
1

A QOS SUPPORT FRAMEWORK
FOR DYNAMICALLY
RECONFIGURABLE

MULTIMEDIA APPLICATIONS

Scott Mitchell, Hani Naguib,
George Coulouris and Tim Kindberg

Distributed Systems Laboratory
Department of Computer Science

Queen Mary and Westfield College
University of London

{scott,hanin,george,timk}@dcs.qmw.ac.uk

Abstract : The use of multimedia in distributed systems has begun to include such
complex and mission-critical domains as digital television production, ‘video-on-
demand’ services, medical and security systems. These applications impose more
stringent requirements on the support mechanisms provided by underlying networks and
operating systems than most currently deployed continuous media applications. This
paper describes the DJINN multimedia programming framework, which is designed to
support the construction and dynamic reconfiguration of distributed multimedia
applications. We motivate the benefits of a runtime model of the quality of service and
other characteristics of multimedia applications, and demonstrate a generic algorithm
for scheduling dynamic reconfigurations that maintains QoS guarantees. QoS
characteristics are modelled as piecewise-linear or quadratic relations, which are solved
using standard constraint programming techniques. During reconfigurations, updates to
active components are scheduled so as to maintain temporal constraints on the media
streams. We illustrate our approach using experimental results from a real-world
application domain.

Keywords : Components, multimedia, quality of service, dynamic reconfiguration.

2 SESSION X: SESSION NAME

1 INTRODUCTION

The use of multimedia—or more particularly continuous, real-time media streams—
in distributed systems has begun to include such complex and mission-critical
domains as digital television production, ‘video-on-demand’ services, medical
applications and security systems. Because of the enrichment they bring to
application content we believe that this trend will continue and that more and more
distributed mission-critical applications will begin to incorporate continuous media
data. These applications impose more stringent requirements on the support
mechanisms provided by underlying networks and operating systems than currently
more widely deployed continuous media applications such as videoconferencing,
streaming audio and video on the Internet and (non-distributed) entertainment
software. The quality of the media being presented is important—sometimes
critically so—and thus resources must be properly allocated and scheduled in order
to preserve this quality. The following three scenarios illustrate some of the problems
that will need to be addressed by an application framework for the construction of
mission-critical multimedia applications:

1. Digital TV studio. The production of a digital TV newscast is likely to include:
incoming live news footage in a variety of formats; the use of archive material
from several sites and in different formats; a news reader (anchor) interviewing
remote subjects; frequent changes of programme source on-the-fly. The
construction of a system to support such a demanding set of real-time activities
while maintaining a continuously high quality of service seems well beyond the
capacity of today's digital multimedia platforms.

2. Distributed surgery. A distributed conferencing system could support a
medical team undertaking a transplant operation. The scarcity of specialists
makes it necessary to support remote participation in surgical and other
procedures. A transplant operation might involve two patients (donor and
recipient) undergoing concurrent operations in separate rooms with other
specialist consultants participating remotely. Additional channels would provide
remote monitoring of patients, remote manipulation of surgical probes, etc.
These would also require strong QoS guarantees and consistency constraints.
The reliability and quality of service in such an application may be life-critical.

3. Remote surveillance. A video surveillance system for a major public event (e.g.
a political party congress) incorporates a control room accessing the majority of
available video and audio sources, but with other agencies supplying and
receiving additional streams of information in a variety of formats via land lines
and radio. Some of the sources and destinations of audio and video streams are
mobile with variable bandwidth and connectivity. Some of the key requirements
are to keep certain audio and video channels open to mobile users, to switch
transmission links in response to communication failures, and to upgrade the
quality of service in order to provide closer observation in response to suspicious
incidents.

Applications such as these are often long-lived and subject to frequent
reconfiguration and long-term evolution of application structure. The application

QOS SUPPORT FOR DYNAMICALLY RECONFIGURABLE MULTIMEDIA 3

software that supports them must be highly adaptable and be capable of tolerating a
wide variety of reconfigurations and extensions while still meeting their Quality of
Service (QoS) guarantees.

This paper describes the DJINN multimedia programming framework [13], which
is designed to support the construction and dynamic reconfiguration of distributed
multimedia applications. The main requirements addressed by DJINN are to provide
QoS and integrity guarantees for complex multimedia applications, both in their
steady state and during reconfigurations. In particular, DJINN includes:

� Programming support for distributed multimedia applications. This includes
the means to encapsulate potentially complex configurations of multimedia-
processing components, and to abstract away from the details of hardware.

� Dynamic reconfiguration. The requirement is to support dynamic changes to
complex component structures, such as when users join and leave groupware
sessions. These changes to the application’s structure need to be performed
atomically, and the application’s structural integrity must be maintained—for
example, ensuring that the media formats handled by interconnected
components are compatible with one another.

� Support for QoS negotiation, admission control and the specification of
integrity constraints. This support is available to concurrent applications that
can alter their QoS characteristics (e.g. audio quality) at run-time. The QoS
support in Djinn provides an environment for adaptable multimedia
applications to rapidly converge into a sustainable level of quality.

The rest of this paper is structured as follows. Section Figure 2 is an overview of the
DJINN architecture. Section 3 presents an illustrative example of a real application
built in Djinn and demonstrates our approach to QoS management and dynamic
reconfiguration. Section 4 briefly reviews some related research while Section 5
contains a summary and conclusions.

2 FRAMEWORK ARCHITECTURE

DJINN applications are constructed from networks of components consuming,
producing and transforming media data streams and interconnected via their ports, in
a similar fashion to other distributed multimedia programming frameworks such as
[2], [8] & [9]. Our approach to meeting the requirements outlined above is based
around the use of a dynamic runtime model of the application, which models the
QoS, structural configuration and integrity properties of the application. The model
is itself built from interconnected components, so that DJINN applications have a
two-level structure as shown in Figure 1. The active components of an application
are autonomous objects that produce, consume and transform multimedia data
streams. Active components are distributed so as to meet the processing
requirements of the application—in general, they must be co-located with the
multimedia hardware that they control. On the other hand, model components do not
directly process media data and can be located wherever is convenient for the
application user or programmer. The model may be distributed, for example in a

4 SESSION X: SESSION NAME

video-server system where the server and clients are under the control of different
people or organisations.

The model components of an application are arranged in a tree-structured
hierarchy, where the leaves of the tree are atomic model components, each
corresponding to a single active component (for example, the Video Source and
Display components in Figure 1). Atomic model components export a common
interface to their underlying active components, such that all “Camera” components
will offer a common set of operations irrespective of the physical type of camera
controlled by the active component. Additionally, atomic model components model
the QoS characteristics of their underlying active components as sets of linear and
quadratic relations between attributes—such as frame rate and size—of the media
streams being processed. These relations include the resource requirements of the
active component and any constraints it imposes on the media streams. The
connectivity of the active layer is mirrored by the atomic model components: each
has the same set of ports and inter-component connections as its active counterpart.

The interior nodes of the model component tree are composite components. These
components do not correspond to any one active component; rather, they encapsulate
a sub-tree of the application model, with the composite component at the root.
Composite components facilitate high-level application structuring and add
additional behaviour to an application by providing operations to manipulate their
encapsulated sub-components. For instance, a video-conferencing component would
provide operations to add and remove conference participants. A composite
component models the connectivity of its encapsulated sub-tree as a directed graph
that can be expanded down to the atomic component level. The root composite
component (the Video Player in Figure 1) also stores a cost-benefit function, which
expresses the application’s specific resource/QoS trade-offs.

Application integrity is modelled by sets of predicates attached to model
components. Predicates range from simple checks on atomic components—such as
ensuring that output ports are only ever connected to input ports—to complex
consistency tests on high-level composite components—a video-conferencing

Video Player

Model Components

Active Components

Host X Host Y

Network Connector

Network Sink
Network

Source
Video Comp. Source

Network Decomp.

Decomp.Sink
Network

Source
NetworkComp.

Source
Video

Streams

Media Elements & Events

Components Ports

Display

Display

EventsInvocations

Figure 1. Model and active components.

QOS SUPPORT FOR DYNAMICALLY RECONFIGURABLE MULTIMEDIA 5

component should maintain full connectivity between all participants as well as
enforcing a floor-control policy. The predicates are evaluated in leaf-to-root order,
and all must be true for the application’s configuration to be considered valid. The
bottom-up ordering allows a composite component further up the tree to declare the
configuration invalid when it fails to meet a condition unknown to the sub-
components.

Application programmers are unaware of the distinction between model and
active components. All application-level programming in Djinn takes place at the
model layer. Active components are created, configured and destroyed as required
under the control of the application model. Components are controlled through a
combination of remote invocations and inter-component events. Events can be
transferred between components and additionally may flow along the same paths as
media streams, interleaved with media data elements. Events enable heterogeneous
components to respond to state changes; they also allow us to synchronise
reconfigurations with media data flow.

Our primary motivation for the use of an application model is to clearly separate
the design of an application from its realisation at run-time [13]. The model is largely
independent of location, hardware platform, operating system and the various
technologies used to process and transport media data; it enables programmers to
build and evolve applications at a high level of abstraction. Active components, on
the other hand, have no notion of their place in the larger application—they simply
carry out their tasks of producing, processing, transporting and consuming
multimedia data.

System Resources

Real-Time OS
(Chorus)

Active
Components

Reconfiguration
Scheduler

Reconfiguration
Manager

Model Components

Multimedia Applications

Resource
Managers

QoS
Manager

Figure 2. DJINN runtime architecture.

Figure 2 shows the relationships between the main components of the Djinn
runtime architecture. The QoS and resource managers provide QoS management
support, including admission control and resource allocation. The reconfiguration
manager is responsible for controlling and validating changes to the application

6 SESSION X: SESSION NAME

model; the reconfiguration scheduler maps approved changes onto the active
component layer.

DJINN’s QoS guarantees depend upon appropriate real-time support from host
operating systems and networks. We have a real-time testbed system comprising a
set of hosts running the Chorus/ClassiX RTOS [10] and a dedicated Ethernet. Active
components on the Chorus hosts are implemented in C++ while the model
components—which do not require a real-time platform—are implemented in Java.
CORBA is used for inter-component control communication; media streams use
protocols appropriate to the stream type and the underlying network.

3 AN ILLUSTRATIVE EXAMPLE

In this section we analyse an application scenario similar to that described by
Yeadon et. al. in [22], who are developing systems to provide mobile multimedia
support and applications for the emergency services. The setting is a large security-
conscious site—such as a factory or research centre—equipped with fixed
surveillance cameras feeding video to one or more central servers. Security
personnel can monitor the live video streams via either fixed workstations or mobile
terminals communicating over a WaveLAN wireless broadcast network [20]. Mobile
users who move outside the coverage area of the WaveLAN are still able to receive
video over a GSM cellular link [17], albeit with significantly reduced quality. In the
event of a major incident—say a factory fire—where the emergency services are
called, the surveillance video streams can be routed to the police/fire brigade control
room over a high-speed wired link. Relevant streams will then be forwarded to
emergency units en route to the scene, again using a GSM connection or dedicated
packet-radio network. Once on the scene, emergency services personnel should be
able to receive the higher-quality video available from the WaveLAN at the incident
site. If audio streams are also available, they can be treated in the same way. A high-
level view of this scenario is shown in Figure 3.

Clearly this system is subject to frequent reconfiguration as video streams from

Main
Server

Remote
Server

WaveLAN

GSM
WaveLAN

Fixed
Client

Cameras

Mobile Clients

Fixed
Client

High-speed Network

Figure 3. The example application.

QOS SUPPORT FOR DYNAMICALLY RECONFIGURABLE MULTIMEDIA 7

different sources are switched between the different networks. One of the key
requirements of the application domain is for high levels of availability and
dependability of data [22]. This implies a need for seamless switching between
network transports at the client end, and careful control of resource usage, especially
in highly constrained environments such as the GSM network.

For the purposes of illustration we will consider just one aspect of this application
with particular relevance to DJINN: a single mobile video unit that joins the system,
then moves from the local WaveLAN to a dialup GSM link. This allows us to
address two important aspects of DJINN: First, the admission control mechanisms
that allow a new client to join the application with an appropriate guaranteed QoS
level; and, second, the algorithms used to schedule a smooth hand-over between the
two networks with minimum disruption to the output seen by the user. The initial
state of this system is shown in Figure 4.

3.1 Application Setup

Programmers build DJINN applications by creating and interconnecting model
components. Before the active components are created and started the model must
pass through integrity tests—as described in Section 2—and an admission test. These
tests aim to find an application configuration which does not break any of its
constraints and for which enough system resources can be reserved. As an example
of the former, the main video server in the surveillance application can support a
fixed maximum number of GSM connections, determined by the number of attached
modems. Any configuration of the model that exceeds this limit must be rejected.

Admission Test. Each admission test utilises the application’s QoS model, and is
performed in three stages: to gather application-imposed constraints, to determine
constraints on resources, and to generate a solution using a cost-benefit analysis. In
the first stage components are asked to provide a list of their QoS characteristics
(Table 1), expressed as simple numerical relations. This includes the amount of
resources required by each component along with any constraints imposed by these
components on the streams they process. Consider the remote surveillance example
shown in Figure 4. The Video Source component imposes the constraint S1.rate d 30
due to its frame-rate limitations. The constraint S5 t 5 imposed by Display is user-
specified and ensures that the displayed video will have a frame rate of at least 5
frames per second. The MPEG Encoder also imposes constraints on the frame sizes

P3

P4P1

P2

1S

2S 3S

4S

Host X Host Y

Comp.

Source
Video

MPEG Wave-
LAN

Source
WaveLAN

Wave-
LAN
Sink

MPEG
Decomp.

DisplayWaveLAN Connector

Figure 4. Initial configuration.

8 SESSION X: SESSION NAME

it can produce. Note that to simplify this discussion Table 1 shows only the CPU
requirements of components; other resources are treated in a similar fashion.

The QoS characteristics of components are stored within individual model
components. The component programmer specifies inter-stream constraints when she
creates the component. Our approach to modelling the resource requirements has
been to perform direct measurements of these values. We are currently developing a
test-harness, which provides the modeller with information related to the
component’s resource utilisation characteristics. The user wishing to model the
component inputs multimedia elements of known attributes (for example, video of
known frame rate and size). The harness measures the resource usage. Currently, we
measure CPU, memory and network utilisation. We provide a tool for the user to
match the resultant data points to linear functions or piecewise linear functions.
Sometimes they are functions of products of attributes (for example, frame size times
frame rate)—and so we obtain a quadratic function of attributes. Another
complication is that resource utilisation may depend on media values. For example,
an MPEG decoder may take differing amounts of time to decode two frames of the
same type (I, P or B) and size. We therefore can derive several linear or quadratic
relations, corresponding, in the case of MPEG, to video of differing classifications
[18] (e.g. streams with low level of motion, computer generated animations etc).

Table 1. QoS Characteristics.

Component Constraints Resource Requirement (ms/sec)

Video
Source

S1.rate d 30 CPU at X 6.46x10-4S1.rate*S1.size

MPEG
Encoder

(S1.x = 128, S1.y =96) or
(S1.x = 176, S1.y = 144) or
(S1.x =352, S1.y = 176) or
(S1.x = 704, S1.y = 575) or
(S1.x = 1408, S1.y = 1152)

1.61x10-4S1.rate*S1.size

WaveLAN
Connector

S2 = S3 (all attributes) CPU at X 8.07x10-5S1.rate*S1.size

CPU at Y 8.07x10-5S1.rate*S1.size

MPEG
Decoder

S3 = S4 (all attributes) CPY at Y 1.08x10-3S1.rate*S1.size

Display S4.rate t 5
120 d S4.width d 704
80 d S4.height d ���

CPU at Y 3.22x10-4S1.rate*S1.size

In the second stage of the admission test, relevant resource managers are asked
about the availability of their resources. The components’ resource requirement
functions are turned into a set of inequalities (one for each resource) which express
the bound on the resources that can be used by the application. This allows the
current resource availability to be expressed within the model. This is shown in
Table 2.

QOS SUPPORT FOR DYNAMICALLY RECONFIGURABLE MULTIMEDIA 9

The third stage of the admission test attempts to solve the constraint relations. We
currently use techniques borrowed from operations research used in optimisation
problems. These techniques utilise a benefit function (in our case the application-
specific cost-benefit function) to find optimum values for a set of variables (the
stream attributes) given a set of constraints (the stream and resource constraints). For
our example we use a cost-benefit f=w1*S4.rate + w2*S4.size + w3*(RcpuX +RcpuY).
This is a weighted function (the weights are w1 w2 and w3) of the frame rate and size
(which we want to maximise) and the total resource utilisation (which we want to
minimise). We use w1 = w2 = 106 and w3 = 1 to express the relative importance of
good QoS over resource costs.

These numerical relations are then solved at run-time with the application’s
benefit function to determine an optimum QoS state. In this example this has a frame
rate of 10fps and a frame size of 352x176. This reflects the limited CPU resource
availability at host Y. At present we use a freely available linear solver, which limits
or models to one stream attribute. We are currently evaluating other more general-
purpose solvers, which do not have this restriction.

Table 2. Resource constraints.

Resource CPU Availability (ms/sec) Resource Constraint

CPU at X 800 8.877x10-4S4.rate*S1.size d 800

CPU at Y 920 1.482x10-3S4.rate*S1.size d 920

3.2 Dynamic Reconfiguration

We now consider the problem of reconfiguring the system in response to a user
request or changes in the operating environment of the program. An example of the
latter occurs when the mobile handset moves outside the range of the WaveLAN—if
video playback is to continue the application must be reconfigured to deliver the
video data over the lower-bandwidth GSM network

Application configuration—and reconfiguration—is expressed in terms of paths:
model layer end-to-end management constructs describing the media data flow
between a pair of endpoints chosen by the application. A path encapsulates an
arbitrary sequence of ports and intervening components that carry its data. It declares
the end-to-end QoS properties of that sequence, including latency, jitter and error
rate. It is up to each individual application to identify the end-to-end flows that are of
interest to it and specify paths accordingly. Flows that are not part of a path do not
receive any end-to-end guarantees either for their normal operation or during
reconfiguration.

A reconfiguration moves the application from one consistent state to another in an
atomic manner. That is, if it is not possible to successfully perform all of the actions
required to execute the reconfiguration, then none of the actions will be performed
and the application will remain in its initial state. The reconfiguration is initially
enacted on the application model; no changes are made to any active components
until the new configuration has been approved by the admission control mechanism
and validated against any application-defined integrity constraints. If it turns out that

10 SESSION X: SESSION NAME

the requested changes cannot be successfully applied, the model components are
‘rolled back’ to their previous consistent state, leaving the application configuration
unchanged.

The continuous media streams processed by the active components have
constraints that must be maintained during the transition between the initial and final
configurations. For example, it would not generally be acceptable for the arrival of a
new mobile handset in the system to disrupt the video playback on other handsets.
Therefore, we apply an ordering or schedule to the active component updates, to
maintain the temporal consistency of streams across reconfiguration boundaries, a
requirement we have informally named the ‘smoothness’ condition [14]: “The
execution of a reconfiguration on a live system must not break any temporal
constraint of any active path.”

The schedule ensures that the streams will be free of, or at least not unacceptably
affected by, ‘glitches’. Glitches are lost data or loss of synchronisation, which
appears to users as frozen frames, silences or unsynchronised sound and vision.

In our example, the WaveLAN infrastructure is able to detect a change in signal
strength indicating that the user is moving outside the coverage area of the network
[7],[15]. When this occurs, an event is delivered to the application model causing it
to initiate a hand-over to the GSM network. We assume that the WaveLAN can
provide sufficient advance notice of an impending loss of service that we can have
the GSM link fully up and running in time for a seamless hand-over. The reduced
bandwidth of a GSM link (only 9600 bits/s) necessitates a reduction in frame rate
and a switch to a more efficient—but lower quality—H.236 codec [5]. Figure 5
shows the final state of the path undergoing the reconfiguration (cf. the initial
configuration in Figure 4).

The temporal constraints on this reconfiguration are:

4. That the interval between the arrival at P4 of the last frame from the initial
configuration and the first frame from the final configuration is less than 200ms.

5. That the play-out times of these two frames should not differ by more than
400ms, i.e. no more than two frames lost or repeated.

Deriving the Schedule. Table 3 shows the latencies and startup times for the
components in both configurations, where the latter is the time required to get a
newly created active component into a state where it is ready to process media data.
This is particularly relevant to this example, since the GSM network components
have startup times three orders of magnitude greater than their operating latency.

P1
P2’ P3’

P4

1S

S2 S3

S4

Host YHost X

Display

Decomp.
H.263

Sink
GSM

GSMSource
GSM

Comp.
H.263

Source
Video GSM Connector

Figure 5. Final configuration.

QOS SUPPORT FOR DYNAMICALLY RECONFIGURABLE MULTIMEDIA 11

While the startup delay cannot be avoided, it is possible to reduce or eliminate its
impact in the relatively common case that the application receives some advance
warning of the need to reconfigure. The achieve this, we divide the active component
updates into two phases:

6. Setup. This phase encompasses the creation of new active components and
reservation of their resources. The initial configuration remains operational
throughout. However, some of the new components may be started running if
the smoothness requirements of the reconfiguration demand it.

7. Integrate. This phase is started by an event delivered after the end of the setup
phase—in our remote surveillance example this event arises when the signal
strength reaches a lower threshold. It completes the transition to the final
configuration according to a schedule computed to maintain the temporal
constraints of the reconfiguration.

Table 3. Component latencies.

Component Latency (ms) Startup time (ms)

Video Source 40 500

Display 20 100

MPEG Encoder 100 1000

MPEG Decoder 67 1000

H.263 Encoder 200 1000

H.263 Decoder 100 1000

WaveLAN Source 5 100

WaveLAN Sink 5 100

GSM Source 5 5000

GSM Sink 5 5000

Each active component is ‘primed’ during the setup phase with the actions to
perform during integration. The actions are triggered by receipt of an event from an
external source or on an input port; the event is also propagated downstream along
the reconfiguration path. Integration is thus performed by scheduled delivery of
integrate events to the farthest upstream points of the reconfiguration.

The scheduling algorithm works upstream along both versions of the path from
P4, summing the latencies of each component encountered. When the configurations
converge again at port P1, the differences in latencies along each path allows us to
calculate when the last MPEG and first H.263 frames should be delivered to ports P2

and P2’ respectively. Thus, for the frames to arrive simultaneously at P4, we should
inject the ‘start’ event into P2’ 133ms before sending the ‘stop’ event to P2. We may
stretch or compress this schedule by up to 200ms and still meet the first constraint.
Because the difference in the latency of the two configurations is less than 400ms,
the second constraint is also maintained.

12 SESSION X: SESSION NAME

Dynamic Admissions. The above schedule assumes that sufficient resources are
reserved, by a dynamic admission test that is part of the atomic action. Dynamic
admission tests are slightly different from the initial admission test explained above.
The major difference is that these tests must take into account the period during the
transition from the initial configuration to the final configuration, where components
from both configurations may be executing concurrently. We thus perform two
admission tests, one for the final configuration and one for the transitional period.

Dynamic admission tests use the initial state of the model when looking for a
solution to the final configuration. The techniques used are similar to those found in
sensitivity analysis [12] and can greatly increase the performance of these tests.
Furthermore components and resource managers that are not affected by the
reconfiguration need not be consulted since their information is already present in
the model. This is particularly useful since in many cases it is the QoS characteristics
of just a few localised components that are affected. Table 4 shows the time taken to
perform admission control calculation with and without re-use of previous
calculations.

Table 4. Speedup from calculation reuse.

Number of relations Complete recalculation (sec) Re-using calculations (sec)

220 0.20 0.02

1860 2.00 0.18

5100 11.00 0.70

4 RELATED WORK

The component-based approach to application construction is used by a variety of
multimedia programming frameworks, such as that of Gibbs & Tsichritzis [9],
Medusa [21] and CINEMA [2]. CINEMA also makes use of composite components
and a separate ‘model’ of the application that is used for control and reconfiguration.
However, CINEMA’s idea of what constitutes a reconfiguration is quite limited and
has no equivalent of the ‘smoothness’ property for ensuring clean transitions
between consistent states. It does allow inter-stream dependencies to be taken into
account when performing admission control, but it requires application components
to be created from the outset in order to provide information about constraints, rather
than using a separate model. Also, the application components individually attempt
to reserve resources during the admission test. This can lead to admission failing,
even in situations where sufficient resources might be found.

The need for smoothness support in the real-world domain of digital television—
where there is a requirement to “splice” together MPEG streams within the resource
constraints of hardware decoders whilst still meeting QoS guarantees—is illustrated
by [4]. In [19], Sztipanovitz, Karsai and Bapty present a similar two-level approach
to component-based application composition in the context of a signal-processing
system whose applications share many of the real-time requirements of multimedia.

QOS SUPPORT FOR DYNAMICALLY RECONFIGURABLE MULTIMEDIA 13

The use of a QoS model can also be found in the Quorum project [6]. They model
the structural and QoS characteristics of applications and use benefit function to
capture user preferences, although they do not consider smoothness properties.

5 SUMMARY AND CONCLUSIONS

This paper has motivated the benefits of a runtime model of the quality of service
and structural integrity characteristics of multimedia applications. It has also
demonstrated an algorithm for scheduling dynamic reconfigurations which maintains
QoS guarantees. QoS characteristics are modelled as piecewise-linear or quadratic
relations, which are solved using standard constraint programming techniques. The
result is a negotiation between the application and the system, with user-configurable
bounds. During reconfigurations, updates to active components are scheduled so as
to maintain temporal constraints on the media streams. A generic software solver
computes the schedule. We have illustrated our approach using preliminary
experimental results from a real-world application domain.

A number of issues remain unresolved regarding the utility of our approach. It is
not yet clear that resource requirements can always be modelled accurately as
piecewise linear or quadratic functions, or that the model is sufficiently generic to be
transparently reused in different application domains. In the example presented in
this paper we have made some simplifications (in addition to considering only CPU
resources). In particular the cost-benefit function should express trade-offs between
various streams and between the quality of the application versus its resource
requirements. Furthermore, compressed streams would have attributes related to the
compression parameters, allowing for further trade-offs between stream quality and
resource usage to be expressed.

Likewise, our reconfiguration scheduling algorithm is only fully developed for the
single path case—we are still exploring the issues that arise when reconfiguring
multiple paths with inter-path dependencies. With reference to the requirements
outlined in Section 1, this paper has addressed the reconfiguration and QoS aspects.
Further details of DJINN can be found in [13] and our approaches to reconfiguration
scheduling and application integrity management appear in [14],[16].

References

[1] M.P. Atkinson, L. Daynès, M.J. Jordan, T. Printezis & S. Spence. “An
Orthogonally Persistent Java.” ACM SIGMOD Record 25(4), December 1996.

[2] Ingo Barth. “Configuring Distributed Multimedia Applications Using
CINEMA.” Proc. IEEE Workshop on Multimedia Software Development
(MMSD’96), Berlin, Germany, March 1996.

[3] Luc Bellissard & Michel Riveill. “Olan: A Language and Runtime Support for
Distributed Application Configuration.” Journées du GDR du Programmation,
Grenoble, France, November 1995.

[4] Bhavesh Bhatt, David Birks & David Hermreck. “Digital Television: Making it
Work.” IEEE Spectrum 34(10), pp 19–28, October 1997.

[5] G. Bjontegaard. “Very Low Bitrate Videocoding using H.263 and Foreseen
Extensions.” Proc. European Conference on Multimedia Applications, Services

14 SESSION X: SESSION NAME

and Teachniques (ECMAST ’96), Louvain-la-Neuve, Belgium, pp 825–838,
May 1996.

[6] S. Chatterjee, J. Sydir, B. Sabata & T. Lawrence. “Modeling Applications for
Adaptive QoS-base Resource Management.” Proc. 2nd IEEE High-Assurance
System Engineering Workshop (HASE97), August 1997.

[7] Nigel Davies & Adrian Friday. “Applications of Video in Mobile
Environments.” IEEE Communications, June 1998.

[8] Halldor Fosså & Morris Sloman. “Implementing Interactive Configuration
Management for Distributed Systems.” Proc. 4th International Conference on
Configurable Distributed Systems (CDS’96), Annapolis, Maryland, USA, pp
44–51, May 1996.

[9] Simon J. Gibbs & Dionysios C. Tsichritzis. Multimedia Programming: Objects,
Frameworks and Environments. Addison-Wesley, Wokingham, England, 1995.

[10] M. Guillemont. “CHORUS/ClassiX r3 Technical Overview.” Chorus Systems
Technical Report, May 1997.

[11] T. Härder & A. Reuter. “Principles of Transaction-Oriented Database
Recovery.” ACM Computing Surveys 15(4), 1983.

[12] F.S. Hillier & G.J. Lieberman. Introduction to Operations Research. McGraw-
Hill International Editions, New York, USA, 1995.

[13] Scott Mitchell, Hani Naguib, George Coulouris & Tim Kindberg. “A
Framework for Configurable Distributed Multimedia Applications.” 3rd
Cabernet Plenary Workshop, Rennes, France, April 1997.

[14] Scott Mitchell, Hani Naguib, George Coulouris & Tim Kindberg. “Dynamically
Configuring Multimedia Components: A Model-based Approach.” Proc. 8th

SIGOPS European Workshop, Sintra, Portugal, pp 40–47, September 1998.
[15] José M. F. Moura, Radu S. Jasinschi, Hirohisa Shiojiri & Jyh-Cherng Lin.

“Video Over Wireless.” IEEE Personal Communications 3(1), pp 44–54,
February 1996.

[16] Hani Naguib, Tim Kindberg, Scott Mitchell & George Coulouris. “Modelling
QoS Characteristics of Multimedia Applications.” Proc. 13th IEEE Real-Time
Systems Symposium (RTSS ’98), Madrid, Spain, December 1998.

[17] M. Rahnema. “Overview of the GSM System and Protocol Architecture.” IEEE
Communications Magazine 31(4), pp 92–100, April 1993.

[18] K. Shen, L.A. Rowe & E.J. Delp. “A Parallel Implementation of an MPEG-1
Encoder: Faster than Real-Time.” Proc. SPIE Digital Video Compression:
Algorithms and Techniques, San Jose, CA, USA, February 1995.

[19] Janos Sztipanovits, Gabor Karsai & Ted Bapty. “Self-Adaptive Software for
Signal Processing: Evolving Systems in Changing Environments without
Growing Pains.” Communications of the ACM 41(5), pp 66–73, May 1998.

[20] Bruce Tuch. “Development of WaveLAN, an ISM Band Wireless LAN.” AT&T
Technical Journal 72(4), pp 27–37, July/August 1993.

[21] Stuart Wray, Tim Glauert & Andy Hopper. “The Medusa Applications
Environment.” Technical Report 94.3, Ollivetti Research Limited, Cambridge,
England, 1994.

[22] Nicholas Yeadon, Nigel Davies, Adrian Friday & Gordon Blair. “Supporting
Video in Heterogeneous Mobile Environments.” Proc. Symposium on Applied
Computing, Atlanta, GA, USA, February 1998.

QOS SUPPORT FOR DYNAMICALLY RECONFIGURABLE MULTIMEDIA 15

Biography

Prof. George Coulouris has been Professor of Computer Systems in the Department
of Computer Science at QMW since 1978. He is co-investigator on the Mushroom
and Djinn projects and the ongoing ESPRIT PerDiS project. Prof. Coulouris was an
invited keynote lecturer at OZCHI ’96.
Dr. Tim Kindberg is a Senior Lecturer in the Department of Computer Science at
QMW. He is principal investigator on the EPSRC-funded Mushroom project and co-
investigator on the Djinn project. Dr. Kindberg is co-author of the book Distributed
Systems: Concepts and Design along with Prof. Coulouris and Jean Dollimore.
Scott Mitchell is a Ph.D. candidate in the Department of Computer Science at
QMW. He received the BCMS and MCMS degrees from the University of Waikato
in 1994 and 1995 respectively. His research interests include reconfigurable
distributed systems, adaptive middleware systems and multimedia.
Hani Naguib is a Ph.D. candidate in the Department of Computer Science at QMW.
He received the BSc. from the American University of Cairo in 1994 and the MSc.
from QMW in 1995. His research interests include distributed and real-time systems,
operating system support for multimedia, and quality-of service.

