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Abstract— This paper presents a detection technique for 
multiple-input multiple-output (MIMO) spatial multiplexing 
systems that is based in a quantized received lattice. This permits 
the search to be focused into successive ordered subspaces. The 
proposal greatly reduces the number Euclidian distances need to 
be calculated replacing it by memory usage for back tracing 
candidate vectors. Thus, this tool enables further pruning the 
search tree when using a sphere decoder. The receiver starts by 
quantizing both the received vector and the lattice points and 
then defines a neighbourhood around the cell containing the 
received vector. If needed, the neighbourhood is extended to a 
larger Manhattan distance. Conversely, dense clusters of lattice 
points are resolved by increasing the quantization bits per 
dimension. The paper describes the probability density functions 
(pdf) of the lattice components and presents numerical results for 
the pdf of the number of lattice points that are candidates to be 
evaluated in a subsequent block based on Euclidean distances. 
All the results are for the frequency flat fast fading channel. 

I. INTRODUCTION 
In many wireless propagation scenarios there is a 

sufficiently rich scattering environment giving raise to 
multipath. This phenomenon can be exploited in order to 
increase the diversity of the link and consequently reduce the 
symbol error rate (SER), or, on the other hand, increase the 
overall data rate. The later type of MIMO systems [1], 
perform spatial multiplexing by transmitting several data 
streams in parallel and therefore increasing the spectral 
efficiency of the physical layer. However, this is achieved at 
the expense of an increasing complexity (in terms of the 
number of operations) that grows exponentially with the 
number of transmission antennas. The impact of the number 
of receive antennas is much less dramatic, only causing a 
linear increase of the memory and number of operations at the 
receiver. Some linear and non-linear receivers are well known 
today [1], [2], [3]. The simplest ones, i.e., the linear ones, use 
the zero-forcing (ZF) or the minimum mean square error 
(MMSE) criteria. The most important examples of non-linear 
receivers are the vertical Bell Laboratories layered space-time 
receiver (BLAST), also called the ordered successive 
interference cancellation (OSIC) receiver [2], [3], and the 
receivers based in lattice reduction [3], [4], [5]. The OSIC 
receiver is sub-optimal as it is not able to extract the full 
diversity of the system configuration, i.e., the curves 
representing the number of errors against the signal to noise 
ratio (SNR) are less steep than the ones of the ML receiver. 
The lattice reduction aided receivers are able to extract from 
the system the same diversity as the ML detector [5] in spite 
of introducing some power penalty (i.e., the SER curves are 

parallel to the ML curves, though typically degraded by 3 to 5 
dB). 

Sphere decoding (SD) [6], [7] (originally devised for lattice 
decoding [8]) attains the performance of ML with a much 
smaller number of operations [2], [3], and has inspired several 
derivations, e.g., [9], [10], [11]. For N-dimensional 
hyperspheres, the number of operations is O(N 2) to O(N 3) in 
the high SNR regime; at low SNR it still requires a 
exponential number of operations when N grows linearly [9] 
(details in [2]). The idea behind sphere decoding is that only a 
reduced number of signals which yield a received point inside 
a hypersphere centred in the received signal will be 
considered instead of performing an exhaustive search over all 
possible combinations of transmitted of symbols. The 
complexity (and consequently the speed) of the SD algorithm 
is very dependent on the radius of the considered sphere 
(which value is selected heuristically [2], [3], and gives raise 
to some problems regarding the ordering of the searched 
points [10] (and references therein). 

Many different metrics to quantify the detection complexity 
can be found in the literature; for example, complexity can be 
measured by the number of flops required [7], by estimating 
the average number of expanded nodes [10], by comparing the 
computation time of the algorithms in a computer [9] or by 
counting the total number of multiplications required by the 
detection algorithm [11]. 

Some proposals have been made in order implement 
multiplication free receivers either by using approximated 
expressions for the squared Euclidean distances SED [12] or 
by means of look-up tables [13], [14], which are only possible 
use to use after quantizing the problem. In this paper we 
propose a technique that takes further advantage of the 
quantized space by performing SD over the quantized lattice 
points, which is a much smaller number than the original 
number of points in the lattice noticing that clusters of points 
collapse into the same cell (or hypercube). 

II. LINEAR, CANCELLATION AND EXACT DETECTORS 
A MIMO system with flat Raleigh fading in each one of its 

sub-channels has the following complex baseband model 

 gnHxy += , (1) 

where [ ] ,,,, 21
T

NT
xxxx �= that is, each component is 

transmitted from each one of the NT transmit antennas, 
[ ] ,,,, 21

T
NR

yyyy �=  each component corresponding to the 
signal in each one of the NR receiver antennas and the noise 
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vector [ ]T
Ngggg R,2,1, ,,, nnnn �=  is composed of complex 

Gaussian circularly symmetric random variables with zero 
mean and variance 2

gnσ  (i.e., 22
gnσ  in both real and 

imaginary parts). The channel matrix H has dimensions 
NR×NT system is all its hi,j elements i.i.d complex circularly 
symmetric Gaussian random variables with zero mean and 
unit variance (i.e., with variance 0.5 in both the real and 
imaginary components), so that no gain is introduced. The 
components in x are taken from a set ΞC of symbols belonging 
to an M-ary complex constellation with real and imaginary 
parts taken from the real set ΞR. The symbols are taken from a 
given constellation ΞC having an average signal power 2

xσ . 

Thus, for a given SNR, the power 2
gnσ  is determined from 
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This complex valued model can be converted into one with 
the double number of dimensions where all the elements are 
real numbers by stacking the real and imaginary parts of x and 
y and thus constructing an equivalent real valued description 
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  or  rrrr nxHy +=  (3) 

where ℜ and ℑ denote the real and imaginary components 
respectively. Thus [ ]T

Nrrrr T2,2,1, ,,, xxxx �= , =ry  

[ ]T
Nrrr R2,2,1, ,,, yyy � , and [ ]T

Nrrrr R2,2,1, ,,, nnnn �= . Also, 

Hr has double dimensions with respect to H. The problem of 
detecting the transmitted symbols is optimally solved by 
maximum likelihood detection based on the (squared) 2�  
norm, i.e., the SED. The problem is 

 { }2
)( 2

minˆ rrrMLr
TN

r

xHyx
Rx

−=
Ξ∈

 

 ( ) ( ){ }rrr
T

rrr
TN
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xHyxHy
Rx

−−=
Ξ∈ 2

min  (4) 

This implies the measurement and comparison of TNM  
squared Euclidian distances per component of the RN2R space 
or per component of the complex space RNC in (1). Hence, the 
search increases exponentially with the number of 
transmission antennas for a given modulation. 

The minimization in (4) is equivalent to 

 ( ) ( ){ }rrZFr
T
r

T
rrZFMLr

TN
r

xxHHxxx
Rx

−−=
Ξ∈ 2

minˆ )(  (5) 

where xZF is the zero-forcing (ZF) solution that is obtained by 
the simplest linear receiver, i.e., the one that simply inverts the 
channel matrix. In the general case, as the channel matrix H 
(nor Hr) is not necessarily square (corresponding to NT = NR), 
then the Moore-Penrose pseudo-inverse of H is used, which is 

given by ( ) HH HHHH
1−+ = where (⋅)H denotes the Hermitian 

transposition. In this case the “filtering” matrix is += HWZF  

and therefore [ ]yHx += Slice ZF , where the “Slice” operation 
is used to detect the symbols in a constellation (the same 
applies to xrZF). This procedure induces noise enhancement in 
the constellation space where the decisions of constellation 
symbols are to be made. The MMSE receiver takes the noise 
into account, resulting in the following “filtering” 

matrix H
n

H
MMSE TSNR

HIHHW
1

1
−

�
�

	


�

� += . 

The OSIC-ZF receiver uses WZF in the initial iteration. The 
component of yr with the smallest noise amplification by the 
corresponding row of WZF is selected and detected. The next 
step is to remodulate that symbol and subtract its effect from 
the original received yr. This procedure is repeated for the new 
vector, originating the detection of a second component of y, 
and is repeated until all components have been detected. The 
OSIC-MMSE receiver operates similarly by applying WMMSE 
instead of WZF. The complexity of OSIC is only polynomial 
with NT [10] but the fact that an erroneous decision in one 
component cascades the error throughout the components to 
be subsequently detected explains why OSIC does not entirely 
exploit the diversity available in the system. 

The SD is an exact algorithm that makes use of (5) and 
bounds the maximum distance (radius) for the lattice points 
that are to be searched around yr by imposing 

 ( ) ( ) CrZFrr
T
r

T
rZFr <−− xxHHxx )()( . (6) 

By means of a factorization that can decompose HT H into a 
unitary matrix and an upper triangular matrix R (such as the 
Cholesky -when Hr is Hermitean- or the QR factorization), the 
inequality (6) can be re-written as 

 ( ) 
= =

≤
�
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noticing that the unitary matrix will not affect the norm. 
This allows us to compute (4) in a progressive manner, 

including the components of x one at the time. Thus, once the 
inequality does not hold for a certain symbol xi, there is no 
need to try the inequality including higher dimensions in the 
sum (i.e., other components of x). Whenever the last 
dimension is reached one has a combination forming x that 
obeys the inequality and the next step is to reduce the radius C 
for a subsequent search. 

III. UNIFORM MULTIDIMENSIONAL CELLS 
The detection technique presented in this paper operates in 

a space where both the lattice points and the received signal 
are uniformly quantized component-wise, giving rise to a 
slicing of the received space into uniform hypercubes (or 
cells). The clipping value is selected from the maximum 
component taken over all lattice points, i.e., { })(

,, max l
irsati yy = . 

Both the received signal and the lattice itself are bounded to 
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[−yi,sat, +yi,sat] in the ith real dimension, corresponding to the 
clipping imposed by Q(⋅), This creates a closed space that is 
an hypercube with edges of size 2ysat. By doing this no lattice 
point will suffer any quantization error due to saturation, 
however, if yr lies outside that space, it will be pulled 
(projected) into the closet face of the hypercube. It can be 
shown that this does not introduce any detection error [14]. 

According to (3), each component in yr is of the form  
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In the particular case of QPSK, both ixℜ  and ixℑ  are 

taken from TN2
RΞ ={−1,+1} and therefore the probability for the 

symbols components is P(ℜxi = −1) = P(ℜxi = +1) = 0.5 and 
P(ℑxi = −1) =P(ℑxi = +1) = 0.5. Denoting a Gaussian 
distribution with mean µ and variance σ 2 by N(µ , σ 2), then 
as defined in Section II, ℜhi,j∼ N(0 , 0.5) and ℑhi, j∼ N(0 , 0.5). 
Therefore, regardless the signal polarity affecting the 
Gaussian variables in (8), all the terms have a pdf N(0 , 0.5) 
and each component of yr has a pdf given by the convolution 

)5.0,0(1N ⊗ )5.0,0(2N ⋅⋅⋅⊗ )5.0,0(2 TNN ⊗ )2/,0( 2
2 gT nNN σ  

(the last term coming from the noise), and so yr,i ∼ 
)2/2/2,0( 2

gnTNN σ+ = )2/,0( 2
gnTNN σ+ . 

In brief, the received lattice components corrupted by noise 
have an overall Gaussian distribution and lattice points are 
distributed in the receive space according to a 2Nr-
dimensional Gaussian pdf with i.i.d. components. Hence, a 
uniform quantization yields a sub-optimal quantization of the 
lattice. A comparison between uniform and optimal non-
uniform quantization for Gaussian processes can be found in 
[15-Sec.5.3] in terms of the signal to quantization noise 
rations as a function of the number of quantization bits b. The 
gain is of the order of 2 dB for b=6 but, for the cases that we 
will be of interest for our proposal, say b<5, the gain is <1 dB 
and is negligible for b<3. 

Initially, the imaginary components of y are stacked under 
the real ones, generating yr, as in (3). Then the received 2NR-
dimensional space is quantized and all the possible points on 
the lattice are mapped into the new quantized space. Notice 
that these correspondences are needed to maintain in memory 
as they will be used to back trace the surviving candidates for 
the Euclidean distance test that follows. The possible points in 
the lattice are denoted as )()( l

rr
l

r xHy =  l=1, 2,…, TNM  and the 
quantization function by Q(⋅). The resulting quantized 
received vector is ry~ = [ ]T

Nrrr T
yyy 2,2,1,
~,,~,~

�  = 

[ ]( )T
Nrrr T

yyyQ 2,2,1, ,,, � . Each one of these components 

{ },,,,,~
321, Lir ccccy �∈ , i.e., the L=2b possible quantization 

levels (described by b bits) with a uniform step size 

1+−= mm ccq , for { }Lm ,,2,1 �∈ . We define the quantization 
step as q=2 which defines the quantization levels as 
{ },,,,, 321 Lcccc � = { })1(,,3,1,1,3,),1( −++−−−− LL �� . The 

total quantization noise in ry~  was quantified in [14]). 
It should be noticed that the distance considered so far is 

the squared Euclidean distance, i.e., the 2�  norm. One of the 
central ideas behind the proposal in this paper is that the 
neighbourhood surrounding the cell containing the received 
vector will be defined by a 1�  norm instead, also known as 
the squared Manhattam distance (SMD). 

Defining the component =∆ )(l
i ( ))(

,,
~~ l

irir yy −  for a particular 

point )(~ l
ry  of the quantized lattice, then the SED from the 

received quantized point to each one of the quantized lattice 
points are 
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with l=1, 2, ⋅⋅⋅, TNM , whilst the corresponding SMD is 
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,    l=1, 2, ⋅⋅⋅, TNM . (10) 

IV. PROGRESSIVE NEIGHBOURHOODS 

The quantized received vector ry~  lies inside a hypercube 
with sides having size q. Inside that same cell one can find 
any number of quantized points of the lattice, depending on 
the channel realization (Fig. 1). The minimum number of bits 
per dimension that originates a one to one correspondence of 
the lattice points with the hypercube was investigated in [13], 
[14] for different MIMO systems. The main objective for the 
proposed hypercube decoding is not to have a one to one 
mapping into the quantized lattice but rather to capture several 
lattice points inside distinct hypercubes so that some lattice 
points will exist inside the same hypercube where ry~  lies. If 
no point is found inside that hypercube then it is necessary to 
search in the cells in contact with it. Therefore it is important 
to know how to generate that neighbourhood and to be able to 
count the number of cells in it. To do this, one should take 
into account the fact that closest point to ry  is not necessarily 

inside one of the hypercubes that are closer to ry~ , as is 
exemplified in Fig. 2. It is possible to see there a situation 
where the closest lattice point to the yr is inside cell 4. 
However, after quantization, the selected (closest) point would 

be the one lying in the cell associated with )2(
ry . This would 

happen for any point in the shaded region (i.e., the region 
where the points are more distant to ry  than to )4(

ry  but are 

quantized in the cell associated with )2(
ry , because it would be 

closer to ry~ ). Because of the existence of cases such as this in 
Fig. 2, the neighbourhood should include all the cells in 
contact with the central hypercube. That neighbourhood is 
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defined by the set of cells ( )r
n

cN y~)(  = { }�y +r
~  for all possible 

∆∆∆∆    = [ ]
RN221 ,,, ∆∆∆ � with the ∆i components taken from 

{−n, …, −1, 0, +1, …,+n}, and n is natural number. Note that 

( )r
n

cN y~)(  obeys ( ) Cd rr ≤+ y�y ~,~2
2�

, with 
=

⋅=
RN

i

qnC
2

1

2)( . 
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(a)                                                      (b) 

Fig 1. Quantized lattice with L=8 (white circles) of the original complex 
lattice (black dots) in the first receive antenna of a 2 ×�2 system with QPSK 
symbols ( 16=TNM ) for two different channel realizations. 
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Fig. 2. Region associated to a particular 2D case where deciding according to 
the distance among cells leads to a wrong decision as the point in cell 2 is 
perceived to be closer to the point in cell 1 instead of the correct one in cell 4. 

 
Notice that the cells in the neighbourhood ( )r

n
cN y~)(  can 

even be easily ordered by construction, running ∆∆∆∆        from 
[ ] )21(,,,

RNnnn ×−−− �  to [ ] )21(,,,
RNnnn ×+++ � . 

The number of neighbouring cells for a given n is 
1)12( 2 −+ RNn  (excluding the central cell itself). By definition 

the central cell is its own zero-order neighbourhood ( )rcN y~)0( . 

For the first-order neighbourhood, ( )rcN y~)1( , and for the 
simple case of 2 dimensions (2NR = 2) one can see that the 
components ∆i are drawn from {−1, 0, +1, } and therefore the 

number of combinations for ∆∆∆∆ gives ( ) 813~ 2)1( =−=rcN y  

neighbours; in 3 dimensions the number grows to 

( ) 2613~ 3)1( =−=rcN y  neighbours. Both cases are depicted in 

Fig. 3. Despite being simple to visualize, neither of these 
cases correspond to a possible MIMO system (the first 
corresponds to a single receive antenna and the number of 
dimensions, 2NR, must be even). For a 2 × 2 system 

( ) 8013~ 4)1( =−=rcN y  and for a 4 × 4 system that number 

grows to 6560 cells.  
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Fig. 3. First-order neighbours of a cell according to the Euclidian distance. (a) 
8 neighbours in 2 dimensions. (b) 26 neighbours in 3 dimensions. Some 
displacement vectors ∆∆∆∆ are indicated. 

V. THE ALGORITHM 
Let us consider the constrained detection for a defined n 
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The selection of the points to be included in ( )r
n

cN y~)(  

would require to check all the TNM  lattice points, involving 
the same number of calculated distances in ML decoding. The 
benefit of dealing with an integer problem is that one can 
perform the neighbourhood test in an easier way. As the 
number of neighbours increases exponentially with the 
number of dimension it is desirable to select the nth-order 
neighbourhood with respect to the 1�  norm instead of 2�  and 
thus eliminate all the multiplications. This simplification does 
not lead to any errors as at this stage the receiver only selects 
a (reduced) number of candidate vectors for subsequent 
detection via minimum SED (which will always include the 
best vector). Fig. 4 depicts the difference between the first-
order neighbourhoods defined by norms 2�  and 1�  (in 2D). 

 

ry
ry~

)()( ~~ l
r

l
r yy ′=

ℜ

ℑ

 
Fig. 4. First-order (light shading) and second-order (darker shading) 
neighbourhoods according to the Manhattan distance in a bidimensional 
lattice (i.e., NR=1). The circle indicates the first-order 

2�
 neighbourhood. 

By evaluating if ( ) nd l
rr ≤− )(~~

1
yy

�
, for l=1, 2, ⋅⋅⋅, TNM , it 

is possible to determine which lattice points belong to the 
respective nth-order neighbourhood ( )r

n
cN y~)( . 

The detection starts by considering a pre-defined 
neighbourhood. If no lattice points were found, n increases 



ISWCS’07 – The 4th IEEE International Symposium on Wireless Communication Systems 2007, Trondheim, Norway, Oct. 2007 

until at least one point is found in the vicinity of ry~ . 
Conversely, if a dense cluster of lattice points is found at any 
stage, i.e, the number of points with ( ) 0~~ )(

1
=− l

rrd yy
�

 is 

higher than a certain threshold, then one increases the grid 
resolution by 1 bit.  

VI. RESULTS AND CONCLUSIONS 
Considering the analysis in Section III, the pdf for the non-

quantized lattice is ( ))(
,,
l
irir yy −  ∼ )2/,0(2 2

gnTNN σ+  = 

)2,0( 2
gnTNN σ+ . For the terms in sum of the SMD one has 

( ))(
,,
l
irir yy −  ∼ )()2,0(2 2 xuNN

gnT σ+ ≡ g(x) (see Fig. 5), 

where u(x) is the Heaviside step function (1 for x>0 and 0 for 
x<0). Finally, given the sum in (10), the pdf for the SMD will 
be the convolution g1(x) ⊗ g2(x) ⋅⋅⋅ ⊗ )(2 xg

RN , which is 

difficult to obtain analytically. Fig. 5 also shows the final 
result for this convolution and therefore for the distribution of 
the SMD. Note that for the equivalent pdf for the SED one has 
a chi-squared-like distribution with 2NR degrees of freedom 
(constructed from Gaussians with non unitary variance). 

Fig. 6 depicts the pdf for the number of lattice points inside 
two different neighbourhoods (defined by normalized 
Manhattan distances in the quantized lattice). In both cases the 
average is much smaller than the original 256 points (and it 
can be further reduced). Fig. 7 shows that the performance 
attained with the specifications of Fig.6(b) is within 3 dB of 
the ML curve. 
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Fig. 5. Pdf for the abs components (ligher) of the SMD given by (10) and pdf 
of the final SMD (darker) obtained from the 2NR convolutions of the pdf’s of 
the abs components (for NR=4 and SNR=15dB) 
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Fig. 6. Probability for the number of lattice points inside a region defined by 
two different normalized Manhatan distances. 2 × �2 system with QPSK, i.e., 
with 256=TNM ; and b= 2 bits (L=4 levels) per dimension; SNR=15dB. 
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Fig. 7. SER versus average SNR for standard receivers and progressive 
hypercube detection with a neighbourhood defined by a normalized Manhatan 
distance 6 in a 4 × 4 system using QPSK ( 256=TNM ). 
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