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Abstract

The performance of multiple-input multiple-output (MIMO)
systems can be improved by employing a larger number of
antennas than actually used and selecting the optimal subset
based on the channel state information. Existing antenna
selection algorithms assume perfect channel knowledge and
optimize criteria such as Shannon capacity or various bounds
on error rate. This paper examines MIMO antenna selection
algorithms when the set of possible solutions is large and
only a noisy estimate of the channel is available. We propose
discrete stochastic approximation algorithms to adaptively
select a better antenna subset using criteria such as maximum
channel capacity, minimum error rate, etc. We also consider
scenarios of time-varying channels for which the antenna se-
lection algorithms can track the time-varying optimal antenna
configuration. We present numerical examples to show the
convergence of these algorithms and the excellent tracking
capabilities.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems can offer
significant capacity gains over traditional single-input single-
output (SISO) systems [7]. However, multiple antennas require
multiple RF chains which consist of amplifiers, analog to
digital converters, mixers, etc., that are typically very expen-
sive. An approach for reducing the cost while maintaining the
high potential data rate of a MIMO system is to employ a
reduced number of RF chains at the receiver (or transmitter)
and attempt to optimally allocate each chain to one of a
larger number of receive (transmit) antennas which are usually
cheaper elements. In this way, only the best set of antennas
is used, while the remaining antennas are not employed, thus
reducing the number of required RF chains.

Recently, several algorithms have been developed for se-
lecting the optimal antenna subset given a channel realization.
In [6] it is proposed to select the subset of transmit or receive
antennas based on the Shannon capacity criterion. Antenna
selection algorithms that minimize the bit error rate (BER) of
linear receivers in spatial multiplexing systems are presented
in [3]. In [2], antenna selection algorithms are proposed to
minimize the symbol error rate when orthogonal space-time
block coding is used in MIMO systems.

The main problem in the algorithms appeared in the liter-
ature is that they assume perfect channel knowledge to find
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the optimal antenna configuration. This paper presents discrete
stochastic approximation algorithms for selecting the optimal
antenna subset based on advanced discrete stochastic opti-
mization techniques found in the recent operations research
literature [1]. These techniques optimize an objective function
(e.g., maximum capacity or minimum error rate) over a set of
feasible parameters (e.g., antenna subsets to be used) when
the objective function cannot be evaluated analytically but
can only be estimated. The methods are in the same spirit
as traditional adaptive filtering algorithms such as the least
mean-squares (LMS) algorithm in which at each iteration, the
algorithm makes a move towards a better solution. But in this
case, the parameters to be optimized take discrete values (i.e.,
antenna indices to be used). The most important property of
the proposed algorithms is their self-learning capability - most
of the computational effort is spent at the global or a local
optimizer of the objective function.

When the MIMO channel is time-varying, the optimal
antenna subset is no longer fixed. To cope with this situation
we make use of a discrete stochastic approximation algorithm
with a fixed step size which acts as a forgetting factor which
enables it to track the time-varying optimal antenna subset.

The remainder of this paper is organized as follows. In
Section 2, the MIMO system model with antenna selection
is presented. We also formulate the antenna selection problem
as a discrete stochastic optimization problem. In Section 3, a
general discrete stochastic optimization algorithm is presented
and its convergence properties are summarized. In Section
4, several antenna selection criteria are presented, including
maximum capacity, minimum bound on error rate and mini-
mum error rate. In Section 5, antenna selection in time-varying
channels is addressed. Section 6 contains the conclusions.

II. PROBLEM FORMULATION

A. MIMO System with Antenna Selection

Consider a MIMO system as shown in Figure 1 with nT
transmit and nR receive RF chains and suppose that there are
NR ≥ nR receive antennas. Without loss of generality, in this
paper we assume that antenna selection is implemented only
at the receiver. The channel is represented by an (NR × nT )
matrix H whose element hij represents the complex gain
of the channel between the jth transmit antenna and the ith
receive antenna. We assume a flat fading channel remaining
constant over several bursts. The subset of nR ≤ NR receive
antennas to be employed is determined by the selection algo-
rithm operating at the receiver which selects the optimal subset
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Fig. 1. Schematic representation of a MIMO system with antenna selection.

ω of all possible
(

NR

nR

)

subsets of nR receive antennas. Denote
H[ω] as the (nR × nT ) channel submatrix corresponding to
the receive antenna subset ω, i.e., rows of H corresponding
to the selected antennas. The corresponding received signal is
then

y =

√

ρ

nT
H[ω]s+ n (1)

where s = [s1, s2, ..., snT
]T is the (nT × 1) transmitted

signal vector, y = [y1, y2, ..., ynR
]T is the (nR × 1) received

signal vector, n is the (nR × 1) received noise vector, and ρ
is the total signal-to-noise ratio independent of the number
of transmit antennas. The entries of n are i.i.d. circularly
symmetric complex Gaussian variables with unit variance, i.e.,
ni ∼ Nc(0, 1).

For the problems that we are looking at in this paper, the
receiver is required to know the channel. One way to perform
channel estimation at the receiver is to use a training preamble
[5]. Suppose T ≥ nT MIMO training symbols s(1), s(2),
..., s(T ) are used to probe the channel. The received signals
corresponding to these training symbols are

y(i) =

√

ρ

nT
H[ω]s(i) + n(i), i = 1, 2, ..., T. (2)

Denote Y = [y(1),y(2), ...,y(T )], S = [s(1), s(2), ..., s(T )]
and N = [n(1),n(2), ...,n(T )]. Then (2) can be written as

Y =

√

ρ

nT
H[ω]S +N (3)

and the maximum likelihood estimate of the channel matrix
H[ω] is given by

Ĥ[ω] =

√

nT
ρ
Y SH(SSH)−1. (4)

According to [5], the optimal training symbol sequence S that
minimizes the channel estimation error should be orthogonal,
i.e., SSH = T · InT

. In an uncorrelated MIMO channel, the
channel estimates Ĥi,j [ω] computed using (4) with orthog-
onal training symbols are statistically independent Gaussian
variables with [5]

Ĥi,j [ω] ∼ Nc

(

Hi,j [ω],
ρ

TnT

)

. (5)

B. Discrete Optimization Problem

We now formulate the antenna selection problem as a
discrete stochastic optimization problem. Denote each of the
antenna subsets as ω = {Ant(1), Ant(2), ..., Ant(nR)} (e.g.,
selecting the first, second and sixth antennas is equivalent to
ω = {1, 2, 6}). Denote the set of all P =

(

NR

nR

)

possible
antenna subsets as Ω = {ω1, ω2, ..., ωP }. Then, the receiver
selects one of the antenna subsets in Ω to optimize a certain
objective function Φ(H [ω]) according to some specific crite-
rion, e.g., maximum capacity between the transmitter and the
receiver or minimum error rate. Thus, the discrete optimization
problem becomes

ω∗ = argmax
ω∈Ω

Φ(H [ω]), (6)

where we use ω∗ to denote the global maximizer of the
objective function. In practice, however, the exact value of
the channel H [ω] is not available. Instead, we typically have
a noisy estimate Ĥ[ω] of the channel.

Suppose that at time n the receiver obtains an estimate
of the channel, Ĥ [n, ω], and computes a noisy estimate of
the objective function Φ(H [ω]) denoted as φ[n, ω]. Given a
sequence of i.i.d. random variables {φ[n, ω], n = 1, 2, ...}, if
each φ[n, ω] is an unbiased estimate of the objective function
Φ(H [ω]), then (6) can be reformulated as the following
discrete stochastic optimization problem

ω∗ = argmax
ω∈Ω

Φ(H [ω]) = argmax
ω∈Ω

E {φ[n, ω]} . (7)

Note that existing works on antenna selection assume perfect
channel knowledge and therefore treat deterministic combina-
torial optimization problems. On the other hand, we assume
that only noisy estimates of the channel are available and
hence the corresponding antenna selection problem becomes
a discrete stochastic optimization problem. In what follows
we first discuss a general discrete stochastic approximation
method to solve the discrete stochastic optimization problem in
(7) and then we treat different forms of the objective function
under different criteria, e.g., maximum capacity or minimum
error rate.

III. DISCRETE STOCHASTIC APPROXIMATION ALGORITHM

There are several methods that can be used to solve the
discrete stochastic optimization problem in (7). A way to
approach the discrete stochastic optimization problem is to use
iterative algorithms that resemble a stochastic approximation
algorithm in the sense that they generate a sequence of
estimates of the solution where each new estimate is obtained
from the previous one by taking a small step in a good
direction toward the global optimizer.

We present an stochastic approximation algorithm based on
[1]. We use the P =

(

NR

nR

)

unit vectors as labels for the P
possible antenna subsets, i.e., ξ = {e1, e2, ..., eP }, where ei
denotes the (P × 1) vector with a one in the ith position
and zeros elsewhere. At each iteration, the algorithm updates

the (P × 1) probability vector π[n] =
[

π[n, 1], ..., π[n, P ]
]T

representing the state occupation probabilities with elements



π[n, i] ∈ [0, 1] and
∑

i π[n, i] = 1. Let ω(n) be the antenna
subset chosen at the n-th iteration. For notational simplicity, it
is convenient to map the sequence of antenna subsets {ω(n)}
to the sequence {D[n]} ∈ ξ of unit vectors where D[n] = ei
if ω(n) = ωi, i = 1, ..., P .
Algorithm 1 Discrete stochastic approximation algorithm for
antenna selection

2 Initialization
n⇐ 0
select initial antenna subset ω(0) ∈ Ω
and set π[0, ω(0)] = 1
set π[0, ω] = 0 for all ω 6= ω(0)

for n = 0, 1, ... do
2 Sampling and evaluation

given ω(n) at time n, obtain φ[n, ω(n)]
choose another ω̃(n) ∈ Ω\ω(n) uniformly
obtain an independent observation
φ[n, ω̃(n)]

2 Acceptance
if φ[n, ω̃(n)] > φ[n, ω(n)] then
set ω(n+1) = ω̃(n)

else
ω(n+1) = ω(n)

end if
2 Adaptive filter for updating state
occupation probabilities

π[n+ 1] = π[n] + µ[n+ 1](D[n+ 1]− π[n])
with the step size µ[n] = 1/n

2 Computing the maximum
if π[n+ 1, ω(n+1)] > π[n+ 1, ω̂(n)] then
ω̂(n+1) = ω(n+1)

else
set ω̂(n+1) = ω̂(n)

end if
end for

We assume that in a realistic communications scenario, each
iteration of the above algorithm occurs within a data frame
where the training symbols are used to obtain the channel
estimates Ĥ[n, ω(n)] and hence the noisy estimate of the cost
φ[n, ω(n)]. At the end of each iteration, antenna subset ω̂(n)

will be selected for the rest of the data frame.
In the Sampling and Evaluation step in Algorithm

1, the candidate antenna subset ω̃(n) is chosen uniformly
from Ω\ω(n). There are several variations for selecting a
candidate antenna subset ω̃(n). One possibility is to select a
new antenna subset by replacing only one antenna in ω(n).
Define the distance between two antenna subsets as the number
of different antennas between them. Hence, we can select
ω̃(n) ∈ Ω\ω(n) such that d(ω̃(n), ω(n)) = 1. More generally
we can select a new subset with distance D from the current
antenna subset, where 1 ≤ D ≤ min(nR, NR − nR).

To obtain the independent observations in the Sampling
and Evaluation step in Algorithm 1 we proceed as fol-
lows. At time n, we collect training symbols to estimate
the channel and compute φ[n, ω]. Now, collect other training

symbols from another antenna subset and compute φ[n, ω̃].
Therefore, φ[n, ω] and φ[n, ω̃] are independent observations.
Although the independence of the samples is a condition
for the analysis of the convergence of the algorithm, it is
observed through simulations that the algorithm also converges
under correlated observations of the objective function, i.e.,
we can use the same channel estimate to compute several
observations of the objective function under different antenna
configurations.

The sequence {ω(n)} generated by Algorithm 1 is a Markov
chain on the state space Ω which is not expected to converge
and may visit each element in Ω infinitely often. Instead, under
certain conditions, the sequence {ω̂(n)} converges almost
surely to the global maximizer ω∗. Therefore, ω̂(n) denotes
the estimate at time n of the optimal antenna subset ω∗.

In the Adaptive filter for updating state
occupation probabilities step in Algorithm 1,
π[n] =

[

π[n, 1], π[n, 2], ..., π[n, P ]
]

denotes the empirical
state occupation probability at time n of the Markov chain
{ω(n)}. If we denote W (n)[ω] for each ω ∈ Ω as a counter
of the number of times the Markov chain has visited an-
tenna subset ω(n) by time n, we can observe that π[n] =
1
n

[

W (n)[ω1], ..., W (n)[ωP ]
]T

. Therefore, the algorithm
chooses the antenna subset which has been visited most often
by the Markov chain {ω(n)} so far.

As shown in [1], a sufficient condition to converge to the
global maximizer of the objective function Φ(H [ω]) is that
the estimator of the objective function used in Algorithm 1 at
two different antenna subsets are unbiased, i.e.,

φ[n, ω] = Φ(H [w]) + v[ω, n], (8)

where {v[ω, n], ω ∈ Ω} are i.i.d. and each v[ω, n], ω ∈ Ω, has
a symmetric continuous probability density function with zero
mean.

IV. ANTENNA SELECTION UNDER DIFFERENT CRITERIA

In this section we use Algorithm 1 to optimize different
objective functions Φ(H [ω]).

A. Maximum MIMO Capacity

Assuming that the channel matrix H[ω] is known at the
receiver, but not at the transmitter, the instantaneous capacity
of the MIMO channel is given by [7]

C[ω] = log det

(

InT
+

ρ

nT
HH [ω]H [ω]

)

bit/s/Hz. (9)

One criterion for selecting the antennas is to maximize the
above instantaneous capacity [6], i.e., choosing the objective
function Φ(H [ω]) = C[ω]. We now present an implementation
of Algorithm 1 and prove that it converges to the global
maximum of the capacity (9).

In the Sampling and Evaluation step of Algorithm
1 choose

φ[n, ω] = det

(

InT
+

ρ

nT
Ĥ

H

1 [n, ω]Ĥ2[n, ω]

)

(10)



where the channel estimates Ĥ1[n, ω] and Ĥ2[n, ω] are ob-
tained from independent training blocks. We consider the case
in which Ĥ1[n, ω] and Ĥ2[n, ω] satisfy (5).
Theorem 1: With φ[n, ω] computed according to (10), the
sequence {ω̂(n)} generated by Algorithm 1 converges to the
antenna subset ω∗ corresponding to the global maximizer of
the MIMO capacity in (9).
Proof: Since the logarithm is a monotonically increasing func-
tion, the antenna subset ω∗ maximizing log det(·) is identical
to that maximizing det(·). To prove global convergence, we
only need to show that φ[n, ω] of (10) satisfies (8). For
convenience define

M [ω] = InT
+

ρ

nT
HH [ω]H [ω]

M̂ [n, ω] = InT
+

ρ

nT
Ĥ

H

1 [n, ω]Ĥ2[n, ω] (11)

and denote the elements of M̂ [n, ω] as m̂i,j .
Consider (11). Since Ĥ1[n, ω] and Ĥ2[n, ω] are statistically

independent samples, clearly M̂ [n, ω] is an unbiased estimator
of M [ω]. Moreover, due to (5), clearly

M̂ [n, ω] =M [ω] + T [n, ω] (12)

where T [n, ω] is a random variable with zero mean symmetric
density function.

Now consider det(M̂ [n, ω]). From [4, p.8]

det(M̂ [n, ω]) =
∑

σ

sign(σ)

nT
∏

i=1

m̂i,σ(i) (13)

where the sum runs over all nT ! permutations σ of the
nT items {1, ..., nT } and sign(σ) is +1 or −1. Omit-
ting the sign, each term in the summation is of the form
m̂1,σ(1)m̂2,σ(2)...m̂nT ,σ(nT ). Thus, each term in the summa-
tion is multilinear and involves the product of elements of
M̂ [n, ω] from different rows and columns.

Next, due to the independence assumption in (5), it follows
that for the matrix M̂ [n, ω], the elements m̂i,j and m̂p,q are in-
dependent for i 6= p and j 6= q, i.e., elements of M̂ [n, ω] from
distinct rows and columns are statistically independent. Hence
m̂1,σ(1), m̂1,σ(1), ..., m̂nT ,σ(nT ) are statistically independent.
This independence together with the multilinear property and
(12) implies that det(M̂ [n, ω]) is an unbiased sample of
det(M [ω]) and satisfies

det(M̂ [n, ω]) = det(M [ω]) + v[n, ω] (14)

where v[n, ω] is a zero mean random variable with symmetric
density function. We have demonstrated that (8) holds and
therefore, Algorithm 1 converges to ω∗. 2

To reduce the training symbols needed to estimate the
channel in Algorithm 1, in numerical studies we used a single
sample of the channel Ĥ [n, ω] and chose

φ[n, ω] = log det

(

InT
+

ρ

nT
Ĥ[n, ω]HĤ[n, ω]

)

. (15)

Although this sample is biased, numerical results presented
below show that Algorithm 1 still converges to the global
optimum and uses only one channel estimate per iteration.
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Simulation Results: We consider the performance of Al-
gorithm 1 which selects the antenna subset maximizing the
channel capacity using (15) as an estimate of the objective
function. We consider nT = 2, NR = 8 and nR = 4 antennas.
We use the ML channel estimate in (4) with T = 4 orthogonal
training symbols. We set ρ = 10dB. The (NR×nT ) channel H
is randomly generated and fixed during the whole simulation.
In Figure 2 we consider 100 iterations per execution and we
average the capacities of the antenna subset selected at all
iterations over 3000 channel realizations. In the same figure
we show the capacities of the best antenna subset and the worst
antenna subset, as well as the median capacity among the
(

8
4

)

= 70 antenna configurations, found by exhaustive search.
For comparison, we also show the performance of the original
unbiased implementation in (10). It is seen that the unbiased
implementation has slightly better convergence behavior than
the biased one although it needs two channel estimates per
iteration. From both figures, it is seen that the algorithm
adaptively moves to the best antenna subset. We observe that
although the algorithm takes some time to converge to the
optimal antenna subset, it moves very fast to an antenna subset
inducing high channel capacity.

B. Minimum Bounds on Error Rate

Consider the system in Figure 1 where the transmitted data
s is multiplexed into the nT transmit antennas. The input-
output relationship is expressed in (1) where in this case, the
transmitted symbols si belong to a finite constellation A of
size |A|. The receive antennas see the superposition of all
transmitted signals. The task of the receiver is to recover the
transmitted data s. The ML detection rule is given by

ŝ = arg min
s∈AnT

∥

∥

∥

∥

y −

√

ρ

nT
H[ω]s

∥

∥

∥

∥

2

. (16)

At high signal-to-noise ratio, we can upper bound the proba-
bility of error of the ML detector using the union bound [3]
which is a function of the squared minimum distance d2min,r



of the received constellation given by [3]

d2min,r[ω] = min
si,sj∈A

nT

si 6=sj

‖H[ω] (si − sj)‖
2
. (17)

Therefore, minimizing the union bound on error probability is
equivalent to maximizing d2min,r.
Theorem 2: With

φ[n, ω] = min
si,sj∈A

nT

si 6=sj

[

Ĥ1[n, ω] (si − sj)
]H[

Ĥ2[n, ω] (si − sj)
]

(18)
the sequence {ω̂(n)} generated by Algorithm 1 converges to
the global maximizer ω∗ of (17).

Note that the computation of d2min,r[ω] is performed
over |A|nT (|A|nT − 1) possibilities for each antenna sub-
set which can be prohibitive for large |A| or nT . Let
λmin[ω] be the smallest singular value of H [ω] and let the
minimum squared distance of the transmit constellation be
d2min,t = min

si,sj∈A
nT

‖(si − sj)‖
2. Then, it is shown in [3] that

d2min,r[ω] ≥ λ2min[ω]d
2
min,t . Therefore, a selection criterion

can be simplified to select the antenna subset ω ∈ Ω whose
associated channel matrix H[ω] has the largest minimum
singular value. In Algorithm 1, based on an estimate of the
channel at time n we let φ[n, ω] = λ̂min[n, ω].

For the simpler linear receivers, different objective functions
have been developed in [3] which bound the error rate and their
estimates can be used in Algorithm 1.

Another case of interest is when the orthogonal space-time
block codes are employed. The post processing signal-to-noise
ratio of the data stream is given by [2]

SNR[ω] =
ρ

nT
trace

(

HH [ω]H [ω]
)

. (19)

Theorem 3: The sequence {ω̂(n)} generated by Algorithm 1
with φ[n, ω] = trace

[

Ĥ
H

1 [n, ω]Ĥ
H

2 [n, ω]
]

converges to the
global maximizer of (19).

C. Minimum Error Rate

The antenna subset chosen by the different criteria based
on bounds do not necessarily choose the antenna subset
minimizing the bit error rate (BER). In this section, we propose
an antenna selection algorithm that directly minimizes the
symbol or bit error rate of the system under any type of
receivers.

In the proposed method, a noisy estimate of the simulated
error rate is used as the cost function in the stochastic
approximation algorithm instead of a noisy estimate of a
bound. The method proceeds as follows. Assume for example
that the ML decoding algorithm in (16) is used. At time
n, estimate the channel Ĥ[n, ω] with antenna subset ω. At
the receiver, generate m fake random symbol vectors Sf =
[sf (1), ..., sf (m)] with sf,k(i) ∈ A and perform a simulation
of the form

Y f =

√

ρ

nT
Ĥ [n, ω]Sf +N (20)
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Fig. 3. Single run of the algorithm: BER of the of the chosen antenna subset
versus iteration number n employing an ML receiver.

where the (nR×m) matrix N contains i.i.d. Nc(0, 1) samples.
Perform the ML detection on (20) to obtain

Ŝf = arg min
S∈AnT×m

∥

∥

∥

∥

Y f −

√

ρ

nT
Ĥ[n, ω]S

∥

∥

∥

∥

2

(21)

and estimate the bit error rate B̂ER[n, ω] by comparing Ŝf
and Sf . In this way, at time n, an estimate of the real
BER[ω] has been obtained. Therefore, in Algorithm 1 we use
φ[n, ω] = −B̂ER[n, ω] as an observation of the cost function.
The number of fake symbol vectors required to obtain a good
estimate of the BER depends on the signal-to-noise ratio ρ
of the channel. For low signal-to-noise ratio, only short fake
sequences are needed.

It has been observed that the antenna subset minimizing
the error rate at high signal-to-noise ratio usually corresponds
to the same antenna subset minimizing the error rate at low
signal-to-noise ratio. Therefore, to reduce the complexity of
this method, we may perform the fake simulation with a
lower signal-to-noise ratio and therefore, less fake symbols
are needed to obtain a good estimate of the error rate.

Note that the fake symbols sf are not actually sent through
the channel. They are merely generated at the receiver to
estimate the BER. Moreover, it is important to point that
this method uses an estimate of the BER and a closed-form
BER expression is not needed, which makes it appealing for
other receivers for which even a tight bound is difficult to
find. Obviously, the same method can be used in antenna
selection for MIMO systems employing various space-time
coding schemes. Moreover, it is straightforward to modify the
algorithm to minimize the symbol error rate or frame error
rate as well.

Simulation Results: To show the performance of this
method we consider an ML receiver. We use QPSK symbols
and we consider NR = 6, nR = 2 and nT = 2. The (NR×nT )
channel H is randomly generated and fixed during the whole
simulation. We set ρ = 9dB and we use T = 6 orthogonal
training symbols to estimate the channel. Before starting the



algorithm, long simulations are performed assuming perfect
channel knowledge over all antenna configurations to find the
BER associated with each antenna subset. We run n = 60
iterations of the algorithm with m = 500 fake symbols per
iteration. Figure 3 shows the BER of the antenna selected
by the algorithm comparing it with the median, the best and
the worst BER. It is seen that the algorithm converges to the
optimal antenna subset. Moreover, it is observed that antenna
selection at the receiver can improve the BER by more than
two orders of magnitude with respect to the median BER.

V. ANTENNA SELECTION IN TIME-VARYING CHANNELS

Now we consider nonstationary environments for which the
optimum antenna subset takes on a time-varying form, ω∗[n] ∈
Ω, since the MIMO channel is time-varying. Consequently, the
MIMO antenna selection algorithms should be able to track
the best antenna subset if the variation of the channel is slow
for tracking to be feasible.

In the static channel environment discussed in the previous
section, in order for the method to converge, it was necessary
for the method to become progressively more and more
conservative as the number of iterations grew. Consequently,
a decreasing step size, µ[n] = 1/n, was used, in order to
avoid moving away from a promising point unless there was a
strong evidence that the move will result in an improvement.
In the time-varying case, we require a step size that permits
moving away from a state as the optimal antenna subset
changes. Therefore, to track the optimal antenna subset, we
replace the Adaptive filter for updating state
occupation probabilities step in Algorithm 1 by

π[n+ 1] = π[n] + µ(D[n+ 1]− π[n]) (22)

where 0 < µ ≤ 1. A fixed step size µ in (22) introduces an
exponential forgetting factor of the past occupation probabil-
ities and allows to track slowly time-varying optimal antenna
subset ω∗[n].

It has been observed that time-varying channels modify the
optimal antenna subset over the time although most of the an-
tennas in the optimal antenna subset remain the same. Hence,
in time-varying channels, we can modify the Sampling
and Evaluation step in Algorithm 1 to select a candidate
solution ω̃(n) uniformly from Θ\ω(n) where Θ is defined as
the set of antenna subsets ω̃(n) ∈ Ω such that d(ω̃(n), ω(n)) =
D, where we choose D < min(nR, NR − nR).

Simulation Results: We demonstrate the tracking perfor-
mance of this version of the algorithm under the maximum
capacity criterion in time-varying channels. We assume that
each channel gain hi,j between a transmit and receive antenna
remains constant over τ frame intervals (we assume that each
frame interval corresponds to one iteration of the algorithm)
and follows a first order AR dynamics over τ written as

hi,j(t) = αhi,j(t− 1) + βυi,j(t) (23)

where α and β are the fixed parameters of the model related
through β = (1 − α2)1/2 and υi,j ∼ Nc(0, 1). In the
simulations we set α = 0.9, τ = 500 and the constant step
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Fig. 4. Single run of the algorithm: the capacities of the chosen antenna
subsets versus iteration number n.

size µ = 0.002. We consider NR = 12, nR = 6 and nT = 2.
We set ρ = 10dB and we use the ML channel estimate with
T = 6 orthogonal training symbols. It has also been observed
that in most cases d(ω∗[n], ω∗[n−τ ]) ≤ 2 and therefore we set
D = 2. The tracking performance of the algorithm is shown
in Figure 4. It is seen that the algorithm closely tracks the best
antenna subset.

VI. CONCLUSIONS

We have developed MIMO antenna selection algorithms
based on various performance criteria in situations where only
noisy estimates of the channels are available. The proposed
techniques are based on discrete stochastic approximation
algorithms, which generate a sequence of antenna subsets
where each new subset is obtained from the previous one by
taking a small step in a good direction towards the global
optimizer. One salient feature of the proposed approach is that
no closed-form expression for the objective function is needed
and only an estimate of it is sufficient. We have also developed
antenna selection algorithms for time-varying scenarios where
the optimal antenna subset is slowly varying. Simulation
results have demonstrated the excellent performance of these
new MIMO antenna selection algorithms.
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