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An Architecture 
for Interactive Context-
Aware Applications

M
any current context-aware
applications suffer from three
usability problems: They make
inferences on the user’s behalf
without communicating the

assumptions on which those inferences are based;
they fail to provide feedback that would let users
evaluate why something did or didn’t work; and
they don’t give users control.

Although researchers are aware of such defi-
ciencies,1,2 we still have difficulty implementing

known design principles. In our
view, there are two main rea-
sons for this. First, there has
been some reluctance within the
community to employ visual-
ization for context-aware appli-
cations due to technical diffi-
culties, 1 despite visualization’s
important role in Mark Weiser’s
original conception of ubicomp

as “calm technology.”3 Second, we’re missing an
interaction model for context-aware application
design, such as Donald Norman’s Seven Stages
model4 for traditional HCI.

The main difference between traditional HCI
design and context-aware design is how we deal
with context. Hence, any interaction model for the
latter must address the question of what context is.

In our work, we pick up on recent ubicomp com-
munity trends, drawing from sociology and focus-
ing on interaction’s communicative aspects (see the
Related Work sidebar for comparisons to other
significant approaches).2

So, starting from the premise that interaction is
communication, we propose a new interaction
model for context-aware applications. We then
derive an architectural framework that developers
can use to implement our interaction model. The
main benefit of our architecture is that, by model-
ing context in the user interface, developers can rep-
resent the application’s inferences visually for users.

Research context
Our research into indoor location-aware appli-

cations motivated us to create a UI for context-
aware applications. In our lab, location-aware
applications support researchers in their daily
interaction with computing, communication, and
I/O facilities by adapting to changes in user and
object locations.

However, the user experience has remained
suboptimal because of the three usability prob-
lems we noted earlier. Our approach introduces
visual interaction using augmented reality (AR).
With AR, we can show users—who wear head-
mounted displays—visualizations anywhere in
space.5 Visualization of context-aware applica-

The interactive behavior of context-aware applications, unlike that 
of desktop applications, depends on the physical and logical context 
in which the interaction occurs. A new architecture derived from the
Model-View-Controller paradigm models such context in the frontend,
helping users better understand application behavior.
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tions is a challenge the research com-
munity is only beginning to explore. Our
prototype uses an AR interface (based
on a bulky headset that introduces its
own usability problems), but our archi-
tecture is independent of the visualiza-
tion technology. As a result, it would
work equally well with projector-based
visualization, PDAs, or displays embed-
ded in the environment.

Our location-aware applications use the
SPIRIT (Spatially Indexed Resource Identi-
fication and Tracking) backend.6 SPIRIT

maintains a world model based on sen-
sors’ real-world observations. For location
tracking, we use an indoor ultrasound
location system that can track Active Bats
(small tags). Each lab member is equipped
with an Active Bat that can also act as an
interaction device if its two small buttons
are used. SPIRIT evaluates spatial relation-
ships between objects and people in the
world model. Applications can subscribe
to be informed through events when cer-
tain relationships are fulfilled.

Our interaction model
Figure 1 shows our interaction model,

which includes the physical environment
(left) and the application (right). Users in-
teract with the application while per-
forming their daily tasks. The application
is sensitive to the user’s context and inter-
prets all interaction against the current
context. When a user changes context, the

application reacts by changing its frame of
reference for interpreting the user’s ac-
tions. Such context changes can occur
through implicit interaction, which is
interaction not directly targeted at the
application. For example, in a context-
aware communication application, expli-
cit interaction includes tasks such as set-
ting up the connection, sending media,
and so on, while implicit interaction con-
sists of moving to another room.

This interpretation of what context is
makes sense if you compare it with what
context is in everyday life. In a conversa-
tion, for example, context isn’t a piece of
information about a person or object, it’s
a frame of reference that people use to
interpret content. Similarly, in our case,
explicit interaction is the content, and the
context is maintained through implicit
interaction.

So, what of “object context”? It appears
we have only modeled user context. In our
interaction model real world objects don’t
have “context,” even though they have
physical properties. For example, does a
pair of computer loudspeakers sitting on
a desk have context? In our view, you can’t
talk about context without an interpreter.
So, the speakers don’t have context on
their own, but they can form part of the
context in interactions between the user
and, say, a follow-me music application.
If, with such an application enabled, the
user moved into the speakers’ vicinity,

both the user and application would see
the speakers as contextually relevant and
assume this understanding of each other.

In other words, we’re working with a
phenomenological view of context.7 Our
approach might seem alien, given the
ubicomp community’s prevailing posi-
tivist/engineering viewpoint, but as Paul
Dourish has successfully argued, the pos-
itivist view misinterprets the way people
use context in everyday life.7 Essentially,
the positivist view is concerned with rep-
resenting context, whereas the phenom-
enological view emphasizes that people
create and maintain context during inter-
action. And so, we believe that humans
perceive context as a property of inter-
action, rather than of objects or people.

This distinction is important because
communication between humans and
context-aware applications requires a
clear definition of context to be made
more intelligible. In particular, our aim is
to model context in the interface.

Architecture
Our architecture is based on the

Model-View-Controller paradigm.8 Fig-
ure 2 shows the MVC derivative we used
to build our interactive context-aware ap-
plications. We represent the application
domain using a set of models. Some of
these models represent physical objects,
while others represent abstract data struc-
tures that the application uses. Later, we
present an example application with
models for both physical objects (Active
Bats) and abstract data structures, such
as a list. We assume that models of phys-
ical objects can access the backend to
update their states when properties of the
corresponding physical objects change. In
our implementation, the views are visible
AR avatars of the entity mapped to the
model.5 MVC lets you represent a model
in multiple ways by attaching multiple
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views.8 Although we haven’t imple-
mented this into our prototype, this archi-
tectural aspect might be exploited to sup-
port multiple alternative visualization
technologies—such as AR goggles, pro-
jectors, and handheld position-sensitive
PDAs serving as “lenses”—and let users
quickly switch to the most convenient
representation.

The top of figure 2 shows a chain of
context components; the application will
use one of these components for each user
context it wants to react to. For location-
aware computing, the user’s location
determines the user’s context, but the con-
text evaluation function can account for
other environmental factors as well. 

Implicit and explicit event handling 
When context components register for

events from the backend, they receive
notifications about implicit and explicit
interaction events (a designer-specified
distinction). The backend then delivers
streams of these events. 

If a component receives an implicit
interaction event, it calls its evaluation
function, which then checks the current
environmental conditions against the con-
ditions that characterize the context it rep-
resents. Notably, this evaluation function
can account for the environment’s physi-
cal properties—that is, the properties tra-
ditionally called “context.” If the func-
tion returns false, the context represented
by this component is not the current one.
The component thus forwards the event
to the chain’s next context component.
This continues until one context evalu-
ates to true. The corresponding context
component then becomes active, activates
its controllers, and initiates an action to
deactivate all other context components.

This is because, at any given time, we
want the application to interpret our ex-
plicit interaction against exactly one
frame of reference (context). The dotted
lines in figure 2 show the references
through which the activation and de-
activation functions effect changes in the
views.

When an explicit interaction event en-
ters the chain, components forward the
event through the chain until it reaches the
active context component. The active con-
text component then forwards the event
down a level to its controllers. So, only
controllers attached to the active context
receive and interpret explicit interaction
events, because all deactivated context
components ignore and forward them.
Explicit interaction events change model
components. Such changes are instantly
reflected in the view, which updates when-
ever the model changes.

We write one controller per model for
each context modeled in the application.
These controllers encapsulate how the
model reacts to interaction in each con-
text. We then attach the controllers to the
corresponding context components. The
key is that each controller only “wakes
up” when its context becomes active.
Because we use many controllers, we can

separate context handling from interac-
tion handling—the controllers contain no
context evaluation code. A context can be
activated again if it receives an implicit
interaction event that makes its evaluate
function evaluate to true. (Even deacti-
vated context components monitor im-
plicit interaction events; the components
simply pass them on if they evaluate to
false.)

The result is context-aware interac-
tion modeled in architecture. Interac-
tion is always interpreted according to
its context.

What this architecture
seeks to enforce

Our architecture attempts to make the
communication between the user and ap-
plication more intelligible in several ways.

The designer’s model is communicated.
When modeling the world, application
designers inevitably use approximations
and assumptions such as, “if X is here,
he wants to do Y.” In previous work, we
explored how not communicating such
assumptions affected usability in a well-
known location-aware application.5

When we presented a visual image of the
actual model that the application de-
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signer used to build the application, the
users understood the application’s capa-
bilities and limitations to a degree they
themselves had often not expected.

So, how can an MVC architecture help
communicate the designer’s model? First,
it helps designers elicit the model they’re
using for the application by forcing them
to specify the application using model ob-
jects. Second, it helps them communicate
it by requiring that view objects remain
faithful representations of model objects
at all times. As we show later in our exam-
ple, the application components effec-
tively and elegantly communicate their
operation to the user as the application
reacts to the user’s movement and inter-
action. 

Context is not a piece of information, but
rather a frame of reference. In our archi-

tecture, we use context to interpret inter-
actions. Each time the context changes,
the framework switches the set of active
controllers, whose function is to interpret
user interaction. In other words, our archi-
tecture does not implement “if x, do y,”
but rather, “as long as x, interpret all inter-
actions taking place as relating to x.” This
is closer to our understanding of context
in real life.

The current context—and entry and
departure from it—is always visible. Vic-
toria Bellotti and Keith Edwards first
made this demand.9 In our framework,
we designed the controllers’ activation
and deactivation functions to change the
view when the context changes.

The system state is always visible and
instant feedback is always provided. We

represent all application entities as mod-
els. Because each model has a view, the
system state is always visible. More im-
portantly, the system instantly updates
the view as the system state changes.

An example of visual
interaction design 

Our design process consists of two
parts: creating an application domain
model and designing the visual interac-
tion. Here, we concentrate on the latter
because creating a domain model is part
of standard object-oriented design. 

Our example application is a loca-
tion-aware desktop teleporting applica-
tion. Using it, people can spontaneously
approach any computer in our lab, push
a single button on their Bats, and
thereby “teleport” their personal desk-
tops to the computer. Once the user
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P aul Dourish believes that applications should always under-

stand context as the work practices of humans.1 The dif-

ference between our interaction model and Dourish’s model is

that we’ve left the sociological domain and tried to apply his

context interpretation to human-computer communication. 

Victoria Bellotti and her colleagues proposed the idea of develop-

ing an interaction model that highlights interaction’s communica-

tive aspects.2 In designing our model, we use their comparison of

human-computer interaction with human-human interaction.

More recently, Albrecht Schmidt3 has advocated introducing de-

sign principles to application building through “implicit human-com-

puter interaction” (iHCI). Schmidt contrasts this with traditional HCI,

wherein all interaction is explicit. Although we use this distinction of

implicit and explicit interaction, our interaction model follows the

conversational metaphor more closely.

Microsoft’s EasyLiving project4 also aims to build interactive

context-aware applications. Although its overall aims are similar

to ours, we’re more concerned with understanding what context

means for humans and trying to implement this in systems. 

Dourish has also elaborated on the importance of communicat-

ing the designer’s model.5 He regards system design as a commu-

nication act between the designer and user that’s intelligible only

if there is a set of mutually agreed upon facts. For designers, “mak-

ing a system usable” includes communicating “relevant aspects of

the designer’s model” to the user.5

Finally, Roy Want and his colleagues were instrumental in for-

warding the context-aware computing concept.6,7
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presses the button, the location-aware
application running in the background
infers which computer the person is
going to use and connects it to a server
holding the user’s desktop. If users have
several desktops, all are potential tele-
port candidates. Finally, users can over-
ride this facility by turning the teleport-
ing service on or off. We reengineered
the teleport application to give it a visual
interface, using AR overlays in space
and on the Active Bats.

Generally, our location-aware appli-
cations take over Bats as interaction de-
vices. So, our aim was to design an inter-
face that clearly shows users how our
application interprets explicit (Bat) inter-
action. The application’s detailed work-
ings are as follows: Users press the bot-
tom button to enable teleporting. If users
move into a teleport region, they can use
the top button to first connect to the
server and then to scroll through their
desktops on the server. If they move out-
side of the teleport region, pressing the
top button will have no effect. If (at any
time) they press the bottom button, tele-
porting will be disabled and all subse-
quent top button presses has no effect,

regardless of whether users are inside or
outside the teleport region. Even this
small application presents a reasonable
design problem. To keep the user in-
formed, the interface must track and
show two different kinds of state transi-
tions in parallel: transitions in the
domain model occurring as an effect of
explicit interaction (top button pressed,
bottom button pressed) and changes of
context.

From the description, we see that the
application’s behavior is characterized
by whether

• teleporting is on or off, 
• the user is inside or outside a tele-

porting region, and 
• the nearby computer is connected to

the server.

Figure 3 shows how we specify the
interaction in controllers. We assume
that three models have been previously
identified: 

• the Bat model, which describes the
Bat; 

• the desktops model, which lists the

user’s desktops; and
• the teleport service model, which de-

scribes the teleport service state.

Because we’re dealing with two con-
texts (inside and outside a teleport
region), we had to design six controllers.
The three possible actions—top button
pressed, bottom button pressed, and con-
text changed—map to controller func-
tions topBatButtonPressed, bottomBatButtonPressed,
and activate because a context change is al-
ways accompanied by controller activa-
tion. We use the batMoved function to up-
date the Bat’s position for the AR overlay.
The system calls the functions in rows
1–3 when the corresponding explicit in-
teraction event from the backend reaches
the controller; it calls the functions activate
and deactivate whenever the context that
holds the particular controller is entered
or left.

Each of the six controllers operates on
one of three model-view pairs. Looking
at cell B1 we see that when the user is in
the teleport region and presses the top
button with teleporting enabled, the con-
troller initiates an action to connect the
next desktop. This happens by effecting
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Figure 3. Controller design. The columns (A–F) represent controllers and the rows (1–5) represent functions in those controllers
that the framework invokes in response to events.



a change in the desktops model; this even-
tually results in an update of the desktops
view. The desktops view consists of a label
for the button that controls the desktops
(“Desktop>>”) and a menu that lists the
user’s desktops.

From cell B4, we see that whenever the
user enters the teleport region and is con-
nected to a desktop, the system displays
the menu and label. However, if the user
has just entered the region and is not yet
connected, the menu is not displayed
(because the user has no desktops to
choose from). If teleporting is inactive, the
button isn’t functional, so the system dis-
plays neither the button nor the menu.
Figure 4 shows these maximized, minimi-
zed, and deactivated states. Finally, if the
user leaves the teleport region, the system
deactivates the view because teleporting
is no longer available (cell B5).

When the Bat moves, the Bat con-
troller updates the Bat model regardless
of whether it is inside or outside the tele-
port region (cells A3 and D3). In our sys-
tem, the Bat view is always a cuboid Bat
overlay indicating where the system
“sees” the Bat.

When a user presses the bottom button,
the teleport service model updates regard-
less of whether the button press occurred
inside or outside the teleport region (cells
C2 and F2), eventually changing the view.
The teleport service view displays a but-
ton label that shows whether the service
is on or off.

The perhaps complicated design of the
desktops view not only reflects the func-
tionality available to users at any point,
but can also be explained as follows:
When there’s a change of context, we
must inform users in what explicit inter-
action state they are entering the new con-
text. By looking at the interface, users can
deduce the current context and interac-
tion state.

Discussion
First and foremost, this is a frontend

architecture. It therefore complements
rather than competes with backend archi-
tectures that focus on the context acquisi-
tion and abstraction process, such as the
Context Toolkit10 or SPIRIT. Our architec-
ture aims to construct a UI layer between
users and the backend that communicates
the system’s inference process. We now
contrast our architecture with how devel-
opers previously built applications using
SPIRIT.

Architectural benefits
Before using our architecture, develop-

ers would build the teleport application in
a monolithic manner. It was a piece of ap-
plication logic that the backend would call
if it sensed a user action. Then, for each
possible case of action, the application
would check for all possible combinations
of conditions that could affect its response,
such as, for example, whether the user was
inside or outside a teleport region. This

was done using nested IF statements. One
problem is that this kind of cross-check-
ing exponentially increases control flow
complexity as the application is required
to account for additional conditions.

Our architecture succeeds in reducing
such condition-checking code by abstract-
ing context-tracking and event-handling
code common to all applications built
within this framework. For example, it re-
moves the need for the application devel-
oper to check what kind of event was re-
ceived. This step is now performed in a
“SPIRIT controller” superclass, resulting in
a virtual function call of the event’s han-
dler. Similarly, developers no longer have
to check for the current context for every
action. Rather, they simply write a con-
troller for each context and attach it to the
corresponding context component, which
ensures that the code piece runs only when
the corresponding context is active. Devel-
opers still need to test domain-model-
related state variables using IF statements,
but each controller tests only variables that
affect its model-view pair.

Our architecture’s real power emerges
when developers prototype UIs. To change
how the application responds to events,
developers need only edit corresponding
controllers, rather than find all affected IF
branches. We’ve essentially automated the
process of finding the correct branch when
an event arrives. So, what developers once
had to tediously program now occurs at
the superclass level; developers simply
implement appropriate virtual functions
to fit their individual applications. 

However, our architecture’s benefits
over the traditional implementation ex-
ceed mere refactoring. It’s comparable to
traditional UI architectures such as
MVC.8 As such, it lets developers use
object-oriented design to construct and
communicate domain models. Further-
more, it provides a set of abstractions—
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most notably the context component—to
simplify the process of communicating the
application’s workings to the user.

Using the architecture
Our architecture underlies a toolkit

we’ve used to build visually interactive
location-aware applications. The toolkit
itself requires system support,5 includ-
ing a ubicomp backend (such as SPIRIT),
interface components between the back-
end and the application that tag events
based on interaction type, and a render-
ing engine (which, in our system, is AR-
based).

To build an application, you first model
the domain using object-oriented analysis.
Then, you implement models for each do-
main object making use of the facilities
your ubicomp infrastructure provides you
with. For each identified model, you write
controllers and views. It might seem that
writing so many controllers is a lot of
work. But, as we showed in the monolithic
version comparison, the controllers con-
tain no more code than they’d need in the
monolithic version anyway. In our case, we
simply distribute that code among many
more alternately activated components. 

In developing this architecture, we
wanted to show users how the applica-
tion uses context. Existing toolkits for
context-aware applications can take
abstraction too far, architecturally sep-
arating the inference-managing compo-
nents from the application itself.9 Such
components then make inferences with-
out knowing how applications will use
those inferences. Similarly, the applica-
tions don’t know how the inferences
were arrived at and thus can’t commu-
nicate this to users. Our architecture suc-
cessfully keeps the context tracking
process within the application.

Further development
How could we further develop this ar-

chitecture? Our architecture can account
for physical information from various

sources when it evaluates the context.
However, we still must provide a context
component for each context-variable com-
bination to determine the contextual state.
This can exponentially increase context
components as the number of context
variables grows. To counter this, we might
be able to develop more complex—and
possibly hierarchical—context compo-
nents. However, the problem with intro-
ducing a hierarchical organization is that
the context that people create and main-
tain in daily interactions isn’t hierarchical.

Perhaps a greater limiting factor on
the number of possible context variables

is the number of dependencies users can
actually understand. Also, we’re not try-
ing to model all information that the sys-
tem can sense about the world (the back-
end can manage that). Our goal is to
model only the context relevant to a par-
ticular application’s interactions.

Another limit of our framework is that
it assumes only one user. This is actually a
limitation of our interaction model: we’ve
looked at conversation as a one-to-one
activity. We are planning to research how
context is established and maintained in
real-world multiparty conversations so we
can model it accordingly.

W
e have derived our frame-
work from an interaction
model that was inspired
by a particular sociologi-

cal view of what context means for peo-
ple in everyday life. So, your decision
about whether to use the architecture
must be partially based on how much of

this view you accept. We believe our
architecture is beneficial if you

• believe that context is a property of
interaction, rather than objects or 
people,7

• want your applications to model this
view, and

• want to visually convey to users how
the application is using context.

If you believe that context is synony-
mous with physical information, you’ll
have difficulty applying this architecture.
Applications such as electronic reminders

that trigger only when users enter par-
ticular locations are called “context-
aware” on this basis. To exploit our ar-
chitecture’s full potential, however, your
application must contain a large interac-
tion component and adapt its look and
feel to different contexts. After all, it’s an
architecture for interactive context-aware
applications.
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