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Abstract— Either in communication or in control applications, 
multiple-input multiple-output systems often assume the 
knowledge of a matrix that relates the input and output vectors. 
For discrete inputs, this linear transformation generates a 
multidimensional lattice. The same lattice may be described by 
an infinite number of generator matrixes, even if the rotated 
versions of a lattice are not considered. While obtaining the 
Gram matrix from a given generator matrix is a trivial 
operation, the converse is not obvious for non-square matrixes 
and is a research topic in algorithmic number theory. This 
paper proposes a method to execute such a conversion and 
applies it in a novel MIMO system implementation where some 
of the complexity is taken from the receiver to the transmitter. 
Additionally, given the symmetry of the Gram matrix, the 
number of elements required in the feedback channel is nearly 
halved. 

I. INTRODUCTION 
Any multiple-input multiple-output (MIMO) system is 

traditionally described by a generator matrix. In the wireless 
(and recently also in wired [1],[2]) communications systems 
context, the matrix storing the fading coefficients between 
transmit and receive antennas is known as the channel 
matrix, however in other contexts which operate with 
vectorial spaces, the matrix receives other names. 
Considering that the inputs are restricted to a set of discrete 
inputs isomorphic to � , these systems can be framed in the 
general theory of lattices. 

The regularity of a lattice lends itself to the representation 
of problems where different signals are interpreted as a point 
in a multidimensional space. They appear in many areas of 
signal processing such as quantization[3][4][5] or image 
processing [6]. Recently, lattices have also become a central 
tool in cryptography [7] [8]; they are also used in numerical 
integration (i.e., quadrature) of multi-dimensional functions 
constituting lattice rules [9][10], and have a long history in 
the fields of geometry of numbers, algorithmic number 
theory [11], multidimensional sphere packing (important in 
coding theory) [12] and also in integer programming [13].  

The communication theory community has recently seen 
topics that were thought to be distinct (such as the multiple 
access channel, the broadcast channel, precoding, space-time  
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coding, MIMO spatial multiplexing, and even OFDM) 
unified from a lattice perspective as a general equalization 
problem (e.g., [14]). Advances in lattice theory are therefore 
of great interest for MIMO engineering. 

There are several ways of describing a lattice (e.g., via 
modular equations [15] or trellis structures [16]), however, 
the two most popular ones in engineering applications are i) 
the generator matrix and ii) the Gram matrix. The 
computation of the latter given the former is trivial. The 
reverse is not, and an efficient algorithm for this conversion 
remains an open problem in the theory of lattices. 

It should be noticed that an efficient algorithm for this 
reverse operation can allow a lattice to be described using 
only about half the number of elements usually required 
when the dimensionality of the space is sufficiently high, 
provided that the Gram matrix is always symmetric. For 
example, in MIMO communications with channel state 
information at the transmitter (CSIT), this means that about 
half the number of coefficients would need to be sent to the 
transmitter (Tx) when compared with that when using 
traditional feedback [17]. Using the traditional example in 
[17] , while in a single-input single-output configuration 
(with BPSK modulation) the channel state information is 
conveyed by one coefficient only, in a 4×4 antenna system 
one has 16 complex variables describing the channel, or 
equivalently 32 real coefficients, that need to be periodically 
fedback to the transmitter. In fact, the number of coefficients 
to be fedback is the product of the number of antennas at the 
transmitter, at the receiver (Rx), the delay spread and, in 
multi-user environments, also proportional to the product 
with the number of users. 

This paper shows how an approximate solution to an open 
problem in algorithmic number theory may lead to a more 
efficient CSIT mechanism. The paper proposes an algorithm 
to obtain a close approximation for a generator matrix given 
a Gram matrix of a lattice. The algorithm is based on an 
exact technique recently proposed by Lenstra [11] (an 
historical figure in the fields of algorithms for lattices). This 
paper uses the proposed algorithm as a constituent block in a 
novel strategy for closed-loop MIMO communication. 

II. LATTICE BASICS 
A lattice is a discrete subgroup (of maximal rank) in a 

Euclidean space and can be defined in a number of ways, as 
listed in Section I. We summarise here the most common 
ones. 
A. The generator matrix 

A n-dimensional lattice �  may be defined by  
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where y are the points of the lattice, hi  are the generating 
vectors where each corresponds to the ith column of the n×n 
generator matrix H (considering full-rank lattices only). 
Each integer xi is an element of the column vectors x. Thus, 
a lattice defined as in (1) is the span of the column space of 
the generator matrix H, when we restrict the input to integers. 
Note that the prevalent notation in MIMO literature 
considers column vectors while in channel coding or in other 
fields in mathematics lattices are traditionally represented by 
the span of the row space of a generator matrix. Notice that 
rows and columns of a given H span different lattices. 

Any generator matrix � can be transformed into one 
representing an equivalent lattice defined by 

 
��

� �� �� � �  (2) 

where �  is an unitary matrix (with real elements and 
���� � ��� ), and where �  is a unimodular matrix (with 

all elements integers and ���� � ��� ).  
With this in mind, the unitary transformation �  performs 

a rigid rotation of the lattice structure (i.e., of its generating 
vectors), while the unimodular matrix replaces a set of 
generating vectors by a different set that still generates the 
same lattice. Essentially, �  finds an equivalent basis for 
the same structure and �  rotates the entire structure in 
space. 

One of the hardest lattice problems is the lattice 
distinguishing problem, i.e., to discover if two lattices are 
“the same”. Once �  or �  are fixed, answering the 
question becomes trivial. But when both transformations are 
unknown the question is difficult to solve in some particular 
problems [18],[19]. This decision problem has a simple 
solution when the lattices are rational lattices (when all 
entries are in � ). In that case two lattices are equivalent if 
and only if their generating matrixes have the same Hermite 
Normal Form [13],[20]. However, the real lattices that arise 
in communication problems lead to numerical problems 
given the large numerators and denominators in the fractions 
representing fading coefficients. In that case the best 
approach is to use the fact that the QR decomposition is 
unique up to signs in the main diagonal. 

B. The Gram matrix 
Gram matrix is obtained from 

 ��� � � , (3) 
where H is the Hermitian operator (conjugate and transpose). 
The  elements  of �  correspond to all the possible inner 
products 

� �
�� � between all generating vectors and thus is 

unique to a lattice subject to unitary transformations �
(albeit not unique for unimodular transformations � ). It 
should be noticed that, by construction, �  is always 
symmetric (because the inner product is commutative) and a 
definite positive matrix. This second property can be verified 
from the squared Euclidean norm of  y (using the Hermitian 
operator): 

      �  �
	 �

� � � �� � � � � �� � � �� �� � � �� � �� . (4) 

Consequently, one can state that G induces a quadratic 
form and is definite positive because 
��  for any 
�� . 
This permits us to say that �  always has a LDLT 
decomposition [21][20][22]. 

Obtaining a valid �  from �  is not simple. �  defines an 
abstract lattice, however, two versions of a lattice will have 
the same Gram matrix and in general, for a given � , 
obtaining a possible �  is named the Gram matrix 
factorization problem. When �  is square, the Cholesky 
decomposition offers a good solution as it applies to 
symmetric definite positive matrices [21]. For the general 
m×n case, obtaining a basis from a specified Gram matrix 
had no available method in the literature until recently [11]. 

C. The volume of lattices 
Full rank lattices are specified by a full-rank generator 

matrix and the volume of a lattice (e.g., [8]) is given by 

  ���� � ���� � � . (5) 

When� is rank-deficient (which is the case when � is 
non-square), the volume is 

  �  �  ��� ��� ����� � �� � � . (6) 

III. MIMO MODELS 
For a traditional complex representation with NT inputs 

and NR antennas as outputs, the received signal is 

 � �� �� 	 , with (7) 
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� , where each entry 

�� �
� is a zero-

mean circularly symmetric Gaussian random variable with 

unitary variance. The noise vector is 
� 	
� � �
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�
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 �

� �  with independent circularly symmetric Gaussian 
random variables, each one with a certain variance 	

�
� . 

In the remainder of the paper we will resort to the 
equivalent real model of complex lattices: 

 
   

� � � �� � � �� � �� � �� � � �� � � �� � � � �� � � �� � � �� � � � �� � � �� � � �� � � �� � � �

� � � � 	
� � � 	

� � � � 	
(8) 

IV. THE MATRIX CONVERSION METHOD 
Given a rational Gram matrix � it is possible to 

diagonalise the quadratic form as 

 	� � �� 
 � 
 , (9) 
where L is a rational n×n lower triangular matrix with ones 
in the diagonal (i.e., is a unit matrix) and D is a n×n diagonal 
matrix with rational diagonal entries 


��
� � . 
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We propose to expand these 
��
� � �  into a sum of a fixed 

number of squares of R rational numbers, that is, 

 	 	 	

�� �	 ��� � � ��
� � � �� � �� � . (10) 

An exact expansion of these djj can be accomplished by 
applying a naive greedy algorithm as proposed for the first 
time by Lenstra in [11]. Imposing an exact expansion for 
each 

��
�

 
often leads to a large number of terms in the sum 

(10) and for that reason Lenstra also proposed the use of a 
randomized algorithm given in [23], which assures the 
bound �� � . 

This paper proposes to replace an exact conversion from 

� to �  by an approximate conversion (leading to a �� ) 
using a fixed complexity algorithm that can be applied in a 
real time communication system. Based on the results in [23], 
we use a simple greedy algorithm for the expansion and 
truncate the number of terms to �� �  leading to a 
truncated Lenstra algorithm. One way of achieving this is by 
using R equal terms in (10). One may notice that when R=1, 
the algorithm resorts to an approximated Cholesky 
decomposition. 

One starts by constructing a tall matrix �  with � ��  
rows and n columns. For the case with R=4 terms for each of 
the djj, � has the form 
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(11) 
where each row has one and only one non-zero entry. Now, 
one can re-construct the diagonal matrix �  from �  using 

 
	� � �� � ��  

We have made this matrix multiplication explicit to 
emphasise how this ensures that each djj is a sum of squares 
as defined in (10). Finally, the approximated generator 
matrix can be seen to be  

 	� �� � 
� , (12) 
because 
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which verifies (3). 
The complexity of this technique is cubic in the 

dimension n, due to the LDLT steps, to which we should add 
 ��� for the rational approximation steps. The overall 

complexity is  ��
� ��� , however, as it will be shown 

later in Table 1, as the LDLT decomposition will be reused, 
only the n term will add to the complexity of the technique 
to be presented. 

It should be noticed that, unlike Cholesky decomposition, 
this technique is applicable to both square and non-square 
matrixes, allowing us to retrieve a rectangular �  from � . 

V. CLOSED LOOP TECHNIQUE 
Using traditional singular value decomposition (SVD) 

[1][24][25], 

  �
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���	

��	
 (14) 

where � is a diagonal matrix and  and � are unitary 
matrices (i.e., norm-preserving rotations, and therefore 	  
preserves the statistics of the noise term). A SVD-based 
scheme implies one SVD decomposition (requiring at least  

��� ���  flops [22]) at the Rx in addition to matrix 
multiplications both at Rx and Tx (each multiplication 
requiring �� ���  flops).  This technique achieves capacity 
through water filling power allocation (according to the 
singular values) [26]. 

In [27] it was shown that the LDLT decomposition 
achieves better performance than standard SVD, while being 
slightly less complex. Most importantly, that new approach 
takes advantage of having a precoding matrix with 
	� ��	� ��  zero elements. In fact it requires a in the 

precoder instead of the unitary � in (14). That lower 
triangular matrix is fedback from the Rx to the Tx, saving 
bandwidth in the feedback channel. 

This paper proposes a technique that achieves the same 
performance as [27] while removing most of the complexity 
from the receiver side to the transmitter side, which is an 
important feature in scenarios where the transmitter is a base 
station and the receiver terminal should be made as simple as 
possible, i.e., by  avoiding expensive processing. 

Remark: as in [27], this paper is not assessing the 
capacity-achieving regime and thus, for simplicity, uniform 
power is allocated to the transmit antennas. 

Both this proposal and [27] have a pre-processing stage at 
Rx consisting of the generation of a definite positive matrix 
G, the Gram matrix of the lattice defined by the columns of 
� . This Gram matrix is formed by the left multiplication (3) 

In this proposal it is imperative CSIT so that Tx can 
construct the precoding matrix � . This paper shows that his 
can be achieved with the feedback of a lower triangular 
matrix only. Given the symmetry of �, the Tx only needs to 
receive 	� ��	� ��  coefficients and from them is able to 
reconstruct the entire matrix, achieving the same bandwidth 
savings seen in [27] for the feedback channel. After 
reconstructing the entire �  (by symmetry), the Tx can use 
the truncated Lenstra algorithm described in Section IV to 
obtain an equivalent generator matrix (Section II) for the 
lattice. This matrix, �� , is not the same as � but rather an 
equivalent generator matrix for the lattice, holding the same 
Gram matrix.  However, it is possible to obtain from them 
the same and unique generator matrix resulting from QR 
decompositions remembering that a QR decomposition is 
unique when imposing the positiveness of elements in the 
main diagonal. Thus 
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 �� ��  and �� ��� � �  (15) 

lead to � and �� , which would be the same matrix (up signs 
in main diagonal) if there was no distortion associated with
�� in the truncated Lenstra algorithm. A central aspect is that 
the same Gram matrix is also obtainable from � alone, ��
alone or even a mixture of both, given their closeness: 

 	 	 	� � �� � � � � � �� � � . (16) 

As indicated in Section II.B and in Section IV, �  would 
have a LDLT decomposition, which can be calculated not 
only given �  or ��  (in both cases applying (3)) but also 
given � , or �� , or both. However, this will not be the 
matrix to be LDLT decomposed. 

Taking advantage of these facts the mode in (7) and be 
changed into  
 � �� �� � 	  (17) 

and then, applying a precoding matrix � ��	� �	 	 � ��� � 
 �� � � , 
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. (18) 

The matrixes used in (18) will be presented and justified 
on the fallowing. First, notice that this made a matrix 

	 �� ���  to appear (a permutation matrix may be needed 
together with ��  to have a unique QR), which, despite not 
being the Gram matrix of the underlying lattice, it is the 
(approximate) Gram matrix of the lattice spanned by the row 
lattice (as indicated in Section II). This matrix  � also has an 
LDLT decomposition and thus (18) can equivalently be 
written as 

 � ��	� �	 	 � �
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. (19) 

Finally, after the detection filter at the receiver, the entire 
chain becomes 
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(20) 
It should be noticed that, as Q is orthogonal (unitary if 

considering complex models), then � 	� �� � , which 
further simplifies the computations at the receiver. The Rx 
will then just have to apply the filtering � 	��� 
 ��  to the 
incoming precoded signal, i.e., the unavoidable filtering 
multiplications that are present in all detectors. Besides that, 
the Rx only needs to compute G and (given its symmetry) 
send back to the Tx only the lower or the upper parts of G, 
which will be denoted by 

��	
� . Moreover, both ��
�  and 	�  

are computed and sent from the Tx to the Rx. 
The resulting transmission chain (20) can be interpreted in 

two ways: i) algebraically it corresponds to a set of 

independent transmission channels and ii) geometrically it 
corresponds to a communication problem over a rectangular 
lattice. Thus, it is convenient to think of a lattice as the result 
of a linear transformation of the cubic lattice �

� . 
The diagonal matrix 

��
�  corresponds to a set of 

orthogonal generating vectors which span a rectangular 
lattice (this lattice would even have the simplest trellis 
representation one may have for lattices, e.g., [16]). The 
performance increase can be geometrically interpreted from 
this insight. A rectangular lattice is obtained from a 
deformation of a cubic lattice �

�  by stretching each 
dimension according to each  

��
� . Its decision regions are 

rectangles and thus even a zero-forcing detector experiences 
no performance penalty. 

The right multiplication of the channel matrix by 	�� in 
(17) changes the power at the transmitter. The geometric 
interpretation is also useful on this matter. The “row lattice” 
� �	��  has volume 

  �  ��� � � ���	 	�� ��� � �� . (21) 

At the same time, because 
�  and 	
�  are unit matrixes, 

  �  �  ��� � � ��� ��� 	� �� � 
�
� � � � ���  

  �  ���� ��� 	 � �� ��� � � . (22) 

Subsequently, one also needs the insertion of a diagonal 
scaling ��	��  at the precoding stage so that the volume of 
both lattices underlying the transmission scheme becomes 
the same. 

Figure 1 depicts the overall transmission scheme that is 
proposed while in Figure 2 and in Figure 3 one can observe 
in detail the processing required respectively at the Tx and at 
the Rx as well as the fluxes of CSI between both of them. 

At the Rx it is important to highlight that there are two 
parallel processing occurring at different stages and each one 
associated with a different fading block: i) obtain G that will 
be sent back to Tx in the form of a triangular matrix and ii) 
construct the receive filter from a received strictly upper 
triangular matrix and Q. In fact, ��
�  is not only a lower 
triangular but also a unit lower triangular (ones in the 
diagonal). This saves the transmission of the diagonal and 
thus only the 	� ��	� ��  coefficients of ��
� are needed to 
be forwarded to the Rx. These coefficients are denoted by 
�

�

�
� . The process is summarised in Algorithm 1. (The 
channel is assumed to remain unchanged between adjacent 
symbols as it is common in the slow fading assumption.) 

 

Figure 1: Proposed closed loop transmission scheme. 
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Figure 2: Processing at the transmitter. 

 

Figure 3: Processing at the receiver. 

 
ALGORITHM 1: CLOSED LOOP TECHNIQUE 

1: Channel estimation at Rx : H 
2: Gram matrix of the lattice at Rx : 	�� � �  
3: Lower triangular matrix is feedback: 

��	
�  (Rx→ Tx) 

4: Gram matrix is reconstructed at Tx: 

 �  ���	 ��	 ��	
����

	

� � �� � � �
 

5: Obtain approximate ��  from �  using the algorithm 
      in Section IV (which encompasses a 	
�
  for � ) 
6: Compute QR decomposition of  �� : �� ��� � �  
7: Compute the Gram matrix of the “row lattice” at Tx: 

      
	 �� ��� � �  

8: Decomposition of  �  at Tx: 	 �� 
�
� � � �  
9: Precoding at Tx: � ��	� �	 	 � ��� � 
 �� � � ; � is sent 

(note: for a non-squared �� the non-zero rows must be 
deleted) 

10: Strictly lower triangular matrix is sent: �

�

�
� (Tx→ Rx) 

11: Compute QR decomposition of  � : �� ��  
(note: can be computed at the same time as steps 4-10) 

12: ��
� is reconstructed at Rx: 
� �

� � �

� �

�
� �
 
 �� �  

13: Receiver filter � 	��� 
 ��  multiplies the received 

chain and the received vector becomes ��	

� �
� �� � � 	�  

 
The number of flops required by the LDLT decomposition 

is �� ����� , which is half of the number of flops needed in 
Gaussian elimination, the number of flops of QR 
decomposition is ��	 ��� , and for the standard matrix 
multiplication one has �� ��� [21][22][28](though there are 
more efficient algorithms for matrix multiplication). Table 1 
contains a comparison of the proposed technique with SVD 
and with [27] in terms of the number of flops and number of 

coefficients flowing in both the uplink and downlink. The 
number of operations in Table 1 is presented in a way that 
shows the contribution of each individual processing stage to 
the total number of operations of the Rx or Tx (matrix 
multiplications are counted as only one �� ��� though). The 
complexity at the receiver comes from a QR decomposition 
and two matrix multiplications: one to initially obtain � 
(similar to [27]) and then the unavoidable filtering 
multiplication by �  . One should remember that this last 
multiplication is common to all types of receivers in both 
closed or open-loop configurations. 

TABLE 1 

 SVD [27] Proposal 
# flops at Rx  �� ��� ���  �� � ��� � �� ��   �� �	� � ��

 

# flops at Tx  ����   ����  
�

� �

	

�

� �
�
� �

! "� �#$ #$ #$ #$ #� #$% &
 

Coefficients 
in feedback 

	
�   �	 	� ��   �	 	� ��  

Coefficients 
in downlink 

− −  �	 	� ��  
Total of 

coefficients 
	
�   �	 	� ��  	

�  

 

VI. ASSESSMENT OF THE APPROXIMATION 
To access the approximation one first computes the error 

matrix of the Gram matrix involved (i.e., the Gram matrix 
associated with the “row lattice”, as indicated in Section V) 

   � �� � ��  (23) 
and one applies to it the squared Frobenius matrix norm [22] 

  �
		

�
�

����� �

� ��
� �

�� ��� ��  (24) 

as the evaluation metric. 
Figure 4 shows the distribution of this error for three 

example cases having the number of real dimensions most 
common in MIMO wireless communications (and with 
variance 0.5 per real component). 

Notice that despite the Gram matrix of the “row lattice” 
and the one of “column lattice” being different, they hold the 
same distribution because �  and ��  exhibit the same 
statistics and consequently they are interchangeable in (3). 

For a NT =4, NR =4 configuration (i.e., n=8 dimensions) 
under a Rayleigh fading channel and using 16-QAM 
modulation, it was verified that with the LDLT 
decomposition proposed in this paper the error shown in 
Figure 4 leads to a negligible performance penalty in terms 
of symbol error rate (SER) in respect to the results presented 
in [27] for the same configuration when using the same 
minimum mean squared error (MMSE) receiver. 

VII. CONCLUSIONS 
This paper shows how to reconstruct (with very low 

distortion and fixed complexity) a generator matrix of a 
lattice from one given Gram matrix of the same lattice for 
non-square matrixes. This opens new possibilities in several 
problems of engineering and computer science that rely on 
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lattice geometry as it breaks through the restriction that the 
Cholesky decompositions imposes (valid for squared 
matrixes). Subsequently, the paper shows how the algorithm 
devised in Section IV can be central to a technique for 
channel diagonalisation of MIMO systems. With this 
technique: i) LDLT decomposition takes place at the transmit 
side; ii) the number of elements to be fedback to Tx is 
	� � 	� �� , as in [27]; iii) the filtering matrix at Rx is build 

from a unit lower triangular and an orthogonal matrix, which 
further reduces the complexity of the filtering matrix 
multiplication at Rx. The extra cost to bear is a QR 
decomposition at the Rx. However, a QR module would have 
to exist at Rx if typical open-loop spatial multiplexing 
schemes are also to be supported. For large number of 
antennas, the presented closed loop architecture (i.e., with 
CSIT) for MIMO communications nearly halves the number 
of coefficients traditionally needed to represent the channel. 

 
Figure 4: Probability distribution of the squared Frobenius norm of the error 
matrix for ��  (or  �� ). 
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