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Abstract: We consider transmit antenna subset selection in spatial multiplexing systems.

In particular, we propose selection algorithms aiming to minimize the error rate when linear

detectors are used at the receiver. Previous work on antenna selection has considered

capacity and post-processing SNR selection criteria. However, in this work we consider

a geometrical interpretation of the decoding process which also permits us to develop a

suboptimal algorithm that yields a considerable complexity reduction with only a small

loss in performance.

Introduction: Wireless systems employing multiple antennas at the transmitter and at

the receiver (MIMO systems) are a solution to increase the capacity of the wireless channel

[1]. One major concern in the implementation of these systems is the high cost due to

the price of the RF chains (analog-digital converters, low noise amplifiers, downconverters,

etc.) attached to each antenna. A technique to reduce the cost of the MIMO system while

maintaining part of the high performance is the use of antenna selection. The idea behind

antenna selection is to employ a large number of inexpensive antenna elements and to use

only the best subset. Then, only a limited number of the more expensive RF chains is

necessary. The question that arises is how to select the best antenna subset among all the

available antennas. An intuitive approach is to select the antenna subset that maximizes

the mathematical expression of the mutual information between the transmitter and the

receiver (see [2] and references therein). Using this approach, in [3] it is shown that the

diversity obtained using antenna selection in spatial multiplexing systems is the same as the
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diversity achieved when the whole set of antennas is used. This result strongly motivates

the use of antenna subset selection.

On the other hand, it is known that capacity results only give a bound on the perfor-

mance of a system having infinite complexity. In practical systems, designers are interested

in the error rate performance which will depend on the specific receiver. The antenna sub-

set maximizing channel capacity does not necessarily minimize the error rate in a practical

receiver and different optimization criteria should be tailored to the specific detection algo-

rithm. In this letter, we will consider spatial multiplexing systems with linear receivers. In

[4], selection criteria have been proposed which attempt to minimize the error rate when

linear receivers are used. In that work, the signal-to-noise ratio prior to the slicing oper-

ation is considered as the objective function to be optimized. In this letter, we propose

a selection metric based upon the geometrical interpretation of the decoding process in a

linear receiver.

System Description: Consider the system shown in Figure 1 with nT transmit and

nR receive RF chains. We assume that the receiver is equipped with equal number of

antennas and RF chains whereas the transmitter is equipped with NT antenna elements.

Thus, the selection algorithm consists of selecting the best nT transmit antennas out of

the
(

NT

nT

)

different combinations according to certain optimization criterion. The wireless

channel is assumed to be quasi-static and flat fading and can be represented by a (nR×NT )

matrix H whose element hij represents the complex gain of the channel between the j-

th transmit antenna and the i-th receive antenna. Denote each of the transmit antenna

subsets as ωi = {Ant1, ..., AntnT
} (e.g., ω = {2, 3, 4} indicates the selection of the second,

third and fourth transmit antennas). Define the set of all P =
(

NT

nT

)

antenna subsets as
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Ω = {ω1, ..., ωP} and denote Hω as the (nR×nT ) submatrix corresponding to the columns

of H selected by ω. We assume that the channel state information is available at the

receiver but not at the transmitter. Thus, the selection algorithms are implemented at the

receiver and the antennas indices to be used are fedback to the transmitter assuming that

there exists a low rate link between the receiver and the transmitter.

In spatial multiplexing systems, different data streams are transmitted from different

antennas. Assume that s = [s1, ..., snT
]T is the transmitted symbol vector with E{s∗i si} = 1.

Then, the received signal when the transmit antenna subset selected is ω can be expressed

as y =
√

ρ

nT

Hωs+n, where y = [y1, ..., ynR
] is the received signal vector, n is the received

noise vector distributed as Nc(0
¯
, InR

) and ρ is the total signal-to-noise ratio independent

of the number of transmit antennas. In linear receivers, a spatial linear equalizer Gω is

applied to recover the transmitted symbol vector. The equalizer can be optimized ac-

cording to the ZF criterion, Gω =
√

nT

ρ
H†

ω, where † denotes the pseudo-inverse, or the

MMSE criterion, Gω =
√

ρ

nT

HH
ω (

ρ

nT

HωH
H
ω + InR

)−1. Since at high signal-to-noise ratio

with antenna selection the MMSE solution tends to the ZF solution, we will focus on the

ZF solution. As has been recently shown in [5], the decision regions in linear receivers

consist of nT -dimensional complex parallelepipeds formed by the column vectors of Hω.

Therefore, from a geometrical perspective, we propose a simple transmit antenna selection

criterion consisting of selecting the columns of H such that the decision region minimizes

the error rate. At a high signal-to-noise ratio, the error rate performance will be limited

by the minimum error vector that makes a symbol fall out of the decision region. Denote

hw,1, ...,hω,nT
as the nT columns of H selected by ω. Then, considering that the symbol is

located in the center of the nT -dimensional parallelepiped, the minimum length of a vector
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to make an error is

dω = min
1≤i≤nT

1

2
‖π⊥(hω,i)‖

2, (1)

where π⊥(hω,i) denotes the projection of hω,i on span({hω,1, ...,hω,nT
}\hω,i)

⊥ and (·)⊥

denotes the orthogonal complement. Then, the selection criterion becomes

ω∗ = argmax
ω∈Ω

{

min
1≤i≤nT

1

2
‖π⊥(hω,i)‖

2

}

. (2)

a) Low Complexity Algorithms: The selection process in (2) could be highly complex when

the number of antenna combinations is large. One solution to reduce the complexity consists

of employing sub-optimal incremental or decremental greedy algorithms similar to that

proposed in [3] for the capacity case. In the decremental approach, we start considering

the whole NT columns and at every step, we remove the column that has the minimum

projection onto the orthogonal complement of the span of the remaining NT − 1 columns.

The process is repeated with the remaining columns until only nT columns are left. The

inconvenience of this approach is that the system requires not only nR ≥ nT but nR ≥ NT

which is not always true. In the incremental approach, we start by selecting one column that

has the maximum 2-norm. Then, at every step of the algorithm, we add the column with the

largest projection onto the orthogonal complement of the subspace spanned by the columns

already selected. This approach greatly reduces the complexity in the situation where nT is

small in comparison to NT . A very low complexity implementation of incremental selection

is given in Algorithm 1. In the algorithm, µp,j denotes the Gram-Schmidt coefficient µp,j =

ĥ
H

p hj and Θi represents the subset of antennas selected up to the i-th step.

Simulations Results: In Figure 2 we show the performance of the antenna selection

algorithms in a system with nR = 4 receive antennas and NT = 8 antennas where only

4



Algorithm 1 Reduced complexity incremental selection

INPUT: all column vectors h1, ...,hNT
in H

k1 = argmaxi≤NT
{hH

i hi};

ĥ1 = hk1
/‖hki

‖; Θ1 = {k1};

FOR i = 2 : nT

FOR EVERY j ∈ {{1, ..., NT}\Θi−1}

bj = hj −
∑i−1

p=1 µp,jĥp;

END FOR

ki = argmaxj{b
H
j bj};

ĥi = bki
/‖bki

‖; Θi = {Θi−1} ∪ {ki};

END FOR

OUTPUT: selected antenna indices: ΘnT

nT = 4 are actually used. We average the results over several channel realizations. In the

same figure we also show the error rate of a system employing a selection criterion that

maximizes the minimum eigenmode [4] and also the error rate of a system without antenna

selection. It is seen that the geometrical approach obtains the best performance although

its complexity is very high (although similar to the complexity of the eigenmode criterion).

On the other hand, the much less complex incremental algorithm only shows a small loss

of performance.
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Figure Captions

Figure 1: MIMO system with antenna selection at the transmitter.

Figure 2: Selection criteria comparison (nT = 4, nR = 4 and NT = 8).
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