC.

VII. RESULTS

The proposed technique for the derivation of the G-IOWEF
of a convolutional block code was applied for the case of a
rate-1/3 PCCC employing two RSC(1,5/7) constituent codes.
All puncturing patterns that result in code rates of 1/2 and
2/3 are considered. Punctured turbo codes can be systematic
(S-PCCC), partially systematic (PS-PCCC) or non-systematic
(NS-PCCC), depending on the puncturing of the systematic
output of the turbo encoder.

In Fig.7 the performance of suboptimal iterative decoding
applying the BCJR decoding algorithm [13] after 10 iterations
is plotted against the corresponding theoretical bound. The
input block size is N = 36 bits. Rate 1/2 and 2/3 punctured
PCCCs are obtained using the patterns in Table I. Based on
our technique, we found that the ML performance of rate 1/2
and 2/3 PS-PCCCs, obtained using patterns PP1 and PP2

respectively, is better than that of traditional rate 1/2 and 2/3
S-PCCCs [1], [7], obtained using PS1 and PS2 respectively.
In the case of S-PCCCs, the performance of the simulated
suboptimal turbo decoder converges to the corresponding ML
bound. However, in the case of PS-PCCCs not only does the
performance of the simulated suboptimal turbo decoder not
converge to the ML bound, but the results are worse than

TABLE I
PUNCTURING PATTERNS FOR RATE 1/2 AND 2/3 PCCCS

S-PCCC PS-PCCC

Rate Punc. Pattern df df,eff Punc. Pattern df df,eff

1/2 PS1 =

2
64
1111

1010

0101

3
75 3 6 PP2 =

2
64

0010

1101

1111

3
75 4 7

2/3 PS2 =

2
64
1111

1000

0010

3
75 2 2 PP2 =

2
64

1100

0011

0110

3
75 2 4



for the S-PCCC of the same rate. These results emphasize
the importance of the systematic stream, which is used by
both constituent decoders of the suboptimal turbo decoder.
Puncturing of the systematic stream causes severe degradation
to the BEP performance, deviating markedly from the ML
bound. Therefore, even if a PS-PCCC has better properties,
i.e., free distance df and effective free distance df,eff, than
a S-PCCC of the same rate, the use of suboptimal iterative
decoding means that the PS-PCCC does not necessarily
outperform the S-PCCC.

As the input block size of a PCCC increases, the BEP
performance of the code improves considerably [1], [3]. We
observe that the suboptimal turbo decoder is able to cope
with the punctured systematic stream as the block size is
increased, and eventually the performance of a PS-PCCC
converges to the ML bound. An S-PCCC achieves a worse
upper bound, however it converges quicker to it. In Fig.8 we
see that for a block of size N = 1000, PS-PCCCs perform
worse than S-PCCCs at low values of Eb/N0, however as
Eb/N0 increases, PS-PCCCs eventually outperform S-PCCCs.
The same observations are also made in [14] and [15].

VIII. CONCLUSION

In this paper we have presented a new technique to evaluate
the transfer function of a convolutional block code and we
have extended it for the case of punctured convolutional block
codes. The transfer function of the convolutional block code
can then be used to evaluate the transfer function of a turbo
code and derive an ML bound on the BEP.

We have also demonstrated that this technique can be
used to derive the best puncturing patterns in terms of BEP
performance. If the patterns produce a systematic turbo code,
the suboptimal turbo decoder converges to the ML bound,
even for small input block sizes. If the patterns produce a
partially systematic turbo code, the suboptimal turbo decoder
converges to the ML bound at high values of Eb/N0 only if
large block sizes, or equivalently large interleaver sizes, are
used. As a consequence, high-rate punctured turbo encoders
could be pattern-adaptive, i.e., select the pattern that achieves
the best BEP performance, depending on the Eb/N0 at which
they operate.

Future work will include investigation and identification
of constituent convolutional codes, which are more robust
to puncturing of their systematic output, allowing the
construction of punctured turbo codes that quickly converge
to the ML bound.

REFERENCES

[1] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: Turbo codes,” IEEE Trans. Commun., vol. 44, no. 2, pp.
1261–1271, Oct. 1996.

[2] D. Divsalar, S. Dolinar, R. J. McEliece, and F. Pollara, “Transfer function
bounds on the performance of turbo codes,” JPL, Cal. Tech., TDA Progr.
Rep. 42-121, Aug. 1995.

[3] S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results
on parallel concatenated coding schemes,” IEEE Trans. Inform. Theory,
vol. 42, no. 2, pp. 409–429, Mar. 1996.

[4] ——, “Design of parallel concatenated convolutional codes,” IEEE
Trans. Commun., vol. 44, no. 5, pp. 591–600, May 1996.

0 1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it 

E
rr

or
 P

ro
ba

bi
lit

y

ML bounds (S−PCCC)
Simulations (S−PCCC)

0 1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

ML bounds (PS−PCCC)
Simulations (PS−PCCC)

Rate−1/3
(unpunctured) 

Rate−1/2 

Rate−2/3 

Rate−2/3 

Rate−1/2 

Fig. 7. Comparison between ML bounds and simulation results for rates 1/3,
1/2 and 2/3 (N =36, 10 iterations).

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it 

E
rr

or
 P

ro
ba

bi
lit

y

Simulation, S−PCCC (N=1000)
Simulation, PS−PCCC (N=1000)

Rate−1/3
(unpunctured)

Rate−1/2

Rate−2/3

Fig. 8. Simulation results for rates 1/3, 1/2 and 2/3 (N =1000, 10 iterations).

[5] Ö. Açikel and W. E. Ryan, “Punctured turbo-codes for BPSK/QPSK
channels,” IEEE Trans. Commun., vol. 47, no. 9, pp. 1315–1323, Sept.
1999.

[6] F. Babich, G. Montorsi, and F. Vatta, “Design of rate-compatible
punctured turbo (RCPT) codes,” in Proc. Int. Conf. Comm. (ICC’02),
New York, USA, Apr. 2002, pp. 1701–1705.

[7] M. A. Kousa and A. H. Mugaibel, “Puncturing effects on turbo codes,”
Proc. IEE Comm., vol. 149, no. 3, pp. 132–138, June 2002.

[8] M. Fan, S. C. Kwatra, and K. Junghwan, “Analysis of puncturing pattern
for high rate turbo codes,” in Proc. Military Comm. Conf. (MILCOM’99),
New Jersey, USA, Oct. 1999, pp. 547–500.

[9] I. Land and P. Hoeher, “Partially systematic rate 1/2 turbo codes,” in
Proc. Int. Symp. Turbo Codes, Brest, France, Sept. 2000, pp. 287–290.

[10] I. Chatzigeorgiou, M. R. D. Rodrigues, I. J. Wassell, and R. Carrasco,
“Punctured binary turbo-codes with optimized performance,” in Proc.
Vehicular Tech. Conf. (VTC-Fall’05), Texas, USA, Sept. 2005.

[11] A. J. Viterbi, “Convolutional codes and their performance in
communication systems,” IEEE Trans. Commun. Technol., vol. 19, no. 5,
pp. 751–772, Oct. 1971.

[12] I. Chatzigeorgiou, M. R. D. Rodrigues, I. J. Wassell, and R. Carrasco,
“A novel technique for the evaluation of the transfer function of parallel
concatenated convolutional codes,” in Proc. Int. Symp. Turbo Codes,
Munich, Germany, Apr. 2006 (to appear).

[13] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimising symbol error rate,” IEEE Trans. Inform.
Theory, vol. IT-20, pp. 284–287, Mar. 1974.

[14] Z. Blazek, V. K. Bhargava, and T. A. Gulliver, “Some results on partially
systematic turbo codes,” in Proc. Vehicular Tech. Conf. (VTC-Fall’02),
Vancouver, Canada, Sept. 2002, pp. 981–984.

[15] S. Crozier, P. Guinand, and A. Hunt, “On designing turbo-codes with
data puncturing,” in Proc. Canadian Workshop on Inf. Theory, Montreal,
Canada, 2005.


