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Abstract - Low-Density Parity Check (LDPC) 

codes are known to perform well in the presence 

of Additive White Gaussian Noise (AWGN) but 

for very large block lengths. It has been proposed 

to define the codes over high order Galois fields to 

overcome this limitation.  In this paper we 

construct new quasi-cyclic non-binary LDPC 

codes with moderate code lengths from Reed-

Solomon codes with two message symbols 

proposed by Lin et al defined over large finite 

fields. We evaluate the performance of these codes 

on the AWGN channel by computer simulation 

and show that they outperform binary LDPC 

codes of the same length in binary bits.   

 

Index Terms – non-binary, LDPC codes, AWGN, 

FFT-BP decoding, finite fields. 

 

I. INTRODUCTION 

 

Binary Low Density Parity Check (LDPC) codes 

over )2(GF  rediscovered by Mackay and Neal [3], 

[4] have been observed to display near Shannon limit 

performance when decoded using probabilistic soft 

decision decoding algorithms. However these near 

Shannon’s limit performances are obtained for 

randomly constructed codes of very large block 

lengths. It has been shown that this limitation can be 

overcome by defining the code over higher order 

Galois Fields [5], [6], [8]. It is reasonable to assume 

that non binary LDPC codes perform better than 

binary LDPC codes on channels with noise bursts, 

given the fact that consecutive bits are grouped 

together forming symbols in the non binary alphabet 

( )qGF . The classical BP algorithm used in 

decoding non binary LDPC codes has a 

computational complexity dominated by ( )2qO  

making the decoding over higher order fields 

computationally infeasible. However it has been 

shown that the belief propagation over ( )qGF  can 

be conveniently transferred into frequency domain 

scaling down the complexity to ( )qqO 2log.  [8].  

 

This paper shows that non binary codes with only 

moderate code lengths outperform binary LDPC 

codes with large block lengths by considerable 

margins. We also demonstrate by simulation that 

with working in very high order fields we can 

approach channel capacity for shorter block lengths. 

 

II. CONSTRUCTION OF NONBINARY  

LDPC CODES 

 

Non binary LDPC codes over Galois fields )(qGF , 

where q is a prime number, can be seen as a 

generalization of binary LDPC codes over )2(GF . 

A vector space projected over a finite field )(qGF  

is used to denote the elements in )(qGF . We select 

q to be of the form 

bq 2=    (1) 

where b is an positive integer such that 1>b . The 

code is defined in terms of an ultra sparse parity 

check matrix H . K  is denoted as the length of the 

message while N is used to denote the codeword 

length. We define the rate of the LDPC code R ,  

 

( ) NMNR −=   (2) 

 

where KNM −= . The rectangular [ ]NM ×  

ultra sparse parity check matrix H  is constructed 

having a mean column weight γ  at least equal to two 

while the row weight ρ  is made as uniform as 

possible. Such algebraic construction methods ensure 

that 1) each row has exactly ρ number of elements; 

2) each column has exactly γ  number of elements; 

3) any two rows or two columns have more than one 

place where they both have non zero components.  

The first two conditions ensure that the parity check 

matrix H has uniform row and column weights 

forming a (γ , ρ ) regular LDPC code while the third 

condition ensures that the minimum distance of the 

code generated is at least 1+γ  and the Tanner graph 

of the code is free of cycles of length four. Algebraic 
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construction methods of LDPC codes generally 

involve first constructing circulant permutation 

matrices using non binary elements in )(qGF  and 

dispersing them into a base matrix constructing the 

overall parity check matrix H . The sparse parity 

check matrices considered in this paper are regular 

parity check matrices having uniform row weights 

ρ  and column weights γ  generated based on Reed 

Solomon (RS) codes over  )(qGF  with two 

information symbols [11], [12]. The non-zero 

elements of the parity check matrix H  are defined 

from the RS code to maximize the entropy of the 

corresponding symbol of the syndrome vector such 

that 
T

Hcz ⋅=   (3) 

 

where ( )Nn ccccc KK ,,,, 21= such that  

)(qGFcn ∈  denotes a valid code word and 

TH denotes the transpose of the parity check matrix 

H . Gaussian elimination can be used on the parity 

check matrix H  in order to obtain the systematic 

generator matrix G . 

 

III. DECODING OF LDPC CODES OVER FINITE 

FIELDS 

 

The decoding problem in non-binary LDPC codes is 

to iteratively process check nodes and variable nodes 

and determine the most probable received code word 

ĉ  such that 0ˆ =′⋅= Hcz , where the likelihoods 

of c is determined according to the channel model. 

The decoding of non binary LDPC codes using 

classical belief propagation (BP) algorithm was first 

proposed in [5] and [6] with BCJR algorithm for 

check node processing. The classical BP algorithm 

yielded a computational complexity dominated by 

( )2qO  mainly owing to the BCJR block in the check 

node processing step, making the decoding over 

higher order fields computationally infeasible. 

Evidently BP decoding of LDPC codes over higher 

order fields require prohibitively large number of 

computations ruling them out for practical 

implementation.  The idea of transferring the check 

node processing into the frequency domain and 

scaling down the decoding complexity was first 

proposed in [8] and followed up by [13]. This paper 

contains a simple description of the FTT-BP 

algorithm and shows how the Fast Hadamard 

Transforms can be used in check node processing.  

 

Factor graphs used to decode non binary LDPC codes 

require two additional blocks 1) permutation block; 

2) re-ordering block; compared to binary factor 

graphs. We can modify the binary factor as shown in 

Figure 1 to represent the iterative decoding of LDPC 

code. The factor graph is a bipartite graph consisting 

of set of variable nodes (circular blocks at the top) 

and check nodes (square blocks at the bottom). 

Inference over factor graph can accomplished by 

means of passing messages between check nodes and 

variable nodes alternatively. In non binary LDPC 

codes over )(qGF , the messages passed along the 

edges of the factor graph corresponds to q point 

discrete probability set rather than a single message. 

These probability distributions are exchanged 

iteratively in finding a valid code word. 
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Figure 1. Factor graph of non binary  

LDPC codes decoding 

 

The factor graph shown in Figure 1 connects variable 

nodes to check nodes through intermediate stages; 

permutation and re ordering. We can see from the 

factor graph that there are γ  number of permutation 

blocks connected to each variable node and they each 

correspond to non-zero entries found under 

corresponding columns in the parity check matrix H .  

The permuted likelihood values are then sent through 

a re ordering block before connecting them to the 

check nodes. The algorithm is initialized with the 

likelihood values L of the received codeword. The 

likelihood value nL  of codeword c  over 

)(qGF corresponds to the probabilities of n th 

received codeword symbol being equal to each non 

binary element in )(qGF . If we define the n th 

received symbol by ky  and the likelihood value of 

the n th symbol being equal to a  , )(qGFa∈ by 

( )acyp nn = , we can define the n th symbol 

likelihood values at the output . Each likelihood 

value nL is connected to γ number of non-zero 

entries in each column. The symbol likelihood values 

are used to initialize the messages sent from each 

variable node towards check nodes during the first 

run of the decoder. We can see that this is just a copy 

of the symbol likelihood values along each edge 

connected to the variable node.  If we use U and 
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U to denote the incoming and out going messages 

relative to the variable node respectively, we can 

denote the pdf message sent along the j th edge 

connected to the n th variable node by jnU . We can 

thus initialize the decoder by setting   

njn LU =    (4) 

   

It is quite convenient to reference the symbol 

likelihood values sent from variable nodes to the 

check nodes using the binary representation of the 

elements in )(qGF . This referencing system plays a 

pivotal role in the Fast Fourier transforming 

likelihood values as explained shortly. Each 

jnU contains q number of discrete probabilities, and 

effectively becomes a probability distribution.  The 

initialized symbol likelihood values are then sent 

from variable nodes to corresponding permutation 

blocks. It can be seen from the Figure 1 that 

γ number of permutations blocks are connected to 

each variable node, relating to each non-zero entry in 

the corresponding column. In the case of ( )ργ ,  

regular non binary code, there are ρ  number of non-

zero entries in each row. Therefore, if 

ρjjij hhh ,,,1 KK  are the non-zero entries in the 

j th row of the parity check matrix H , we can write 

the j th parity check equation as, 

∑
=

ρ

1i

ijich   (5) 

It is evident from the equation (5) that unlike in the 

case of binary LDPC, the parity check equations of 

non binary LDPC codes contain non-zero elements in 

its parity check equations. This implies that the 

probability distributions contained in the messages 

needs to be permuted accordingly, taking the non 

binary elements in the parity check equation into 

account. Due the structure of the Galois fields, the 

permutation block becomes a cyclic shift of the 

probabilities except for the probability of the 

received code word being equal to 0. We can see that 

the it requires i  number of cyclic shifts in the 

direction of ascending order of filed elements are 

needed to permute the likelihood values in the case 

that non-zero entry 
i

jih α= .  The permuted pdfs 

are the subjected to check node processing, 

progressing the belief values further.  The classical 

BP uses well known BCJR algorithm with all 

possible forward and back partial sums [5], [6] 

yielding a decoding complexity of ( )2qO .  

 

It can be seen from the trellis that this method yields 

a computational complexity dominated by ( )2qO  

ruling out the decoding over high order Galois fields. 

That this limitation can be conveniently overcome by 

transferring the check node processing in to 

frequency domain by using FFT and converting the 

convolutional node into a product node as shown in 

Figure 1. The FFT over Galois fields has a special 

structure that can be efficiently represented by a 

radix-2 butterfly diagram as shown in Figure 2. The 

Fourier transforms over finite sets, including Galois 

fields of )(qGF where 
bq 2= , can be decomposed 

in to set of 2
nd

 order Fourier transforms applied along 

each dimension of field [8], [13]. The fast Fourier 

transform over finite fields, groups is reduced in to a 

recursive set of sums and differences of the values 

changed by its bit locations in the reference. We also 

define the dimension of the field elements as the bit 

location under consideration; ranging from 1 to b . 
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Figure 2. Radix-2 butterfly of FFT over )8(GF  

 

The radix-2 butterfly shown in Figure 2 allows us to 

compute the sums and differences of the likelihood 

values recursively along each dimension with each 

recursion representing the application of 2nd order 

FFT, which is a sum and a difference, along a 

separate dimension. Further analysis confirms that 

the FFT over Galois field reduces in to Fast 

Hadamard Transform (FHT) which can be performed 

using Walsh-Hadamrd matrix of the order equal to 

the field order.  We can use the elemental Walsh-

Hadamard matrix 2H which also corresponds to the 

2
nd

 order FFT over Galois fields in (6) 










−
=

11

11

2

1
2H    (6) 

and apply the observation (7) repeatedly in order to 

construct Walsh-Hadamard matrix matching the field 

order qH .   










−
=

nn

nn

n
HH

HH

n
H

2

1
2   (7) 

This conjecture can be accommodated in our 

calculations by re-ordering the likelihood values 

projected )(qGF in the ascending order before the 
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Fast Hadamard Transformation step.  The re-ordered 

q point likelihood sets can then be transferred into 

frequency domain simply by multiplying the 

likelihood values by q order Walsh- Hadamard 

Matrix qH  as shown in equation (8). The Fast 

Hadamard Transform generates q number of discrete 

probability values. 

( ) q

T
HUUFW .==   (8) 

 

As described in Figure 1, the decoder consists of total 

M  number of check nodes which were simplified 

into simple product nodes using FHT. Every check 

node connects ρ  number of Fourier transformed 

q point probability sets using term-by-term product 

operation in frequency domain. The term-by-term 

product of two  q point pdfs can be defined by 

),,1(.),1( 21 qVqV KK     

( ))().(,),1().1( 2121 qVqVVV K=   (9) 

The M number of rows of H is represented by M 

number of product nodes in the decoder and the ρ  

number of non-zero entries in each row is represented 

by ρ number of edges connected to each of the 

product node. The belief propagation across 

horizontal plane can then be computed simply by 

multiplying term-by-term all the Fourier transformed 

probability values connected into a product node with 

each other, except with the message along the edge 

under consideration totalling up to ( )1−ρ  pdfs. If 

we use V and V to denote the incoming and out 

going pdfs relative to the variable node, we can 

denote the output of the i th edge connected to m th 

product node by 

∏
≠
=

=
ρ

ij
j

mjmi VV
1

   (10) 

The pdf messages sent from the check nodes to the 

variable nodes take the same path in the opposite 

way. Every operational block on its path towards the 

check nodes implies the inverse of operation it 

performed on its way towards the check node.  The 

pdf messages at the output of the check nodes are in 

the frequency domain and needs to be converted back 

to its dual. The FHT block in the opposite direction 

implies the inverse Fast Hadamard Transform applied 

to the q point pdf. We can observe that the inverse 

Fast Hadamard Transform is exactly the same as the 

Fast Hadamrd Transform and we can multiply each 

q point pdf set, again by the q order Walsh-

Hadamard matrix in order to obtain the inverse Fast 

Hadamard Transform as shown below. 

  

q

T
HVVIFHTU .)( ==   (11) 

The messages are then subjected to the inverse of the 

re-ordering, dispersing the likelihood values in to 

their original locations followed up by the inverse of 

the cyclic shift operation, exactly the same number of 

cyclic shifts of the likelihood values it was subjected 

now in the opposite direction. 

The likelihood values U are then processed at the 

variable nodes, propagating the belief values in the 

vertical plane. Variable node processing implies the 

term-by-term multiplication of ( )1−γ  likelihood 

values along the edges connected to variable node, 

except for the message along the edge under 

consideration. We can define the output of the j th 

edge connected to n th variable node by 

∏
≠
=

=
γ

ji
i

injn UU
1

   (12) 

Hard decision is then taken on the likelihood values 

at the variable nodes by determining the symbols 

from the non binary alphabet )(qGF as shown 

below  

∏
=

=
γ

ii

innn UL
qGF

c
)(

maxarg
ˆ   (13) 

The frequency domain implementation of the check 

node processing reduces the complexity to 

( )qqO 2log. in comparison with the complexity 

dominated by ( )2qO . It is interesting to note that 

this is exactly the same complexity reduction found 

in Cooley-Tukey FFT algorithm. The complexity 

reduction allows fast processing of vast amounts of 

data enabling decoding nonbinary LDPC codes 

defined over very large order Galois fields. Decoding 

over higher order fields facilitates near asymptotic 

performance, drawing closer to the channel capacity 

 

 

V. PERFORMANCE COMPARISON 

 

The optimum fast belief propagation decoding using 

Fourier transforms is considered with respect to 

different field orders. In order to make a fair 

comparison, the code words with respect to different 

finite fields are constructed to have the same amount 

of binary information. In Figure 3 the codes 

considered are )2(GF , 2040=N ), ( )4(GF , 

1016=N ), ( )16(GF , 504=N ), ( )64(GF , 

378=N ), ( )256(GF , 248=N ). All the codes 

are constructed having the same row weight 8=ρ  

and the same column weight 4=γ  leading to 

exactly the same code rates in all five cases 

21=R . These codes are simulated in Additive 

White Gaussian Noise (AWGN) Channel. Also 

represented in the Figure 3 is the Bit Error Rate 
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(BER) performance curve for the uncoded bits under 

the influence of the same channel conditions. It could 

be observed that there is indeed a performance gain 

in moving into higher order field reaching towards 

the  Shannon’s limit. 

 

VI. CONCLUSION 

 

In this paper we establish that working in a higher 

order Galois field, significantly improve the 

performance of the LDPC code with moderate code 

lengths. This can be quite convenient in 

implementation of LDPC codes as it yields 

reasonable performance even with relatively smaller 

frame sizes. The fast decoding algorithm based on 

fast Fourier transforms reduces the computational 

complexity of the belief propagation algorithm 

significantly and working in higher order Galois 

fields are made computationally feasible. It is 

demonstrated by simulation that there is a significant 

performance gain between the codes over )2(GF , 

)4(GF ,  )16(GF , )64(GF and )256(GF . It is 

evident from the simulation results that using very 

high order LDPC codes we could draw near the 

channel capacity realizing near-asymptotic 

performance levels.  
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Figure 3. Performance comparison, LDPC code, 

21=R , )2(GF , 2040=N ),  

( )4(GF , 1016=N ), ( )16(GF , 504=N ), 

( )64(GF , 378=N ), ( )256(GF , 248=N ). 
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