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Abstract—
The Walfisch model predicts the average path loss from a conceptualised

model of the propagation environment in which propagation is assumed to
take place over rows of buildings of equal height and spacing. The prop-
agation loss is then separated into that resulting from free space wave-
front spreading, multiple forward-diffraction past the rows of buildings and
diffraction over the final rooftop down to the receiver.

In this paper we use numerical simulations to examine the effect of ran-
dom building height variations on the multiple diffraction loss component of
the model. In particular, our results show that the average multiple diffrac-
tion loss component is increased by any building height variations. A simple
equation, which agrees to within 1 dB of the simulation results, and that re-
lates building height variations, wavelength and average building separation
to the increase in average multiple diffraction loss, is presented.

I. INTRODUCTION

The Walfisch-Bertoni [1] model is used widely for predicting the
average path loss for mobile systems in urban areas. The model
assumes that the street grid in a typical city organises buildings
into rows that are nearly parallel and that an idealised represen-
tation for the urban environment would therefore be as shown in
Figure 1, where the precise heights and spacings of the buildings
have been ignored and the profile is characterised by just two
parameters: the mean building spacing � , and the mean build-
ing height ��� . The transmitting antenna is positioned at height�

above rooftop level and the receiver antenna is positioned at
distance 	
��� relative to rooftop height. With this simple repre-
sentation, Walfisch et al. explicates the average path loss from
the elevated transmitter to the receiver as a sum of free space
wavefront spreading, multiple forward-diffraction past the rows
of buildings and diffraction over the final rooftop down to the
receiver.
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Fig. 1. Walfisch-Bertoni model

In decibels, the average excess loss ������� (i.e. the loss above
that of free space) predicted by the Walfisch-Bertoni model can
therefore be written as the summation of two independent terms:
the multiple diffraction loss as the field propagates past the rows

of buildings ����� , and the diffraction loss from the last rooftop-
to-receiver ������� :

���������������! "� ����� (1)

The diffraction loss from the last rooftop-to-receiver is usually
approximated by a Geometric Theory of Diffraction (GTD) solu-
tion for diffraction over an absorbing half-screen [1]. For Wire-
less Local Loop (WLL) systems, in which the receiver antenna
is positioned at heights approaching or above average rooftop
level, then other approximations based upon the height gain of
ITU or the Okumura-Hata models offer better accuracy [2]. In-
deed, when the receive antenna is positioned at average rooftop
level, this latter term may be disregarded alltogether and any ex-
cess loss results only from the multiple diffraction loss compo-
nent.

In order to evaluate the multiple diffraction loss component,
all buildings are modelled as absorbing half-screens and the mul-
tiple diffraction loss component can be evaluated in a number of
ways. The original analysis of Walfisch et al. [1] assumes the
transmitter to receiver distance to be sufficiently large enough
to approximate the spherical wave radiation originating from the
elevated transmitter antenna as a localised place wave with angle

of incidence
� �$#&%('*)*+�,.-/ )�0�132 �5476

, where
6

is the hori-

zontal distance separating the transmitter and receiver antennas
and 98 6

is the horizontal distance of the receiver antenna
from the last half-screen. The field in the aperture of adjacent
half-screens can then be numerically evaluated by a simplified
form of the Fresnel-Kirchoff integral. Walfisch et al. examined
the amplitude of the settled field for a large number of simula-
tion geometries and was able to show that a good approximation
for the multiple diffraction loss component was:

��:��� 2 	
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where H I F B L N is the value of the settled field, given by

HJIKF BML=NP�Q;SR TVU
B DXW YL Z <[R <[\^]_BML`]a<bR c (3)

and B L �9d �fe � 4(g .
Maciel et al. [3] have since used a polynomial fit to the nu-

merical results which has an improved accuracy of <bRhU dB and is
valid over the extended range of <bR <b\i]jB L ].\ . The polynomial
expression is:



H I F B L NP� T[R U=<V;7B L 	 TbR TV; � B eL  "<[R ���V;MB��L Z <bR <b\i]jB L ]Q\
(4)

Other authors have since derived analytic solutions for the
amplitude of the multiply-diffracted rooftop field [4] [5]. The
derivation of these analytic solutions use a physical optics ap-
proximation of the field at rooftop height (either the Vogler or
Fresnel-Kirchhoff integrals) and the resulting multi-dimensional
integral is evaluated by a general method proposed by Boersma
[6].

The Walfisch-Bertoni propagation model is widely used and
has been verified with measurements by independent studies in
Europe [7], [8], the USA [1] and Australasia [9]. The European
Cooperation in the Field of Scientific and Technical Research
(COST) program for GSM systems has also incorporated part of
the model into the COST231 model [10], [11], [12].

The error between the average path loss predicted by the
model and that observed in practice will be smallest when the
propagation environment conforms closely with the models as-
sumptions (i.e. those urban environments exhibiting minimal
variation in the height and separation of buildings). In partic-
ular, any building height variations can be expected to cause a
significant error in the model predictions and this has been theo-
retically investigated by Chung et al. [2], Chrysanthou et al. [13]
and Saunders et al. [14].

The study by Chrysanthou et al. [13] also used the plane wave
multiple edge technique of Walfisch et al. . The buildings (mod-
elled as absorbing screens) were assigned heights that were uni-
formly distributed between � ���	�C	�
� 4 ; and � �����  �
�� 4 ; , where
� � � � is the average building height and 
 � is the maximum
height deviation, which ranged from \ to � metres. The field
immediately above each screen is calculated from a modified
form of the Fresnel-Kirchoff integral. The field at street level
is then calculated by including the rooftop-to-receiver loss. For
a limited number of configurations of average building heights
and incidence angles, the statistics of the street level field were
calculated.

As compared to the settled field solution, which applies for
buildings with uniform height equal to �A� � � , the average signal
strength at street level was found to be reduced by approximately	�<[R cGT�
�� dB and was almost independent of �A� ��� . This is an
important result and suggests that the Walfisch-Bertoni model
is likely to underestimate the average path loss values in those
areas which have large deviations of building heights from the
mean.

In the study by Saunders et al. [14], the excess loss is cal-
culated directly at street level from a Monte-Carlo evaluation
of the Vogler integral. The radiation emitted by the transmitter
is approximated as a plane wave and only the last five build-
ings in the path are modelled. The building heights are drawn
from a normal distribution with a standard deviation of 1 m. The
building spacing is constant and set to 40 m. Only one angle of
incidence is examined. At 900 MHz, the effect of the random
building heights is found to increase the average path loss by 0.8
dB, thereby confirming the results of [13]. This also suggests
that the mean difference is independent of the actual distribution
of building heights, as would be expected from the central limit
theorem.

Chung et al. [2] also used the plane wave multiple edge tech-
nique of Walfisch et al. to evaluate the field strength over a
range of receiver antenna heights (both above and below av-
erage rooftop height). Building were modelled as attenuating
phase or absorbing screens and the effect of ground reflections
was considered. Only a single distribution of building heights
was evaluated: that of a uniform distribution extending over the
range of 6–14 metres (roughly corresponding to buildings with
2–4 storeys) and at a screen spacing of � 4=g � U=< . For absorbing
screens the average of the multiple diffraction loss component
was found to increase by approximately TbR � dB. Moreover, the
increase was observed to be relatively independent of the valueBML .

In this study we investigate the dependence on the average of
the multiple diffraction loss component, �������(� , with building
height variance in further detail. We consider a much larger
number of different system configurations of building height
variance, mean building separation, and wavelength than pre-
vious studies. We assume that propagation takes place over� equally spaced buildings which are modelled as absorb-
ing screens (Figure 2). The height of the screens, denoted� + Z � e Z RXR R Z ��� )*+ , are randomly distributed with mean � � � � and
variance ���

e
. The height of the � th screen is constrained to the

average building height � � �9� ��� � .PSfrag replacements
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Fig. 2. Evaluating the multiple diffraction loss component with random screen
heights

Using these simplifications, a cylindrical wave simulation
technique is used to determine values for the multiple diffrac-
tion loss component � � ��� � , and hence the range dependence of
the average path loss characteristic. For each system configura-
tion, the evaluations were performed over 100 screens and from
the analysis of the simulation results, an approximating expres-
sion for the average of the multiple diffraction loss component,
which incorporates the building height variability, is presented.

In the next section we describe the simulation technique and
in Section III we present the simulation results.

II. CYLINDRICAL WAVE SIMULATION METHOD

The simulation technique used is similar to the technique used
by Piazzi [15] and is based upon repeated numerical evaluation
of the Fresnel-Kirchhoff integral and the transmitter is modelled
as a radiating line source. The technique is general enough to
calculate the field amplitude, and hence the corresponding path
loss value, at any height above or below the half-screen and uses
aperture interpolation to minimise numerical roundoff errors

The geometry for the cylindrical wave simulation is shown
in Figure 3. A series of � absorbing half-screens are equally
separated by the distance � (corresponding to the mean build-



PSfrag replacements

transmitter

receiver

antenna

��
� � ��� ������

�	�



�

�� � � �

�

6
Fig. 3. Geometry for Fresnel-Kirchhoff evaluation of cylindrical wave diffrac-

tion by a series of absorbing half-screens.

ing spacing). For the purposes of this simulation the  -axis is
assume to lie co-incident with the average screen height, the � -
axis is through the plane of the � � < screen and the � -axis is
directed perpendicularly into the page. The top of the � th screen
has F  Z �SN co-ordinates of F � � Z ���*	 � � � � N , where � � is the height
of the � th screen.

A uniform magnetic line source parallel to the � axis is located
at the position of the transmit antenna (the point � + ), with coor-
dinates F < Z � N . The radiated cylindrical wave has a � component
only, and for ����� \ the field in the aperture of the ( � � \ ) half-
screen is

� D F �SN 2 ����� � 4�� ��� where � �9d � e  F �`	 � N e .
The field on the F �  \CN half-screen at the points � � � 
 �"! + ,where � is an integer, is obtained from the field on the � th half-

screen by a numerical evaluation of the Fresnel-Kirchhoff inte-
gral [15]:

#�$�%&��' (")*$+%,�.-0/1) $325476.8�9�: ;<=?>A@CBED � 4&F D ��GIH 9.J �LK
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NO?PRQ =TS # $ 'VUW) $*X ) $ -ZY P+Q = %,�[ 2 4"6.\I]Z^L_ `ba �dc # $ '�UW) $ -ZY PRQ = 2 4"6.\I] ^L_ `feX gh O?PRQ =*i S # $ '�UW) $jX ) $ -ZY P+Q = %,�[ 2 4"6.\ BEk ` 4 k `ba � H c # $ 'VUl) $ -ZY P+Q = e
[ S 2 476I\ BEk `ba � 4 k ` % ]Z^L_ `ba � H c 2 4"6I\.] ^L_ ` e3m

(5)

where 
 � is the numerical step size in the aperture of the � th
half-screen, � � is the height of the � th screen, n po denotes the
floor of  and the functions � L�q � , rCL�q � ,

6 � and s L7q � are given
by:

� L�q �.� d F ��
 �"! + 	ut 
 � N e  j� erXL7q � � � � 4(6 �_ j� 4 � L7q �;3� d g � L7q �6 �.� d F � �GN e  F � 	vt 
 � N es L7q � � 6 ��	 6 � ! +  w� L7q � 	u� L7q � ! +
(6)

This implementation uses two different step sizes 
 � and

 �"! + on the � th and F �  �\MN th half-screens respectively.

(5) is susceptible to round-off errors in some instances. This
is through the s L�q � term, which appears in the denominator of
(5), and can depend on a small difference. This source of error
can be avoided by ensuring that the minimum of the phase of the
aperture field, which occurs at �0x�� �"yL! -�"! + , lies at one end of an
integration step. This can be guaranteed by setting the values of

 � and 
 ��! + according to:


� � �
F �  �\MN�z � (7)


�"! + � 
� �  \� (8)

where z � is an integer. For propagation over � screens, one
possible solution that satisfies these conditions is 
 �9� - �L ,� � \ Z ; Z RXR R Z � , where � is an integer. This implies that 
 +
should be chosen to be smaller than

g�4 � in order to restrict the
step size on the � th screen to a value less than

g
. If propagation

takes place over a large number of screens this quickly becomes
computationally intensive. To avoid this complexity the follow-
ing method was used. At the beginning of each iteration of (5),
the field in the aperture of the � th screen is re-sampled at spac-
ings t 
� , where 
�� is calculated according to (7) and with z �
chosen appropriately to ensure that 
 � ] g�4 c . The re-sampling
process was implemented using cubic spline interpolation. At
each iteration the value of 
 �"! + is then obtained from (8). This
procedure reduces the number of simulation points to an accept-
able size while avoiding the conditions that lead to the generation
of unacceptably large roundoff errors.

III. SIMULATION RESULTS

Screen heights were assigned random values drawn from a
uniform distribution defined over the range � ��� � 	 
�� 4 ; to� � � �  
 � 4 ; . A more exact analysis would use the actual distri-
bution of building heights measured from a real city. However, it
can be argued that for a given variance of building heights, and
for propagation over a large number of buildings, the statistics
of the path loss should be nearly independent of the distribution
function chosen for the buildings [13]. Consequently, a uniform
distribution was used for simplicity.

Table I lists the configuration parameters for each of the sys-
tems that was simulated. Transmitter heights ranged from 10 m
to 40 m and the screen spacing from U(< g to \C<=<V< g . For each con-
figuration, screen height variations of 
 �`� < Z \ Z T Z U Z � and 9 m
were simulated. The simulations were performed over � �9\X<V<
screens with the excess loss computed at average rooftop height
(i.e. x-y co-ordinates of � � Z < ).

In order to obtain an accurate estimate of the range depen-
dence of the average signal strength for a given value of 
 � ,
each configuration was simulated fifty times with a new set of
random screen heights used on each simulation run. This re-
sulted in 5000 data points for each configuration. The simulation
path loss at average rooftop height from each of the fifty simu-
lation runs were processed to produce a set of average multiple
diffraction losses, � � sim��� F � N � , at distances of

6 � � � , where� � \ Z ; Z R RXR \X<V< .
Figure 4 displays the simulation results for the configuration

of
g � <[R \M;=U m,

� � \C< m, � � cV<V< g and 
�� � �
m. The



g
(m)

�
(m) d (

g
) 
�� (m)

0.5 20 50 0,1,3,5,7,9
0.5 10 100 0,1,3,5,7,9
0.5 20 100 0,1,3,5,7,9
0.5 40 100 0,1,3,5,7,9
0.2 20 125 0,1,3,5,7,9
0.2 20 250 0,1,3,5,7,9

0.125 10 200 0,1,3,5,7,9
0.125 20 200 0,1,3,5,7,9
0.125 20 400 0,1,3,5,7,9
0.052 10 1000 0,1,3,5,7,9

TABLE I

CONFIGURATION PARAMETERS OF THE SIMULATED SYSTEMS.
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Fig. 4. Simulated excess loss at average rooftop height, � sim=�� '�� - for
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ordinate is plotted as excess loss in decibels and the abscissa
corresponds to the range from the transmitter. The black dot
points are the simulated excess loss data for all fifty runs and
the circle points correspond to the average of the excess multiple
diffraction loss, � � sim��� F � N � , at distances of

6 � � � .
Also shown on the same plot is the predicted excess loss

from the Walfisch-Bertoni model (i.e. uniform screen heights)
obtained from (2). This corresponds to the excess loss above
each screen, where the edges of all screens are coincident with
the  -axis (i.e. zero height). A logarithmic regression of the sim-
ulation results reveal that the average excess loss has a slope
of 18.6 dB per decade, a value almost identical to that of the
Walfisch-Bertoni model, which has a slope that approaches 20
dB per decade. This suggests that the effect of random build-
ing heights is to increase the average path loss by an amount

���
,

which in this case is approximately 7 dB, and leave the slope of
the excess loss characteristic relatively unchanged, a finding in
agreement with [2].

Further support for this argument is provided by statistics of
the regression slope for all the simulations in Table I. The mean
regression slope was 18.1 dB/decade and the standard deviation
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Fig. 5. The increase in the average excess loss at average rooftop height (as
compared to the Walfisch-Bertoni model) due to random screen heights. The

abscissa is plotted as the dimensionless parameter � /�� ��� � .

1 dB/decade.
For each system configuration in Table I ,

���
was calculated

as an average value according to the following formula:

� � � \
� 	����P \

��
���b��� F � � sim��� F �EN �!	 �!:��� N (9)

where ����� is the corresponding Walfisch-Bertoni prediction
at
6 ���E� obtained from using (2), and � � is the screen number

at which � :��� first becomes non-zero.
Figure 5 shows the values of

� �
calculated for all the configu-

rations in Table I. The ordinate is the parameter ! �#"
��$ � , where

��� is the standard deviation of the screen heights. For a uniform
distribution ��� is related to the maximum deviation of the screen
heights by ��� �&% �' + e . The value of

���
is observed to be inde-

pendent of transmitter height and solely determined by the value
of ! .

The dependence of
���

on the parameter ! can be explained
theoretically by considering the Vogler expression for multiple
diffraction over screens of random height. Specifically, in [16] it
is shown that for a symmetrical probability distribution of build-
ing heights then

� �
can be expressed as a power series in ! :

� � �9\X<)(�*,+ + D F \� .- + !  /- e ! e  R R R�N (10)

where the coefficients - + Z - e Z R RXR may have some dependence
on B L and the number of screens passed. However, the results
in Figure 5 indicate that any such dependence is secondary. For
! ]Q;bR U a good fit to the numerical simulations can be obtained
by considering only the first three terms of the power series in
(10). The values of the coefficients - + and - e , were found to bec�R 0,0 and ;SR 010 respectively, resulting in the following expression
for

� �
:

�2� � \X<3(�*1+ +ED F \� "c[R 0104!  j;bR 0,05! e N (11)



(11) is plotted in Figure 5 as a solid black line and agrees to
within \ dB of the simulation results.

An approximating expression for the average multiple diffrac-
tion loss component (for uniformly distributed building heights),� � ���(� , can therefore be obtained from (11) and (2) as

� � ���(� � 	
;(<i>A@CB +ED
HJIKF B xL N (12)

where the dimensionless parameter B xL is specified as

B xL � �
F \� 3c�R 0,05!` j;bR 0,05! e N DXW ��� �

� �g (13)

This formulation for B xL is derived from consideration of the
expression for H I F B L N in (3). Note that if the screen heights
are uniform, then !_� < and the above equation reduces to the
standard definition for B7L .

The accuracy of (12) was quantified from the mean and root-
mean-square (rms) of the prediction error. The prediction error,� � , defined as � � �9� � ���(� 	 ��� sim��� F � N � . For each configuration
in Table I , the prediction errors at average rooftop level were
calculated at ranges of

6 � � � . From the resulting 100 error
values the mean and rms values could be determined. The max-
imum (in magnitude) of the mean and rms prediction errors for
all systems was 0.88 dB and 1.2 dB respectively. These rela-
tively low error statistics indicate that predictions of (12) are in
good agreement with the simulation results.

The average value of
���

calculated from the absorbing screen
simulations of Chung et al. [2] at a frequency of 900 MHz with

�� � 0 m and �`�QU(< m is T[R � dB. This agrees closely with the
predicted value of c[R � dB from (11).

It is also interesting to compare the prediction of (11) with the
results of Chrysanthou et al. [13] and Saunders et al. [14] cal-
culated for a receiver positioned at street level. Chrysanthou et
al. calculated that the net effect of random building height vari-
ations at 900 MHz and for �`�QU(< m was to increase the average
excess loss by an amount equivalent to �[R <,0 � ! . In Figure 5 this
expression (shown as a dotted line) is compared to our simula-
tion results. The agreement is good given that the simulations
of Chrysanthou et al. were performed at only one value of fre-
quency and screen spacing, and only for ! ]�<bRhU . For an equiv-
alent value of !5� <bR <10 , Saunders et al. calculated

��� ��<[R 0 dB,
whereas (11) predicts a reasonably close value of

��� � \=R c dB.
The differences may be attributed to the fact that only five build-
ings of random height are considered in [14]. In addition, apply-
ing (11) to receivers positioned below rooftop level effectively
constrains the last building to the average building height which
will introduce some error, whereas the analyses of [13] and [14]
allow the last building to have random height.

IV. CONCLUSIONS

This paper has examined the effects of random building height
variations on the multiple diffraction component of the Walfisch-
Bertoni model. A large number of system configurations of
mean building separation, building height variance and transmit-
ter height were simulated. It was found that any building height
variations act to increase the average of the multiple diffraction
loss component, a finding which is in agreement with previous

studies.Furthermore, the decibel increase in the average multi-
ple diffraction loss was found to be dependent on the ratio of the
building height variance to the product of the wavelength and
building separation. For a building height distribution which is
symmetrical, a simple extension to the settled field solution of
Walfisch et al. , which incorporates this dependence is proposed.
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