
Towards automatically configurable multimedia
applications

Hani Naguib, George Coulouris
Laboratory for Communications Engineering

Cambridge University

Trumpington Street, Cambridge CB2 1PZ, UK

{han21,gfc22}@cam.ac.uk

ABSTRACT
We describe and illustrate an approach to the automatic
configuration of component-based multimedia applications. The
approach is based on the deployment of a run-time application
model that mirrors the active application components, enabling
changes to the configuration to be applied and evaluated in the
model before they are deployed. The model employs a composite
component structure, enabling complexity to be concealed except
when detail is required. Constraints and QoS specifications are
embedded in the model.

1. INTRODUCTION
Most multimedia programming frameworks have adopted a

component-based approach to application construction. In this
approach applications are viewed as sets of interconnected
multimedia components. These components being software
abstractions of multimedia devices such as cameras, video
displays and hardware/software codecs. They generally have a
multimedia interface through which multimedia data enters/leaves
them, and may also have a separate control interface that allows
them to be configured and controlled. Diagram 1 depicts an
electronic lecture constructed as a collection of such components.

A/V
Net Con.

A/V
Net Con.

A/V
Net Con. Other

components

Camera

Mic.

Display

Display

Speaker

Other
components

Audio
Mixer

Lecturer

Participant 1

New Participant 2

[Figure 1- An Electronic Lecture]

This component based approach has a number of attractive
features:– the components can be made to directly reflect the
structure and connectivity of existing (analogue) multimedia
applications and applications can be constructed using largely
'off-the-shelf' components. But the approach does not, by itself,
guarantee easy application development and maintenance.

In this paper we focus on the configurability of component-
based multimedia applications; how networks of components can
be setup to meet application requirements and modified in
response to changes in the application's context. Section 2 details
the problem we are looking at and defines a number of
requirements. Section 3 outlines our proposed approach to
meeting some of these requirements and illustrates this with an
example. We conclude with a brief description of our
achievements and further research we intend to undertake in the
near future.

2. Configuration requirements
Even relatively small applications such as the one illustrated

in Figure 1 are often composed of many components with streams
of multimedia data flowing between them. The QoS and type
characteristics of the streams can have complex and interrelated
interactions. All of these characteristics have to be specified in the
course of constructing or reconfiguring an application. In most
cases this task falls on a person who takes the role of application
manager, and who must devise ad-hoc techniques, which are
often application-specific and laborious.

In fact there are situations where it becomes almost
impossible for the application manager to deal with these
problems unless she can access and comprehend low-level system
attributes and the intricacies of the components in the application.
For example, in our electronic lecture application (Figure 1); the
audio/video encoding used by the A/V Network Connector may
depend on the network and CPUs loads at the various
participants. Choosing an encoding scheme requires the manager
to reason about system resources and be aware of the resource
requirement characteristics of the various encodings that are
available, as well as any user defined requirements.

Composite components (components that hierarchically
encapsulate complexes of sub-components) can go some way
towards reducing this complexity, since they can act as black
boxes hiding the complexity of closely related components, such
as the A/V Network Connector which, might include various
components capable of numerous encodings and transmission
schemes. But there is also a need to provide some automatic
support for the maintenance of the relevant constraints when
application configurations have to be changed. Below we list the
most pressing requirements:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

� Hiding as much of the complexity and intricacies of
(re)configurations as possible from both application
programmers and users.

� A systematic and standard way to specify the relevant
characteristics of the application that allows for the system to
reason about them and perform the relevant actions needed to
enforce them.

3. A model-based approach
We have suggested in the preceding paragraphs that high-

level requirements should be explicitly represented and respected
when applications are modified. How is this to be achieved?
High-level representations and management of constraints do not
sit well with the requirements of multimedia processing
components. These are generally carefully-tailored for optimum
execution speeds, often as a part of the embedded system found in
cameras, displays, etc. There appears to be a need to separate the
representation of those parts of the application that can be used
for reasoning about quality of service and other constraints from
the components that process media data.

In this paper we describe the approach taken in
QoSDREAM, an object-oriented framework for the development
context-aware multimedia applications that we are developing [1].
A key feature of our approach to tackling the problems outlined
above is to construct multimedia applications in terms of two
separate structured collections of objects which we call the
“model layer” and the “active layer”. The model layer contains the
information that describes both the structure of the application
and its QoS characteristics (which include the requirements
previously mentioned). The active layer on the other hand
contains the code used when the application is active. In other
words it is the part of the application that actually produces,
processes and consumes the multimedia data. This separation is
not directly visible to application programmers or managers, and
therefore does not add any unnecessary complexity to the
application development cycle.

In QoSDREAM programmers build or modify multimedia
applications by creating and interconnecting model components.
Before the active components are created and started the model
must pass through an integrity test (which checks that they have
been correctly interconnected) and an admission test (which
configures the various stream attributes, taking into account
application characteristics and system resources). If these tests are
successful then an application configuration is found which does
not break any of the application’s constraints and for which
enough system resources can be allocated. A schedule for
updating the application’s active layer to reflect the new
configuration is calculated and the changes take effect.

Integrity checks. Application integrity is modeled by sets of
predicates attached to model components. Predicates range from
simple checks on atomic components – such as ensuring that
output ports are only ever connected to input ports – to complex
consistency tests on high-level composite components – the
electronic lecture application should maintain full connectivity
between participants and the lecturer as well as enforcing a floor-
control policy. The predicates are evaluated in a leaf-to-root order,
and all must be true for the application’s configuration to be
considered valid. The bottom-up ordering allows a composite
component further up the tree to declare the configuration invalid
when it fails to meet a condition unknown to the sub-components.

Admission Test. Each admission test utilizes the
application’s QoS model. This model reflects the QoS
characteristics of the application and includes the following
information:
� Resource requirements of the components in the application.

� Functional constraints imposed by the components in the
application.

� User defined constraints that reflecting the requirements of
the user.

� A user-configurable benefit function which describes the
characteristics of the application that the application user finds

The functional constraints are expressed as numerical
relations between the various attributes of the streams that a
component processes. For example a camera may have a
functional constraint that limits the range of frame rates it is able
to provide. This might be expressed as 0 <= VideoOut.rate <= 30.
The resource requirements are also expressed by similar numerical
relations, for example the camera's resource requirement is
expressed as a function of the frame-rate and size of the video it is
to capture. The value for the resource requirements is currently
obtained by direct measurements and can be refined dynamically.
User defined constraints are similar to functional constraints
except that they are imposed by the application user and are not
inherent in the components in the application. An example of such
a constraint may be to impose a lower bound on the video’s frame
rate. The benefit function is a weighted function which expresses
the relative importance of the various stream attributes over
resource costs.

The reason for expressing the QoS characteristics of
applications as numerical relations is that it provides a standard
approach to this specification and allows the system to
automatically reason about and perform admission tests. We
currently use techniques borrowed from operations research used
in optimization problems, coupled with some of our own
techniques, such as restricting the acceptable values for stream
attributes based on existing standards to simplify this model in
order to obtain feasible solutions and thus obtain values for the
stream attributes, giving us an acceptable application
configurations.

Scheduling Active Layer Updates. The actions needed to
complete a reconfiguration can be quite time-consuming,
especially if new components must be deployed and activated
(this may involve setting up hardware devices as well as
considerable amount of remote invocation). However, in many
reconfigurations there is a requirement that the transition between
the old and new configuration takes place either at an absolute
real time or within some interval of someone “pushing the button”
– both are difficult to achieve if there is an indeterminate amount
of setup activity to perform before the switch can take place. We
generate and conform to a configuration schedule to overcome
this problem. A description of how this schedule is calculated is
beyond the scope of this paper, please refer to [3] for a detailed
description.

To ensure the atomicity of (re)configurations, which ensures
that applications are always kept in a consistent state, all of the
above tests are performed within a form of transaction that we call
multimedia transactions [2]. If for any reason the test are not
successful in finding an adequate configuration the model can be
rolled-back to its initial state.

4. Example
To demonstrate how the reconfiguration process is achieved

we will look at the introduction of a new participant in our
electronic lecture example. Due to limitations on the size of this
paper only an overview is given. For more detailed information
please refer to [3].

For the application developer, adding a new participant into
the lecture requires only the invocation of a single method
(Lecture.AddParticipant(host)). This method initiates a
multimedia transaction, creates a new participant object and
connects the new participant to all other existing participants and
the lecturer.

The creation of required components is automatically made
by methods within participant. For example invoking the
connectTo method in the Participant object causes the creation of
the audio/video components needed to support a new participant.

Most of the required information needed to perform the
integrity and QoS tests needed during (re)configurations is
already present at this stage. The interconnectivity of components
is visible by the interconnections performed by the composite
components (remember that composite components know how to
interconnect their top-level sub-components).

The QoS characteristics of individual components are also
known (since this information is part of the QoS Model). The only
missing parts are user-specific QoS requirements, system resource
availability and an overall cost/benefit function for the
application.

System resources are made available through Resource
Managers. Resource Managers are components responsible for
monitoring and allocating system resources. There is one resource
manager per system resource. Shared resources such as network
bandwidth is generally controlled by sets of co-operating resource
managers. It is important to note that if guarantees on system
resource availability are to be given to applications then the
underlying operating system needs to provide adequate real-time
support. For example the ability to reserve CPU cycles to specific
threads or applications and to schedule its usage in a manner
appropriate to multimedia applications (i.e. deadline based
scheduling of multimedia threads).

The user's QoS requirements are specified through methods
exported by components. For example
Display.setFrameRateRange(lowest,optimum). Components are in
charge of translating these requirements into the appropriate
mathematical relations used during the QoS tests.

The overall configuration quality measure is also made
available to users through exported component methods. These

are usually made visible through GUI controls such as sliders,
giving the application user the ability to express the weighted
importance to be given to various application quality measures.
For example expressing the relative importance of the audio
versus the video parts of a transmission. In the lecture example
more weight will probably be given to the audio stream. This
might be reversed in the case of a transmission of a sporting
event. Components that export such interfaces then convert the
user's preferences into weights used in the benefit function.
Application programmers can also make this option available
through pre-set quality measure templates, in much the same way
existing audio streaming applications allow users to specify their
bandwidth availability, which dictates the quality of the stream
they receive.

To illustrate how the mathematical model is used to find
appropriate application configurations we will look at a very
simple application, where a single video stream is being
transmitted. The model for the lecture example is to complex to be
properly discussed in this short paper.

[Figure 2 - Example Application]

In this example (Figure 2), we vary only the frame rate, and
assume that we want to maximize the frame-rate arriving at
Display (benefit function = max f5). We model the MPEG
encoder and decoder's CPU resource requirements using values
obtained by direct measurements, in such a way that we aim to
drop no more than 10% of any type of frame. In a complete model
all resource are taken into account and differing drop-rates are
allowed for I, B and P frames.

Table 1 shows the resource requirements of the components
found in this example.

During admission test the resource availability is also found
by asking the appropriate resource managers. Table 2 shows these
values (for this example) as well as the inequalities that must be
added to the model in order to ensure that the application can
obtain its' required resources.

Variable Filter components play an important part within the
procedure of finding acceptable configurations for the application.
They can modify the value of stream attributes (in this case the
frame-rate, by dropping frames). This de-couples the values of
downstream stream attributes from those upstream, allowing for
greater flexibility. For example if this video were being sent to
more than one destination, Variable Filter would allow for the two
end points to have different properties. In the case of the lecture

Participant Lecture::AddParticipant(String host) {
trans.begin();
newParticipant = new Participant(host);
for (Enumeration e=existingParticipants.elements();

e.hasMoreElements();) {
nextPar = (Participant) e.nextElement();
newParticipant.connectTo(nextParticipant);

}
newParticipant.connectTo(lecturer);
existingParticipants.addElement(newParticipant);
trans.commit();
return newParticipant;

}

Component Constraint CPU Requirements
(micro secs/sec)

Camera f1<=30 200*f1
MpegEncoder f1=f2 25000*f1

NetSource f2=f3 1700*f2
NetSink f3=f2 100*f3

MpegDecoder f3=f4 4000*f3
Var.Filter f4>=f5 10*f4
Display f5>=10 2000*f5

Table 1- Model of component's QoS characteristics.

example, Participants could each specify differing qualities for the
streams they receive.

To illustrate this we modify the example by introducing a
new sink for the video stream, this is depicted in figure 3.

[Figure 3 - Modified Example]

The QoS characteristics of the new components are shown in
table 3. Table 4 shows the CPU availability and new inequalities
found at host 3.

If we assume that the model for this example was constructed
due to a reconfiguration of the initial example, then we can use
existing techniques that allow for solving a model from an
existing model. Since reconfigurations usually leave much of the
application untouched this approach can in many instances
decrease the time required to solve models. Table 5 shows the
time taken to solve the relations for a number of sample large
applications, both with and without the reuse of the previous state
of the model.

It is important to notice that most of the work of configuring
the application has been done automatically. The application
programmer needed to connect a relatively small number of
components (they are only aware of the top-level composite
components), and specify any user requirements along with a
benefit function and any integrity constraints he/she may wish to
impose. The integrity checks ensure that components are
connected in a consistent manner. The admission test configures
the application, finding suitable values for all stream attributes.

5. Conclusion - Further work
Although this paper is brief we hope we have conveyed the

requirements for middleware support of configurable multimedia
applications and our approach to tackling them. The model/active
layered representation of applications allows great flexibility in
the type of tests that can perform without significantly increasing
the complexity to application programmers. The modeling of the
QoS characteristics of applications as mathematical relations
allows the framework to reason about the application and to
automatically perform many of the tasks that would otherwise fall
to application programmers and users. The usage of composite
components which export methods that allow the programmer to
express her requirements provides a suitable location for
translation of high-level user requirements into the more detailed
model required, as well as acting as black-boxes, hiding the
application's inner structural details.

One important aspect of (re)configuration of multimedia
applications that has not been touched in this paper is that of
application context. Our research from which the ideas discussed
in this paper is taken has been investigating this, in particular the
incorporation of location information into a distributed
multimedia environment. Please refer to [1] and our web site
(http://www-lce.eng.cam.ac.uk/qosdream) for a more
comprehensive description of this research as well as the material
presented in this paper.

Acknowledgements
The QoSDREAM project is funded by the UK EPSRC under

its Multimedia and Network Applications research programme.
Heather Liddell, Tim Kindberg and Scott Mitchell also made
substantial contributions to the development of the approach
described in this paper:.

References

[1] Scott Mitchell, Hani Naguib, George Coulouris and Tim
Kindberg, "A QoS Support Framework for Dynamically
Reconfigurable Multimedia Applications". In Lea Kutvonen,
Hartmut König and Martti Tienari (eds), Distributed
Applications and Interoperable Systems II, pp 17-30. Kluwer
Academic Publishers, Boston, 1999. Also in Proc. DAIS 99.

[2] R.S. Mitchell, "Dynamic Configuration of Distributed
Multimedia Components". Ph.D. Thesis, University of
London, August 2000. http://www-
lce.eng.cam.ac.uk/qosdream/publications/

[3] Hani Naguib, Tim Kindberg, Scott Mitchell, and George
Coulouris. "Modeling QoS Characteristics of Multimedia
Applications." Proc. RTSS 98, the 13th IEEE Real-Time
Systems Symposium, Madrid, Spain, December 1998

Resource CPU Availability
(micro secs/sec)

New Inequalities

CPU1 650,000 200f1+25000f1+1700f2<=650000
CPU2 700,000 100f3+4000f3+10f4+2000f5

<=700000
Table 2- Inequalities constraining resource usage

Component Constraints CPU requirement
(micro secs/sec)

NetSink2 f6=f2 100f6
MpegDec2. f6=f7 4000*f6
VarFilter2 f7>=f8 10*f7
Display2 f8=15 2000*f8

Table 3- New QoS characteristics

Resource CPU Availab.
(micro secs/sec)

New inequalities

CPU3 780,000 100f6+4000f6+10f7
+2000f8<=780000

Table 4- New Inequalities constraining resource usage.

#Relations to
resolve

Time to solve Time to solve
(reusing model)

Speedup

220 0.2 0.02 10
1860 2 0.18 11.1
5100 11 0.7 15

Table 5- Speedup from reuse of models.

