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ABSTRACT
Wireless connectivity for vehicles is a fast-growing market, with a
plethora of different network technologies already in use. Surveys
of the numbers of IEEE 802.11b/g access points in cities point to
hundreds to thousands of networks within each square kilometre,
with coverage areas that are not easily predicted due to the com-
plexities of the urban environment. In order to take advantage of
the diversity in wireless networks available, we need data concern-
ing their coverage. Methods of generating such coverage maps that
are accurate, space-efficient and easy to query are not a well ad-
dressed area. In this paper, we present and evaluate, using a large
corpus of real-world data, novel algorithms for processing large
quantities of signal strength values into coverage maps that satisfy
such requirements.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless

General Terms
Algorithms, Measurement

Keywords
Wireless, vehicles, coverage maps

1. INTRODUCTION
Providing Internet access to vehicles on the move is a growing

market and area of research [19]. There are many applications,
from simple ones such as web browsing and e-mail to more de-
manding tasks such as voice-over-IP conversations. In addition, we
are likely to see vehicles being used as mobile sensor platforms that
upload their sensor data for further processing [14], such as in the
generation of pollution maps or for congestion-aware traffic rout-
ing. Many applications will require a guaranteed minimum quality
of service (QoS), particularly two-way, real-time applications such
as video calling. Others, such as the background downloading of
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updated city maps will be more tolerant of disconnections, but will
require as high a throughput as possible.

Today, many different wireless network technologies exist that
could be used together to provide near-ubiquitous connectivity to
vehicles. For the majority (including IEEE 802.11x, UMTS cellu-
lar, and WiMax), the throughput achievable is dependent on the
signal strength experienced by the mobile terminal. As a con-
sequence, the coverage areas of the highest throughput networks
are becoming ever smaller (e.g. UMTS HSPA cell coverage is less
than that of GSM GPRS, whilst 802.11g has a lower range than
802.11b). There is vast diversity in the networks available: the
CarTel project [3] recorded over 32,000 distinct WiFi networks in
Cambridge, USA, whilst other work found some city APs whose
coverage overlapped with that of up to 85 others [1].

The main problem using multiple heterogeneous wireless net-
works over time is selecting when, and to what network, to perform
a handover to. Handover schemes may bereactive, where the tar-
get network is selected on instantaneous measures such as signal
strength, orproactive, where extrinsic information concerning the
networks is used. In particular, knowledge of the coverage areas of
the many networks available can enable mobile clients to increase
their QoS significantly. In this work, we look at how to construct
such coverage maps.

Coverage maps enable clients that are location-aware to prepare
for a network handover before the first beacon for such a network
is encountered, e.g. by beginning to decrease their TCP advertised
window size towards zero. Clients are also free to set their stabilisa-
tion threshold to be a single beacon, as the coverage map indicates
how long the network will be available (and hence if it is worth
connecting to). Finally, because devices are aware of the sizes of
the regions of radio shadow (i.e. how long a network isnot avail-
able for) they are able to decide whether a handover to another
overlapping network should be performed, or whether the disrup-
tion caused by the temporary radio shadow is less than that which
would be caused by the handover.

We focus on the constrained problem domain of vehicles, rather
than on unconstrained pedestrian mobility. The rationale behind
this choice is that most long distance or high speed mobility takes
place on vehicles, and hence it is here that optimising handovers
will be most challenging. The vast majority of vehicles move on
well-defined routes, such as the road network, railway lines, or air
corridors

2. RELATED WORK
Various authors have proposed proactive handover algorithms

that assume coverage maps are available. One approach compiled
a database of signal strengths to predict handovers [24], whilst an-
other used knowledge of the motion of a vehicle to reserve band-



width on networks that would come into range, implicitly assum-
ing such coverage was known [13]. Most recently, the Mobisteer
project [18] used a steerable-beam antenna to record, for each road
segment, the wireless network with the lowest packet drop rate. On
subsequent journeys, this network was automatically connected to
once more. The approach we propose involves mapping the cov-
erage ofall wireless networks, and then allowing a mobile node to
select which to connect to, based on its current needs (e.g. highest
throughput, or fewest handovers), rather than choosing only one
network as being the “best” for each road.

A variety of techniques have been suggested for generating cov-
erage maps that are more detailed than those produced by the war-
driving community. In most cases, the RSS and/or throughput is
surveyed at a number of locations, and these are then used to predict
the coverage at nearby locations which were not included in the sur-
vey. Kamakaris and Nickerson [10] exhibit human-readable con-
tour maps of a university campus generated by linear interpolation.
However, they do not go on to evaluate this method’s accuracy, or
whether it would scale to thousands of input points. Other work on
contour map generation and contour simplification [15] has been
carried out by simulation rather than measurement: a wireless ac-
cess point is considered to have a boundary within which it pro-
vides service, and outside which it is unusable. Such approaches
neglect the fact that the RSS value is perturbed by noise, implicitly
assuming that a single measurement is representative.

Another approach used grids of cells, each with its own associ-
ated RSS value, as coverage maps. These cells could be of fixed or
variable size, and their values were updated whenever a new read-
ing was obtained. Radio propagation path loss models were used to
estimate from a reading in one cell what those of its neighbourings
would be [12]. However, these approaches assume that we have all
necessary geographical topology information to provide to the path
loss models; this is unlikely to be the case in cities, where wireless
propagation is complex.

Several projects have collected large quantities of RSS or through-
put data. The CarTel project carried out a large-scale survey of the
performance of the wireless access points (APs) found in a city [3].
The aim was to ascertain what connection quality such APs could
provide, rather than map them. Similarly, measurements carried
out by Microsoft Research investigated how well beacons from APs
were received by vehicles, and detailed how the locations of areas
of good or bad coverage were fixed [16], but did not set out to pro-
cess large amounts of raw input data into coverage maps that could
be easily queried.

Wireless positioning systems are another domain for which large
quantities of RSS data is collected, RADAR [2] and Intel’s Place
Lab [11] being two well known examples. The principal difference
between our work and that in wireless positioning systems is that
we seek to create highlyspace-efficientrepresentations of the RSS
data recorded during the collection phase, rather than store all of
the database on a user’s device. We also seek to make this space-
efficient representation in such a way that it is useful for proactive
handover algorithms, i.e. to be able to efficiently answer questions
such as “what is the coverage area of networkx?”. Clearly, the data
sets used in Place Lab (and similar systems) could be processed to
answer such queries: the crucial question ishow such processing
is done, and how efficient this is. In this paper, we aim to answer
these questions.

2.1 Contributions
In this paper we focus solely on the techniques used to pro-

cess the raw RSS data into coverage maps, and do not go into
detail about themechanismsbehind the uses of coverage maps.

Our contributions are therefore: outlining the needs and require-
ments for coverage maps; adapting existing algorithms from other
fields to the problem of smoothing large quantities of irregularly-
spaced, noisy received signal strength (RSS) data for both UMTS
and 802.11b/g; using synthetic data to optimise our proposed al-
gorithms; and, evaluating the algorithms in terms of their accuracy
and compactness of result, using a corpus of real-world data col-
lected over 3 years.

3. DATA COLLECTION
As part of the Sentient Vehicles project [5] at the University of

Cambridge Computer Laboratory we have collected a large quan-
tity of sensor data from a vehicle which is driven by many mem-
bers of our research group for their day-to-day activities. Sensors
include vehicle parameters such as speed, coolant temperature, and
engine revs, environmental aspects such as humidity and carbon
dioxide concentration, and received signal strength (RSS) for dif-
ferent wireless networks.

We utilise an Orinoco PCMCIA IEEE 802.11b/g wireless card
in conjunction with the wireless-tools utilities under Linux to scan
for wireless networks as the vehicle is driven. Similarly, an Option
GlobeTrotter 3G PCMCIA card connected to Vodafone’s cellular
network is regularly probed to ascertain UMTS signal strength. We
deliberately do not attempt to record the base station being used, as
cellular networks do not allow clients to choose which to use. Some
areas will exist where a client obtains service from different base
stations at different times: we have not found this to pose a problem
in our work. Both cards utilise external antennas. RSS readings
are obtained on average every 1.5 seconds from the 802.11 card
and every 4 seconds from the UMTS card. These are logged fully
autonomously whilst the vehicle is driven. Location information
is obtained from an onboard GPS receiver (based on the highly
accurate SiRFstar III chip) every two seconds. This is then linearly
interpolated in order to obtain the position of each wireless RSS
reading.

3.1 Hardware Specificity
Both the UMTS and 802.11b/g cards give hardware-specific RSS

measurements, i.e. these would be different for a different hard-
ware configuration. Previous work by Haeberlenet al. has shown
that the relationship between the RSS values reported by different
802.11b/g cards is linear and moreover is simple to determine [9],
whilst the 3GPP TS 27.007 standard provides a conversion from
unitless UMTS RSS to values of signal power in units of dBm.
RSS readings from different HSDPA modems should therefore be
approximately consistent. Hence, in our scheme, all values in a
coverage map that was collected with a hardware configuration that
was different to that with which the map was being used could be
easily adjusted with a one-time operation.

By collecting RSS data (as opposed to recording the instanta-
neous throughputs), we do not limit the utility of the coverage maps
to a particular hardware configuration that is capable of a particu-
lar throughput for a given RSS value. In addition, a throughput
(rather than RSS) map would be specific to a particular protocol (in
particular TCP or UDP), packet size, and forward error correction
rate, and hence would not be as generally applicable. In contrast,
RSS data is only subject to the physical effects on the radio chan-
nel, such as attenuation and interference, which will be present no
matter which higher-layer protocol utilises the channel.

3.2 Our Dataset
Over the course of the last 3 years we have collected in excess

of 820,000 UMTS and 9.5 million IEEE 802.11 RSS data points in



and around the city of Cambridge, UK, a subset of which is shown
in Figure 1. This has allowed us to build up a comprehensive data
set that can be used to examine how wireless coverage varies in a
real urban environment over a long period of time.
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Figure 1: Map of UMTS cellular RSS (darker implies higher
RSS) and base station sites (green circles) around the city of
Cambridge, UK.

4. SIGNAL STRENGTH VARIABILITY
Coverage maps implicitly assume that RSS readings are stable

(or vary deterministically) over time. In order to validate this as-
sumption we recorded large numbers of RSS values in two loca-
tions, collecting 1.34 million UMTS RSS readings over 2.5 months
(continuously sampling every 4 seconds), and 1.27 million 802.11b/g
RSS readings over 7 months (not continuous, but including day and
night periods). We found no correlation with time of day, or tem-
perature, absolute humidity, pressure and wind speed, as recorded
by our weather station. Other research such as Intel’s Place Lab
project has also reached similar conclusions concerning the stabil-
ity of RSS readings for a given location for IEEE 802.11b/g [4,
16].

Our results showed that both UMTS and 802.11b/g RSS values
for a given location can be approximated by normal distributions,
having standard deviations of 3 dBm and 3.5 dBm respectively
(hence 90% of values will be within 6 dBm and 7 dBm of the mean,
respectively). Therefore, we make the assumption that at a given
location, RSS has a single “true” value, which is perturbed by noise
taken from a distribution with zero mean and with the relevant of
the above standard deviations.

It is important to note that RSS can be affected by environmental
factors such as cell breathing. In an urban environment, moving
objects such as vehicles will also cause RSS to vary [8]. We hy-
pothesise that the variation in the RSS values we have recorded is
due to these environmental effects.

4.1 Relationship of Throughput to RSS
Finally, another assumption that must be validated is the relation-

ship between throughput and RSS. This link has been experimen-
tally shown for IEEE 802.11b/g [17]. For cellular networks this
is not generally evident with robust modulation schemes, as used
for GSM/GPRS. However, third generation cellular networks us-
ing HSPA or EDGE do show such dependence [6], and we have
carried outqualitative experiments to ascertain the approximate
TCP throughputs achievable on a live cellular network. Our results
are given in Table 1. The relationship is relatively intuitive, since
higher order modulation and coding schemes (which allow higher

throughputs) can only be used when the signal to noise ratio is high
enough. We omit a similar table for 802.11g for space reasons.

UMTS RSS (dBm) TCP Throughput (Mbit/s)
-63 1.28
-75 1.20
-93 1.08
-111 0.32

<-111 0

Table 1: Measured values of UMTS RSS & TCP throughput.

5. COVERAGE MAPPING ALGORITHMS
The input values to a coverage mapping algorithm are in general

not equally spaced, and are subject to random noise. Therefore,
an algorithm should cope with such data, whilst producing maps
that allow RSS to be predicted with low error, and that are space-
efficient.

Linked to the second requirement is the idea that the raw sen-
sor data from vehicles will be uploaded to a central authority, and
combined by that entity using the algorithms we describe in this
paper. The resulting coverage maps would then be distributed back
to the vehicles. Hence, vehicles arenot required to have significant
computing resources.

In contrast to other work on coverage mapping, we focus specif-
ically on mapping RSS on roads. This constraint allows us to space
efficiently represent these maps by representing the coverage along
each road as a line, rather than a surface. By reducing the prob-
lem to one of line simplification we can produce coverageextents.
These consist of a tuple(vstart, vend, lstart, lend, t) which consists
of a start value (RSS), an end value, a start co-ordinate, an end co-
ordinate (measured as the proportion along the total length of the
road), and the timestamp of the most recent data point used to cre-
ate the extent. An extent signifies that between the start and end
points the value of the sensor concerned (RSS in the case of cov-
erage maps) varies in a linear fashion from the start value to the
end value. Hence, the output of any coverage mapping algorithm
should be a small number of contiguous extents spanning the road’s
length.

In order to satisfy the above criteria, we have adapted four al-
gorithms which have not been traditionally applied to this problem
domain. Each algorithm is briefly described in turn, followed by
our adaptations to it. We also compare our results with an estab-
lished algorithm in the field.

5.1 Nearest Neighbour Interpolation
The simplest (but most processing intensive) technique for con-

structing coverage maps is to pick sample points along the road
in question, estimate the value of the quantity under investigation
at the sample point, and then generate extents from those sample
points. We carry this out using nearest neighbour inverse-distance
weighted interpolation, as proposed by Shepard [23]. This is one
of the few interpolation algorithms that is able to utilise irregularly
spaced input data, and does not snap it to a regular grid prior to in-
terpolation. The technique has been used before for coverage map-
ping [10], and hence we include it here for comparison purposes.
Our adaptations are only to make it suitable for generating extents.

5.1.1 Original Algorithm
Firstly, we pick sample points separated by a particular interval,

λ, along the road’s length, such as every 100 metres. Regardless of
the length of the road a sample point is picked atl = 0 and another



at l = roadLength. For each sample point we query the database
to find the set of data points,S that are within a certain maximum
distanceα (currently approximately 10 metres), above which they
are considered too far away to be correlated with this sample point.
The value,vj , of thejth sample point (ordered by length along the
road) is then calculated as:

vj =

8

<

:

P|S|
i=0

si

d2
i

if di > ǫ
P|E|

i=0
si

|E|
E = {si ∈ S|di ≤ ǫ} and|E| 6= 0

wheredi is the distance from data pointi to the sample point under
consideration, andsi is the value at data pointi. The second con-
dition assumes that all data points at a distance less than or equal
to ǫ (set to approximately 1 metre) are considered to be at the lo-
cation of the sample point, and are hence averaged in preference
to weighting the values of nearby neighbours. It should be noted
that this has the possible drawback that the value of a sample point
could be set to that of a nearby data point that was an outlier. How-
ever, it can be argued that this data point is at (or is very near to)
the sample point, and hence should be regarded as the authoritative
value.

5.1.2 Adaptations
Having calculated values using nearest neighbour interpolation

for all the sample points along a road, we then amalgamate them
into extents on the basis of how different their values are. Initially,
the first extent represents only the first sample point,v0. To amalga-
mate further sample points into it, we take the mean of the sample
points currently represented by the extent,v0..j (where in this case
j = 0), and compare this to the next sample point to be amalga-
mated,vj+1 (in this casev1). If v0..jγ ≥ |vj+1 − v0..j |, where
γ is in the range [0,1], thenvj+1 is amalgamated into the current
extent. The higher the value ofγ the greater the allowed difference
between the current mean value of the extent and the next sample
point that may be averaged together. In this implementationγ is set
to 0.2. The resulting extent’s start point islstart = max(lj −

λ
2
, 0),

wherelj is the position of thejth sample point as a fraction of the
road length. Its end point islend = min(lj+1 + λ

2
, roadLength).

The amalgamation process continues until there are no further sam-
ple points orγ is exceeded, in which case a new extent is begun,
and amalgamation restarts from that sample point. A special case
occurs ifroadLength < λ, in which case the value of a sample
point at the mid-point of the road is obtained, and then the mean
of the start, end and mid-point sample values is deemed to be the
value for an extent spanning the entire road.

The resulting extents are pairs of start and end lengths along the
road, with a single associated sensor value. Hence, when stored in
the database, the extent is(v, v, lstart, lend, t).

There are two problems with this approach; firstly, there may be
a large number of points within distanceα of a sample point that
make the above process very time consuming. Secondly, picking
sample points at a regular distanceλ risks smoothing out features
that may be significant that exist between the sample points. Whilst
λ could be dynamically varied, this would require a knowledge of
the surface to be sampled, which is in essence what we are attempt-
ing to achieve with this algorithm.

5.2 Dominant Point Detection
Corner, or dominant point, detection was originally developed

in order to derive simplified representations of two-dimensional
closed curves. We examined whether these techniques could be
applied instead to find the “dominant” points of a graph of RSS
values over the length of a road.

5.2.1 Original Algorithm
We define an open digital curveS as an ordered sequence of

pointsS = {p1, · · · , pn} where eachpi = (xi, yi), and thexis
are monotonically increasing. In the case of a closed curve,p1 is
a neighbour ofpn, as the start and end point of the curve must
be identical (and hence thexis are not monotonically increasing).
When analysing the curve to find its “corners”, the aim is to find
the local curvature maxima, i.e. those points at which the rate of
change of gradient with length is greatest. These are known as the
dominant points.

The first stage is to calculate the Freeman Chain codes for all the
points, and eliminate those that are collinear, as described in [7].

Next, we calculate theregion of support, ki for eachpi. The
larger the region of support the greater the number of input points
support the hypothesis thatpi is a dominant point. We briefly
overview Teh and Chin’s method [25].

We definelik = |pi−kpi+k| to be the length of a chord between
two points, anddik to be the perpendicular distance ofpi from
pi−kpi+k We initially setk = 1, and increase it until the condition

dik

lik

≥
dik+1

lik+1
for dik > 0

dik

lik

≤
dik+1

lik+1
for dik < 0

false fordik = 0
yields true. The final value ofk is stored inki, indicating that the
points in the region of support forpi areDi = {pi−k, · · · , pi, · · · , pi+k}.

We now calculate thek-cosine curvature,ci, the angle that the
curve turns through as we traverse eachDi, as ci = aik·bik

|aik||bik|

Whereaik = pipi+k andbik = pipi−k. This implies thatci will
be nearer to 1 if the angle turned through byDi is small, and tend
to -1 as the angle approachesπ radians. We then perform three
further elimination steps:

k-Cosine discard threshold:For eachpi, if ci > µ, eliminate
pi from consideration. This eliminates points at the centers of very
broad angles, which are unlikely to be dominant points ([26], step
4).

Suppress small regions of support that are overlapped by
neighbours: For eachpi, if ki < ki+1 or ki < ki−1, eliminate
pi from consideration ([26], step 5).

Discard large angled points if adjacent to a small angled point:
For eachpi that has not yet been eliminated, ifki = 1 and

pi+1 has not been eliminated∧ ci ≤ ci+1∨
pi−1 has not been eliminated∧ ci ≤ ci−1

then eliminatepi from consideration ([25], step 3c).
As a development to the Teh-Chin method of calculating the re-

gion of support, Wu proposed a dynamic method for determining
the value ofk [26] that involves assuming thatki is close in mag-
nitude toki−1. In this method, we start withk = ki−1, and on the
jth iteration try a value ofk that isj more thanki−1 and another
that isj less thanki−1. We therefore also evaluated this method
for generating coverage maps.

5.2.2 Adaptations
The original dominant point detection algorithms were only in-

tended for the simplification of closed curves (polygons). In order
to apply them to non-closed curves such as our graphs of RSS, we
trialled two approaches. Initially the algorithm’s iteration through
different values ofk was constrained in order thati+k ≤ n andi−
k ≥ 0. This meant that at the beginning and end of the curve incor-
rect decisions were made over whether points should be discarded.
To correct this we reflected the curve in the y-axis at both ends,
such that if the value ofk exceeded the first bound given above,
dik was calculated betweenpi and the chordpi−kpn−(i+k−n), and
similarly for the case ofi − k < 0.



A further observation we made was that the Teh-Chin algorithm
performs better on sparse data (i.e. few points per metre of road)
than does Wu’s algorithm, and vice-versa for dense data. We there-
fore implemented a dynamic algorithm that segmented input data
into regions of high and low density, and applied the Teh-Chin and
Wu algorithms to the relevant sections. We term this theDensity-
Dependentalgorithm.

When using Wu’s algorithm with dense data, a greater degree of
smoothing was needed. Consequently, a secondk-cosine discard
threshold was added,µ2. Hence, the first step after calculating
cosine curvatures is modified to eliminatepi if ci > µ or ci < µ2.

Taking advantage of the knowledge of the region of support of
each point, we smoothed the output of the dominant point detection
algorithms by discarding any points with aki < κ, whereκ > 1,
and is chosen by experimentation. This is because points with few
others “supporting” have less raw data to support the hypothesis
that this corner in the curve is due to real data rather than a few out-
liers. However, with sparse data, regions of support will evidently
be smaller (due to fewer points per unit length of road) than those
of high density. Hence, in our dynamic algorithm we also varyκ

depending on the density of the input data, usingκ = 2 for high
densities, andκ = 0 for low densities.

Finally, we further smooth the output by removing extents that
are very short. For all remaining pointspi we compare the length
of pipi+1 to a thresholdζ. If it is smaller thanζ we removepi from
consideration. We loop over the set of candidate points until there
are no extents below the threshold. This ensures that extents that
concern very small distances are ignored. Hence,ζ must be set to
reflect the minimum distance over which a vehicle travelling at a
plausible speed would have time to adapt its network connections
in order to take advantage/cope with the change in network per-
formance. We empirically determinedζ to be 10 metres for high
densities, and 9 metres for low densities.

5.3 Savitzky-Golay Smoothing
Although the dominant point detection algorithms described in

the previous section work well on their own, for large quantities of
noisy data they are still prone to outputting either a large number
of dominant points, or, ifκ andµ are too high or too low respec-
tively, too few to be representative of the inputs. Therefore, we
investigated the use of a filtering step prior to executing a dynamic
dominant points algorithm.

5.3.1 Original Algorithm
Savitzky-Golay smoothing [22] is a windowed low-pass filter

originally used for analysing chemical spectroscopy data. For each
input pointpi a high-order polynomial is fitted to the data within
the window centred onpi using the least squares method. The value
corresponding topi that is output is the value of the fitted polyno-
mial at thex co-ordinate ofpi. The window is then moved topi+1,
and an entirely separate least squares procedure is executed. The
use of a polynomial fit preserves local maxima and minima better
than other window-based smoothing filters [20].

We have therefore implemented the algorithm as given by Press
et al. [20], which involves straightforward matrix operations. The
algorithm assumes equally spaced data, which we in general do not
have. However, with dense data, this constraint can be relaxed to
one where provided that the change in they value of the input data
over the window length is small (i.e. the majority of the points have
similar values), the algorithm can be used. Hence, the algorithm is
only of use where we have dense input data. In addition, we use
a window size of 101 points (empirically determined to be large
enough to achieve the necessary degree of smoothing), hence the

input must have at least this many data points in order for the al-
gorithm to be run over it, thus excluding roads that have not been
driven along multiple times.

5.3.2 Adaptations
The number of output points of the Savitzky-Golay smoothing

step is equal to the number of input points, but the output graph
now has a much smoother profile. To reduce the number of points,
we pass the data into the density-dependent dominant points algo-
rithm described in Section 5.2.2 to obtain a more space-efficient
representation. Hence, whilst our implementation of the Savitzky-
Golay algorithm is not innovative, coupling it with the dominant
point detection algorithm is, to the best of our knowledge, a tech-
nique that has not been previously used.

6. SIMULATION RESULTS
Apart from the nearest neighbour interpolation algorithm, none

the algorithms proposed in this paper have previously been used
for processing RSS data. Therefore, synthetic data were gener-
ated, processed by the algorithms, and the results compared to the
known values used to generate the synthetic data. This proof of
concept stage also allowed us to optimise the algorithms’ parame-
ters in preparation for their use on real data, as described in Sec-
tion 7.

6.1 Synthetic Data
To generate synthetic data, we examined traces recorded by our

vehicle, and created two traces each for UMTS and 802.11b/g that
provided a single value for any length along the road. The data used
for the lines mimicked the pattern qualitatively inferred from data
for real roads as recorded by our vehicle. We term these thesource
curves.

Points were generated from the source curves by picking loca-
tions along the length of the (synthetic) road at random. We term
the set of such locationsX. The number of points inX was var-
ied to simulate different densities of source data. The value of the
source curve (denoteds) at each of these locations was calculated,
i.e. s(x), x ∈ X, and then perturbed by adding noise,nx sampled
from a Normal distribution with zero mean and a standard deviation
of the appropriate value (3 dBm for UMTS, 3.5 dBm for 802.11b/g,
see Section 4), givingp(x) = s(x) + nx as the perturbed value. In
this way, synthetic curves were produced that were similar to those
curves seen on real test drives, but for which the true values were
known. For each of the four source curves, 40 different synthetic
data sets were generated, 10 at each of four different point densities
(102, 250, 500 and 1000 points per 100 metres), and each having
its own unique set of (random) perturbations to the source curve.

6.2 Evaluation Criteria
Each of the 160 synthetic data sets were processed using each of

the proposed algorithms from Section 5 (bar the Nearest Neighbour
Interpolation algorithm, as this has been used previously by others
for generating maps for wireless positioning algorithms), and the
dominant points recorded (resulting in a function we termd). The
true value at each point inX, s(x), was then compared to the value
at that location on the dominant points curve output by the algo-
rithms,d(x). The mean square error (MSE) of all the points inX

was calculated, i.e.
P

X
(s(x)−d(x))2

|X|
. The mean of the MSEs for

each algorithm over all the synthetic data derived from each source
curve was then calculated.

In a similar fashion, the compression ratio (CR) was also evalu-
ated for each algorithm. This metric is commonly used to evaluate



dominant point algorithms’ ability to approximate an input shape
with as few points as possible. It is calculated by dividing the num-
ber of dominant points outputted by each algorithm by the number
of synthetic data input points (and hence should be< 1). This pro-
vides an indication of what compression has been achieved in the
representation. To a certain extent, there will exist a trade-off be-
tween how compact the result is and how accurate the predictions
that can be made using it are.

6.3 Simulation Results
The results of using this synthetic data are shown in Figures 2

and 3. Several conclusions can be drawn from them.
On synthetic data, the MSE is acceptably low.Given that the

standard deviation of the noise added to the source curve was 3
dBm for UMTS and 3.5 dB 802.11b/g, MSEs of less than 4 dBm
(UMTS) or 5 dBm (802.11b/g) suggest that the approximation al-
gorithms perform well.

Compression can be more than a factor 50.The compres-
sion ratios for Wu’s and the Savitzky-Golay smoothing algorithms
are very low, suggesting a very compact result. Compression ra-
tios decrease with increasing input point density, showing that the
algorithms perform well on large quantities of data.

Wu’s algorithm has poor MSE at low point densities.This is
most probably due the fact that at low densities the regions of sup-
port of neighbouring points are unlikely to be correlated, which is
an assumption made by the algorithm. However, at high densities,
this algorithm’s MSE is comparable to that of the others, and the
standard deviation of its MSE is also much reduced.

Savitzky-Golay smoothing has consistently low MSE and CR.
The results suggest that (on synthetic data at least), this algorithm
performs consistently well.

The Teh-Chin and Density-Dependent algorithms have con-
sistently poor CRs. At low point densities this is offset by their
better MSE than Wu’s algorithm. However, at high densities, such
high CRs mean Wu’s algorithm is (overall) more suitable.

The Density-Dependent algorithm combines the best of Teh-
Chin and Wu. At densities lower than 1000 points per 100 metres,
the Density-Dependent algorithm has an MSE comparable to the
Teh-Chin algorithm, (and similarly high CRs). At higher densities
it retains its very good MSE, whilst achieving CRs lower than those
of the Teh-Chin algorithm.

6.4 Parameter Optimisation
In addition to the above, experiments were also conducted to

ascertain the best value of thek-cosine threshold that should be
used. The distribution ofk-cosines over the input data is surpris-
ingly non-uniform. Instead, most values are either very close to 1
(implying an angle of close to zero), or close to 0 (implying a right
angle). This distribution (particularly at high densities) is due to
to the input points being relatively close together, and hence with
noisy data the angles will be very sharp.

Because of this quite bimodal distribution of cosine curvatures,
it was found that the MSE and CR performance of the dominant
point algorithms as the cosine curvature discard threshold was var-
ied between−1 < µ < 1 was a step function, the discontinuity
occurring at zero, i.e. when the angle is 90 degrees. Atµ = −1 or
µ = 1, both MSE and CR were very high, reflecting that at these
discard thresholds, nearly all and none, respectively, of the input
points would be discarded. A value ofµ = −0.9 was chosen for
regions of low point density, in order that only those points with
very large angles would be discarded, as they are unlikely to be
important. Points with smaller angles are retained. In contrast, at
high point densities,µ = −0.1, and the high discard threshold,µ2,

is chosen to be 0.1, to provide a degree of smoothing of the input
data, given that there are large amounts.

7. EXPERIMENTAL EVALUATION
Having shown that our proposed algorithms perform well on syn-

thetic data, (where their results could be compared against a known
value) and optimised their parameters, we proceeded to test their
performance on real data collected by our vehicle. In order to eval-
uate the algorithms on a real-life data set, we executed each dif-
ferent algorithm on the corpus of data collected by our vehicle to
generate a coverage map. We then used sensor records from several
randomly selected journeys that werenot in the input corpus in or-
der to evaluate how accurate the predictions made by the coverage
map were when compared to the real RSS values experienced on
the sample journeys. We also analysed the space-efficiency of the
resulting extents.

For each sample journey, each input tuple of 2-D position and
sensor value(li, vi) was snapped to the closest point on the rele-
vant road’s centre line, becoming(xi, vi). The database was then
queried for the coverage map’s stored valuesi at lengthxi along
the road. For all the input points,di = vi − si was calculated, as
well as the mean and standard deviation of those differences. Each
algorithm’s extents were evaluated using each sample journey, in
order to compare their accuracy.

The two metrics that are important in evaluating the performance
of coverage mapping algorithms are the difference between pre-
dicted and actual values, and the space-efficiency of the extents.
We now consider each in turn.

7.1 Prediction Error
In order to be successful, a coverage map’s prediction for a given

location must be similar enough to a value subsequently recorded
at that location to be useful. The difference between these two
values will in part be due to the natural variation in RSS values, as
explained in Section 4.

Tables 2 and 3 show the different algorithms compare for UMTS
and 802.11b/g, whilst Figures 5(a) and 5(c) are the correspond-
ing CDFs. These show that for UMTS prediction, the Density-
Dependent and Wu’s algorithms perform best, with the Savitzky-
Golay smoothing algorithm also having a low prediction error (90%
confidence interval of 12 dBm). For 802.11b/g, the Savitzky-Golay
algorithm is by far the most accurate, with a confidence interval
of only 10.40 dBm. Figures 4(a) and 4(b) show the spread of
prediction errors. Significantly, the Savitzky-Golay algorithm has
only one outlier (circles on the graph) for UMTS prediction errors,
showing that its predictions are consistently good. The Density-
Dependent and Wu’s algorithms do have outliers, suggesting that
their performance can sometimes be very poor.

An important question is whether these values are significant,
e.g. does a 90% confidence interval of 12.00 dBm impact a user
far more than one of 14.00 dBm? Table 1 shows that for UMTS
the relationship between TCP throughput and RSS does not appear
to be linear: errors in RSS prediction will be more significant in
areas of poor coverage. We posit that that this because in areas of
poor coverage packet losses will be more frequent, each of which
will cause TCP’s congestion window to fall to near zero. Hence,
the window size will never be allowed to increase to large values
that would allow high throughputs. Given this, we estimate that for
RSS values below -90 dBm, an error of 1 dBm is approximately
equivalent to 40 Kb/s, whilst the same error at an RSS above -90
dBm would be far less (7 Kb/s). Hence, in areas of poor coverage, a
90% confidence interval of 12.00 in RSS translates into a TCP esti-
mate that is approximately 80 Kb/s more accurate than one of 14.00
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Figure 2: Comparison of Mean Squared Errors (lower is better) in representation achieved at different point densities, by algorithm,
of synthetic data generated from two different source curves for each of UMTS and 802.11b/g.
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Figure 3: Comparison of Compression Ratios (lower is better) achieved at different point densities, by algorithm, of synthetic data
generated from two different source curves for each of UMTS and 802.11b/g.

dBm. Hence, the difference in algorithm prediction performance is
significant for an end user.

Overall, the algorithms’ performance in the very worst case would
be an error of 480 Kb/s (poor coverage), or 84 Kb/s (good cover-
age). These are acceptably low compared to the maximum through-
puts achievable, and hence show the utility of the coverage maps
generated by our algorithms.

Similarly, we estimate that a worst case error of 10.00 dBm for
802.11g would correspond to a throughput difference of 4-5 Mb/s.
Whilst this is a large value, it should be born in mind that the maxi-
mum TCP throughput achievable with 802.11g is 20 Mb/s. Hence,
a user will still derive utility from a prediction that is subject to
such error.

Overall, we conclude that Savitzky-Golay smoothing followed
by the an application of the density-dependent dominant points al-
gorithm, performs best, as it combines a low 90% confidence in-
terval in prediction errors for both UMTS and 802.11b/g with few
severe prediction errors (outliers).

Algorithm d σd 90% C.I. |d| Tests
Nearest Neighbour -9.64 4.40 14.64 9.74 748

Teh-Chin -7.94 4.34 13.30 8.20 748
Wu -7.72 3.84 12.00 7.92 748

Density-Dependent -6.86 4.40 12.00 7.08 748
Savitzky-Golay -7.90 3.56 12.26 8.02 748

Table 2: Prediction errors for UMTS ( d), all in dBm.

7.2 Extent Density
Ideally, our algorithms should produce as few extents as possible

per unit length of road (i.e. a low extent density, ED), in order that
the coverage database distributed to a vehicle be small and can be
efficiently queried. Tables 4 and 5 show how the Nearest Neigh-
bour and Wu’s algorithms perform well, with few extents produced
per metre of road for both UMTS and 802.11b/g. Meanwhile, the
Density-Dependent and Teh-Chin’s algorithm perform poorly (a

Algorithm d σd 90% C.I. |d| Tests
Nearest Neighbour -7.16 4.86 13.00 7.39 83

Teh-Chin -5.87 6.41 13.61 7.34 79
Wu -4.65 6.61 13.57 6.44 65

Density-Dependent -7.71 6.32 14.00 8.91 59
Savitzky-Golay -5.07 4.39 10.40 5.71 72

Table 3: Prediction errors for 802.1b/g (d), all in dBm.

low value of ED−1 shows how few metres each extent covers), with
the Savitzky-Golay algorithm being between these two groups, as
shown in the CDFs in Figures 5(b) and 5(d). Figures 4(c) and 4(d)
show the distributions of extent densities. Significantly, for UMTS
the Nearest Neighbour algorithm has several outliers which are in-
dicative occasional very poor performance (many extents generated
per metre). In contrast, Wu’s and the Savitzky-Golay algorithm do
not have significant outliers. These three algorithms have similar
distributions for 802.11b/g.

Given the above, we can conclude that Wu’s algorithm, and Savitzky-
Golay smoothing followed by an application of the dynamic density-
dependent algorithm, perform well as regards the number of extents
generated per metre, and hence are space-efficient. As an example,
a typical WiFi hotspot covering 200 metres of road would require
only 6 extents in order to represent its coverage,

Overall, we conclude that the Savitzky-Golay smoothing fol-
lowed by an application of the dynamic density-dependent algo-
rithm performs best out of the algorithms we propose, given its low
prediction error and good space efficiency. In addition, we note
its benefits over the Nearest Neighbour interpolation algorithm that
has been used for coverage mapping efforts in the past.

8. SCALABILITY
The requirements for computing resources required to produce

coverage maps are not onerous. We tested our algorithms on a
Pentium IV 3.2 GHz processor with 1 GB of RAM. The system
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Figure 4: Box plots of prediction errors and extent densities by algorithm (Key: 1 Nearest Neighbour, 2 Teh-Chin, 3 Wu, 4 Density-
dependent, 5 Savitzky-Golay).

Algorithm ED ED−1 Num. of Roads
Nearest Neighbour 0.030 33.409 1380

Teh-Chin 0.086 11.607 234
Wu 0.028 36.362 234

Density-Dependent 0.068 14.615 234
Savitzky-Golay 0.039 25.756 107

Table 4: Mean Extent Density (ED) (extents/m) for UMTS.

Algorithm ED ED−1 Num. of Roads
Nearest Neighbour 0.019 53.383 178

Teh-Chin 0.068 14.610 178
Wu 0.019 52.245 161

Density-Dependent 0.052 19.357 170
Savitzky-Golay 0.027 36.577 83

Table 5: Mean Extent Density (ED) (extents/m) for 802.11b/g.

analysed 2,444 roads in the Cambridge area, finding 1,380 roads
that had a enough RSS data points to construct a coverage map,
and 115 with one or more 802.11b/g networks with the minimum
number of points necessary.

The five algorithms were each run on each candidate road, pro-
cessing a total of over 765,000 UMTS and over 1.2 million 802.11b/g
data points. 5,879 UMTS extents and 2,396 802.11b/g extents were
generated and added to the database. The entire process took 4,714
seconds. The running time includes the printing of a significant
amount of debug output, and therefore could be further decreased.
In addition, we note that this figure involves processing each road
up to 5 times, whereas in a real deployment only one algorithm
would be used.

As we and others have seen, the number of 802.11b/g APs in
a city can be thousands [1, 3]. Whilst a coverage map could be
made to include coverage information for each of these APs, i.e. the
many of them will not have sufficient coverage to make their usage
by a vehicle worthwhile, or will not permit such usage. Hence, a
coverage map only need include those APs that could be useful.
This might include all the hotspots for a particular provider that a
user has a subscription to, or all those belonging to a community
WiFi scheme such as Fon (http://www.fon.com/).

Finally, we note the distinction between the (very large) corpus
of RSS data that is collected and the (compact) coverage map. The
raw readings are uploaded to a server, which then uses our algo-
rithms to generate a coverage map, and distributes this to the vehi-
cles. Hence, vehicles need not have vast computing resources.

9. SENSITIVITY TO CHANGE
A key question concerns how frequently a coverage map needs

to be updated. Our experience in Cambridge has shown that cel-
lular network deployments appear to be relatively static over long
periods of time (see Figure 1), as might be expected, given the cost
of installing new base stations. In contrast, user-managed wireless
LANs are likely to (dis)appear much more frequently. We suggest
that the more investment required in a network deployment the less
likely it is to frequently change in coverage. Fortuitously, it ap-
pears that users are more likely to use such networks due to their
greater ubiquity, rather than connecting to wireless LANs belong-
ing to private dwellings, in part because of the billing and security
infrastructure required for public access to a network. Hence, we
believe that the principal networks that will be present in a cover-
age maps will not require very frequent updates. Based on our data
collected over 3 years, it appears that a survey would be needed at
least yearly. This is likely to be due to the large number of students
living in our city, and hence there is a high degree of population
churn; other areas are likely to differ.

10. CONCLUSION
Wireless network access for vehicles is increasingly in demand,

though its deployment is not ubiquitous and hence is unpredictable.
Proactive handover algorithms have been proposed that depend on
the existence of coverage maps to perform optimal network se-
lection. This paper has presented and evaluated four novel algo-
rithms for generating coverage maps, and compared them to the
Nearest Neighbour interpolation algorithm used in other work. We
have found that using the Savitzky-Golay smoothing algorithm, fol-
lowed by an application of our density-dependent dominant points
algorithm, has the lowest prediction errors for both UMTS and
IEEE 802.11b/g, whilst maintaining adequate space-efficiency.
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