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Abstract— This paper develops a framework for the efficient
maximum-likelihood decoding of lattice codes. Specifically we
apply it to the spherical Lattice Space-Time (LAST) codes
recently put forward by El Gamal et al. that have been proven
to achieve the optimal diversity-multiplexing tradeoff of MIMO
channels. Our solution addresses the so-called boundary control
problem within the same search tree structure as existing sub-
optimal LAST decoders. We demonstrate its performance and
complexity by applying two of the most efficient tree-based ML
detectors currently reported in the literature to the spherical
LAST code proposed for the 2 × 2 MIMO channel of block
length 2. Our optimal decoders exhibit improved performance
over the naive lattice decoder with MMSE-GDFE pre-processing
at a comparable complexity.

Index Terms— Lattice space-time codes, boundary control,
maximum-likelihood decoding.

I. I NTRODUCTION

In their recent paper [1], El Gamalet al. introduce the class
of Lattice Space-Time (LAST) codes, which are shown to
achieve the optimal diversity-multiplexing tradeoff under gen-
eralized minimum Euclidean distance lattice decoding (with
MMSE-GDFE pre-processing and assuming a sufficient block
length). However, the lattice decoder employed in their work
is sub-optimal. Thus motivating our present investigation on
efficient Maximum Likelihood (ML) decoding of spherical
LAST codes, or more generally any spherical lattice codes.

The codebook of a lattice code can be described as the
intersection of a (infinite) lattice with a bounded shaping
region. One of the critical advantages offered by lattice codes
is that the algebraic structure of the lattice lends itself to the
use of efficient decoding techniques, e.g.,lattice decoding.
Given the received signal vector, a naive lattice decoder returns
the closest point of the underlying lattice, ignoring the shaping
region entirely. Therefore its performance can be far from
optimal, since it must declare a decoding failure if the closest
point found does not lie within the boundaries of the codebook.

In the literature, the problem of ensuring that the decoder
only considers feasible lattice points, i.e., those lying within
the shaping region, is referred to asboundary control[2]. It
is generally recognized as a “complicated” problem. One of
the main contributions of our work is an efficient means of
achieving boundary control when the shaping region is spheri-
cal, within the familiardivide and conquertree-based decoding
framework. We show how at each stage, the dimension of both

the residual problem and shaping region are reduced. Thus
extending the scope of established tree-based ML detectors to
the decoding of spherical LAST codes, at a computational cost
comparable to that of lattice decoding.

We emphasize that the proposed ML decoding methodology
is not restricted to space-time systems. It can be used to decode
QAM-modulated signals transmitted over MIMO fading chan-
nels, lattice coded signals transmitted over AWGN channels,
over SISO fading channels and in multi-user CDMA systems.
The fading channels may be flat or frequency selective, and
quasi-static or time-varying; the problem formulation used in
our work can be equally applied to these cases.

We open in Section II with an outline of the mathematical
structure of the LAST decoding problem. Next we present a
generic lattice decoding framework that facilitates the appli-
cation of existing lattice decoding algorithms to new prob-
lems. Specifically, the ML decoding of spherical LAST codes
requires the specification of an efficient tree-based boundary
mechanism, as detailed in Section IV. This innovation leads
to the development of two new ML LAST decoding schemes.
Section V compares their ML performance and competitive
complexity to the profiles of current sub-optimal proposals.
Finally, concluding remarks are offered in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper we consider problems that can be modelled as
the minimization of the squared Euclidean distance metric to a
targetv over anM -dimensionaldiscrete search setC ⊂ RM :

s∗ = argmin
s∈C

|v −Hs|2, (1)

wherev ∈ RN , H ∈ RN×M and the search set iscarvedfrom
anM -dimensionalinfinite latticecomprising all integer linear
combinations of the columns ofgenerator matrixG ∈ RM×M

Λ(G) , {λ : λ = Gz, z ∈ ZM} (2)

by means of atranslation vectoru ∈ RM and ashaping region
S ⊆ RM [3]. The search set is then given by the intersection
of a translateof the lattice with the shaping region:

C = (Λ(G) + u) ∩ S. (3)

SinceC ⊂ ZM , the problem can be viewed as a constrained
closest lattice point search with lattice generatorHG.



We are often interested in centering the latticeΛ(G) un-
derlying the search set at the origin. The subscript 0 notation
is used to denote entities defined with respect to this frame of
reference. For instance, instead of translating the lattice byu
as in (3), we may translate the shaping region byu0 , −u:

C , C0 + u (4)

C0 , Λ(G) ∩ (S + u0) . (5)

Then minimization (1) can be written equivalently as

s∗ = u + G argmin
z∈ZM

{∣∣∣v −Hu︸ ︷︷ ︸
,v0

−Ξz
∣∣∣
2

: Gz ∈ C0

}
, (6)

where Ξ , HG is the effective generator matrix of the
transformed lattice and search set, and we call the elements
of z optimization variablesand |v0 −Ξz|2 the cost function.
Problem formulation (6) is advantageous because the search
set has an underlying Cartesian product structureZM that
lends itself easily to divide and conquer solution techniques.

We assume in this work an overdetermined problem, i.e.,
thatM ≤ N , and thatH is of full rank M . For multi-antenna
fading channels, this assumption means that there are at least
as many receive as transmit antennas. We also make use of
the following notational conveniences: Given a squareM ×
M matrix A, let aii denote the element in theith row and
column position,A−T the inverse transpose, andA−T

i the ith

column vector ofA−T . Given a vectorx, let xi denote the
ith element. Let0 andei denote appropriate length all-zeros
and elementary vectors, andIM the M ×M identity matrix.

Finally, we introduce three useful geometric notions: First
we define theaffine sets

Fx
j (Ξ) ,

{
ξ :

〈
ξ −Ξjx,Ξ−T

j

〉
= 0

}
, x ∈ Z, (7)

in which the points of latticeΛ(Ξ) are embedded. Geometri-
cally, Fx

j (Ξ) is a hyperplane defined with respect to normal
vectorΞ−T

j and offsetx. Algebraically, it contains the subset
of lattice points wherezj takes a particular valuex ∈ Z.

The orthogonal projectionof a vector y onto affine set
Fx

j (Ξ) is defined as

projFx
j (Ξ)(y) , y −

〈
y,Ξ−T

j

〉− x
∣∣Ξ−T

j

∣∣2 Ξ−T
j , (8)

and the correspondingsquared orthogonal distanceas
∥∥y −Fx

j (Ξ)
∥∥2

⊥ , min
ξ∈Fx

j (Ξ)

∣∣y − ξ
∣∣2 (9)

=
∣∣∣y − projFx

j (Ξ)(y)
∣∣∣
2

. (10)

It should be clear thatprojFx
j (Ξ)(y) is the point in the affine

set that is closest in Euclidean distance toy.

A. Decoding of spherical LAST codes

The lattice decoding framework presented in this paper
is primarily demonstrated with reference to the decoding of
spherical LAST codes used in a MIMO fading environment.

Following the pioneering paper on this work [1], next we detail
the specific parameterization of this problem.

Lattice Space-Time (LAST) codes are designed for the
MIMO fading channel, which can be modelled by anN ×M
complex matrixH of fading coefficients and a block length of
T channel uses, whereN andM are the numbers of receive
and transmit antennas, respectively. In the case of quasi-
static fading, where the fading coefficients remain unchanged
over the duration of the transmission block, the effective real
channel matrix can be expressed as a Kronecker product

HLAST , IT ⊗
[

Re{H} − Im{H}
Im{H} Re{H}

]
∈ RNLAST×MLAST , (11)

whereNLAST , 2NT and MLAST , 2MT are the numbers
of real received and real transmitted signals per codeword, re-
spectively. The search set orcodebookfrom which transmitted
codewordss are drawn with equal probability is given by

CLAST , (Λ(GLAST) + uLAST) ∩ SLAST(0, D), (12)

where as suggested by the name given to the codes, the shaping
region takes the form of a(closed) sphere

SLAST(0, D) ,
{

ξ : |ξ − 0|2 ≤ D, ξ ∈ RM
}

(13)

of squared radiusD centered at the origin. The specification
of the lattice generator matrixGLAST ∈ RM×M , translation
vectoruLAST ∈ RM and sphere squared radiusD comprises
the design of a spherical LAST code.

Assuming circularly symmetric additive white (complex)
Gaussian noise, the resulting ML detection rule can be written
in the form of minimization problem (1), where we denote by
vLAST the (real) received vector

vLAST ,
[
Re{v[1]}T Im{v[1]}T · · · Im{v[T ]}T

]T
(14)

formed by stacking the real and imaginary components of
the complex signal vectorsv[1], . . .v[T ] received during the
designated fading block. It can also be written in the alternate
form of (6) with the effective generator matrix of the trans-
formed lattice and search set given byΞLAST = HLASTGLAST.

III. G ENERIC LATTICE DECODING FRAMEWORK

In this section, we overview a lattice decoding framework
that facilitates the application of established decoders to new
problems sharing the generic structure of (6). It employs a
divide and conquer approach, recursively decomposing the
minimization intoresidual problemsof decreasing dimension.
We also demonstrate how the so-calledboundary control
problem can be tackled naturally within this framework.

In the absence of noise, the observed signals are drawn
from a transformed codebook, which can be defined as follows
with respect to the underlying transformed latticeΛ(Ξ) being
centered at the origin:

T0 , HC0 (15)

= Λ(Ξ) ∩ (HS + Hu0︸︷︷︸
,a0

). (16)



The optimal cost of (6) can then be written as a function taking
the target vectorv0 and asearch setT0 as its arguments:

g(v0, T0) = min
υ∈T0

|v0 − υ|2. (17)

We remark that both the target and the search set are further
embedded in asearch spaceRM of dimensionM .

Next, we recall that those lattice pointsυ ∈ T0 where
variablezj takes a particular value inZ are contained in affine
set Fzj

j (Ξ). Therefore we can divide the cost function into
two terms: a partial cost incurred by assigning a particular
value tozj and a (lower-dimensional) cost function evaluated
over the remaining variables. The first term is precisely the
squared distance between the target and the affine setFzj

j (Ξ)
associated with the chosen value ofzj . The second term is a
function having the same structure as the original cost, which
allows for a recursive implementation. Before proceeding we
need to specify its target and search set arguments.

To do so, we start with a few observations about the affine
setFzj

j (Ξ). It is of dimensionM − 1, since it represents the
part of the search space that remains after one variable has
been constrained. We may therefore callFzj

j (Ξ) a residual
search space. It also follows that the recursive cost function,
as well as its arguments, should all be embedded in this
residual search space. Hence we define aresidual targetas
the projection of the target onto a residual search space

v′0 , projFzj
j (Ξ)

(v0), (18)

and aresidual search setas the intersection of the search set
with a residual search space

T ′0 , T0 ∩ Fzj

j (Ξ). (19)

Armed with these notions and definitions, we can then
decompose the optimal cost function (17) by decoupling one
of the optimization variables from the main problem. Without
loss of generality, letj = 1, then we can write the following:

g(v0, T0) = min
z1∈R1

[
‖v0 −Fz1

1 (Ξ)‖2⊥ + g (v′0, T ′0 )
]
, (20)

whereR1 is called thecandidate rangeof values for variable
z1 and will be discussed in more detail shortly. We say that
z1 has beendecoupledfrom the problem because aside from
the computation of its arguments, the recursive optimal cost
function in the right hand side of (20) is independent ofz1.

In the next stage of the decomposition, another variable is
decoupled from the second term of (20) and the dimension
of the residual search space is again reduced. When allM
variables have been decoupled from the problem, the residual
search space is of dimension zero and the recursion terminates.

To apply the ideas behind recursive decomposition (20) to
lattice decoding, we require efficient means of

1) determining the candidate range for a selected variable,
2) finding the distance from the residual to an affine set,
3) projecting the residual onto an affine set, and
4) constructing the residual search set.

Tasks 2 and 3 can be realized by applying the QR factorization

to the effective generator matrixΞ, as is done in many sphere
decoders [2], [4]–[6] and detectors such as V-BLAST [7].
The following sections address Tasks 1 and 4, which may be
referred to in the literature collectively asboundary control.
Proofs have been deferred to the sequel [8].

A. Determining the candidate range

We determine the candidate range by applying a sort of
relaxation to the representation of the search set. Instead of
considering whether there is at least one point in thediscrete
search set where variablezj takes a particular value, we
consider whether there is at least one point in acontinuous
relaxation of the search set, namely in the shaping region,
where variablezj takes a particular value.

Recall that the affine setFx
j (Ξ), which contains those

translated signal vectors where variablezj takes a particular
value x ∈ Z, is defined as a hyperplane with normal vector
Ξ−T

j and offsetx. If the intersection of the shaping region
with the affine set is empty for some offsetx ∈ Z, then there
are no points in the search set satisfyingzj = x and we say
that x is not afeasible valuefor variablezj .

If the intersection is non-empty for some offsetx ∈ Z, then
theremay or may notbe a point in the search set satisfying
zj = x. In this case we cannot declare thatx is infeasible, and
so we call it acandidate valueand keep it in the search set.
Thus we define thecandidate rangefor variablezj as follows:

Definition 1: Given shaping regionS ⊂ RM and generator
matrix Ξ ∈ RN×M , let the candidate rangeof values for
variablezj be defined as

Rj , {x ∈ Z : S ∩ Fx
j (Ξ) 6= ∅}. (21)

Because the shaping region is connected,Rj is a sequence
of consecutive integers that can be described by specifying its
lower and upper bounds. More precisely, we define theshadow
of the shaping region on a normal vector:

Definition 2: Given shaping regionS ⊂ RM and normal
vectorn ∈ RM , let the(closed) shadowof S on n be defined
as the interval

shadn(S) ,
[
min
υ∈S

〈υ,n〉, max
υ∈S

〈υ,n〉
]

. (22)

The lower and upper bounds of the candidate rangeRj are
then given by the ceiling of the lower bound in (22) and the
floor of the upper bound in (22), respectively.

B. Constructing the residual search set

As before, we approach the task of constructing the residual
search set by applying a relaxation to its representation.
Instead of trying to obtain a simple concise description of
the points in the discrete residual search set where variable
zj takes a particular value, we seek to describe a continuous
relaxation of the residual search set, namely aresidual shaping
region, where variablezj takes a particular value.

Recall from (19) that a residual search set is defined as the
intersection of the search set with a residual search space, i.e.,



with an affine set of the formFx
j (Ξ). Therefore we can arrive

at the desired description by applying the definition directly:

T ′0 = T0 ∩ Fx
j (Ξ) (23)

= Λ(Ξ) ∩ [
(HS + a0) ∩ Fx

j (Ξ)
]
, (24)

where the intersection of the shaping region with the affine set
gives the residual shaping region. Thus the residual search sets
can be represented as intersections of the transformed lattice
with a residual shaping region, as in the definition of the search
set itself. This decomposition enables boundary control to be
implemented in conjunction with decoding.

C. Tree-based lattice decoding

The notion of tree-based lattice decoding arises from the
recursive decomposition of (20) and forms the basis for many
current detectors, most notably the sphere decoder [2], [5].
We associate with each (residual) problem a node in the tree,
starting from the root node, which corresponds to the main
search. Next, we select an optimization variable to decouple
from the problem, sayzj1 . The candidate rangeRj1 then
provides a superset including all feasible values forzj1 .

Recall from (20) that each candidate valuex ∈ Rj1

generates a partial cost, namely the squared distance from the
target to an affine set, as well as a residual problem having the
same structure as the main problem. In the tree, the size of the
candidate range for the next variable|Rj1 | gives the number
of children generated by the current node. The weight of the
connecting branch to each child is given by the partial cost
incurred by assigning a particular valuex to variablezj1 , and
each child node iteslf is associated with a residual problem.

Continuing in this way, we select subsequent variables to
decouple from the residual problems,zj2 , . . . , zjM

, and extend
the tree to its full depth ofM + 1 levels. Each leaf node of
the tree represents a point in the search set. The corresponding
value of the cost function is computed by accumulating the
partial costs incurred at each stage of the decomposition, i.e.,
by summing the branch weights along the path from the root
node. Thus the search tree encapsulates all possible values of
the cost function in the weights of its leaf nodes.

Although the structure of the tree, i.e., the number of
levels and the number of children at each node, underlies the
decoding operation, only the properties of the root are known
at the outset. Decomposition (20) enables us to compute the
properties of the children of a node, and hence to explore the
tree. We refer to a lattice decoder whose operation is governed
by a tree astree-based. This class includes optimal sphere
decoders [2], [5] and sub-optimal successive detectors [7].

IV. ML DECODING FOR SPHERICALLAST CODES

To see how this framework can be applied to the decoding
of spherical LAST codes, consider the graphical view of the
LAST decoding problem as shown in Fig. 1. The codebook
is illustrated in the form of transformed latticeΛ(Ξ) and
codebookT0 with ellipsoid shaping regionE(a0,H−1, D).1

1The spherical shaping region, transformed by the channel matrixH,
becomes an ellipsoid from the perspective of the received signal space.

v0

a0

Ξ2

Ξ1

Ξ−T
2

Ξ−T
1

F1
1 (Ξ)

F2
1 (Ξ)

F0
1 (Ξ)

F−2
1 (Ξ)

F2
1 (Ξ)

F1
1 (Ξ)

F−1
1 (Ξ)

v0

F−2
1 (Ξ)

F0
1 (Ξ)

F−1
1 (Ξ)

F〈a0,Ξ−T
1 〉

1

E(a0,H
−1, D)

Shadow ofT0 on Ξ−T
1

Fig. 1. Transformed latticeΛ(Ξ) and codebookT0 for LAST decoding
problem with M = 2 and shaping regionE(a0,H−1, D), along with its
shadow onΞ−T

1 . Affine setF−1
1 (Ξ) is highlighted for further commentary.

The search tree that arises from a decomposition of the cost
function for this decoding problem is provided in Fig. 2.

v0

z =
[
0
2

]
z =

[
1
2

]

(no children)

z =
[−2

1

]

projF1
1 (Ξ)(v0)projF−2

1 (Ξ)(v0) projF0
1 (Ξ)(v0)projF−1

1 (Ξ)(v0)

z1 = −1 z1 = 0

z2 = 1 z2 = 2 z2 = 2

z1 = −2 z1 = 1

Fig. 2. A tree-based decomposition for computing values of the cost function
given transformed LAST codebookT0 shown in Fig. 1.

We note in particular that for a spherical LAST codeeach
node, even those at the same level, may have a different num-
ber of children, or no children at all.For instance, consider
the node associated with the projection of the targetv0 onto
affine setF−1

1 (Ξ). Observe that although the offset coefficient
of the associated affine set, i.e.,−1, is in the shadow of the
shaping regionshadΞ−T

1
(E), there are in fact no elements of

the codebooks = Gz such thatz1 = −1. Recall that in this
case we call−1 a candidate value for variablez1, but it is not
in fact a feasible value.

To find the desired candidate ranges, we work in the compu-
tationally simpler codeword domain, where the shaping region
is spherical. A similar result for the case of an ellipsoidal
shaping region can also be easily derived from the following:

Proposition 1:Given (closed) sphereS(u0, D) ⊂ RM with
centreu0 ∈ RM and squared radiusD, and normal vector
n ∈ RM , the shadow ofS on n is given by

shadn

(S)
=

[
〈u0,n〉 −

√
D |n| , 〈u0,n〉+

√
D |n|

]
. (25)



Having determined the candidate range for the variable
under consideration, application of the tree-based lattice de-
coding framework involves specifying rules for computing
the properties of a child node from those of its parent, or
equivalently, the parameters of a residual problem from those
of its parent. As discussed previously, a key ingredient in these
derivations is the affine set associated with the variable under
consideration and the value to which it is being constrained.
Given this affine set, the residual target is then the projection
of the target onto it, the partial cost (or branch weight) is the
orthogonal distance from the target to the affine set, and again
working in the codeword domain, the following result enables
us to easily compute the parameters of the residual search set:

Proposition 2:Given (closed) sphereS(u0, D) ⊂ RM with
centreu0 ∈ RM and squared radiusD, normal vectorn ∈ RM

and offsetb ∈ R, the intersection ofS with hyperplane

P(n, b) , {υ : 〈υ,n〉 = b} (26)

is an (M − 1)-dimensional sphere that can be written as
S(u′0, D

′) ∩ P(n, b) where centre

u′0 = projP(n,b)(u0) (27)

and squared radius

D′ = D − ‖u0 −P(n, b)‖2⊥ . (28)

Proposition 2 allows us to construct the residual search set
or residual codebookwhen decoding spherical LAST codes
by means of the same two parameters used in the definition
of the codebook itself, namely theresidual translation vector
u′0 of the shaping region and itsresidual squared radiusD′.
The additional computational requirements incurred by the
proposed spherical boundary control arise from the storage
and updating of these variables at each node.

A. Ordered Traversal LAST Decoder

The ordered traversal LAST decoder (OTD-L) maintains an
ordered list of nodes defining the border between the explored
and unexplored parts of the tree. Initially it contains only the
root node. At each iteration, it selects the border node with
the smallest weight and computes itsfirst child and its next
sibling nodes in the tree. The expanded node is then deleted
from the list, since it is no longer on the border.

By definition and as suggested by its name, the OTD
explores the nodes of the tree in order of increasing node
weight. Therefore when the smallest weight border node is
a leaf, it returns the corresponding point in the search setz,
which must represent an ML solution [9].

B. Schnorr-Euchner Adaptive LAST sphere decoder

The SEA LAST (SEA-L) sphere decoder applies the same
depth-first approach as its counterpart for uncoded MIMO
fading channels, which is studied in detail in [2].

C. Remark on standard sphere decoding

Contrasting the tree of Fig. 2 to thecomplete(M + 1)-
level B-ary tree underlying a standard sphere decoder, we find

that the sphere decoder can be described as a lattice decoder
employingaxis-aligned rectangularboundary control, which
results in ML decoding for lattice codes whose shaping regions
share this structure. The axis-aligned property means that each
variablezj takes values in somefixedalphabet, independently
of the values taken by variableszi, i 6= j. Equivalently, from
a tree-based perspective, each node has the same number of
children, corresponding to the cardinalityB of the alphabet.
Although the standard algorithm can easily be extended to
allow the alphabet associated with each variable to vary on a
global scale, it cannot be trivially modified to perform efficient
decoding over more general search spaces.

D. Remark on efficient implementation

To implement boundary control efficiently, we pre-process
the code generatorG via the QR factorization to obtain or-
thogonal matrixQG and upper triangular equivalent transform
matrix P. The translation vector of the shaping region is
orthogonally transformed tõu , QT

G
u0 and the candidate

range for the first variable to be constrainedzM is then

RM =

{⌈
ũM

pMM
−

√
D∣∣pMM

∣∣

⌉
, . . . ,

⌊
ũM

pMM
+

√
D∣∣pMM

∣∣

⌋}
. (29)

Equation (29) takes such a simple form becauseP andP−1

are upper triangular, and soP−T is lower triangular and
P−T

M = 1
pMM

eM .
The simplification offered by the upper triangular form of

equivalent generator matrixP also extends to the computation
of the parameters of the residual search sets. For the first
variable to be constrainedzM the residual translation vector
and residual squared radius are as follows:

ũ′ =
[

ũ\M
pMMx

]
(30)

D′ = D − (
ũM − pMMx

)2
, (31)

wherex ∈ RM is the value under consideration.

V. PERFORMANCE AND COMPLEXITY RESULTS

Finally, we discuss the performance and complexity profiles
obtained using the spherical LAST code of [1], designed for
the M = N = T = 2 scenario.2 Fig. 3 shows the average
codeword error rates attained by various decoding strategies.

Although a large part of the gap between the performance
curves of the naive lattice and ML LAST decoders is recov-
ered by the efficient naive decoder with MMSE-GDFE pre-
processing proposed in [1], we see that there remains about
1dB of room for improvement. This gap can be completely
closed by the proposed ML detectors, or roughly halved
by applying the proposed ML strategies, i.e., with boundary
control, following MMSE-GDFE pre-processing. The resulting
pseudo-MLperformance curve is labelled “p-ML.” We also

2Although it does not meet the block length condition (T ≥ M + N − 1)
necessary to achieve the optimal diversity-multiplexing tradeoff, we use the
simplest possible LAST code here just to illustrate some properties of the
ML decoders. Higher dimensional LAST codes satisfying the condition are
considered in an extended work [8].
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Fig. 3. Average codeword error rate vs. average received SNR per codeword
for the (sub-optimal) naive lattice and ML LAST decoders, shown both with
and without the MMSE-GDFE front end.

remark that the performance gap between the naive+MMSE-
GDFE decoder and the ML curve is small for the scenario
depicted in Fig. 3, whereas we expect that it becomes more
significant for problems of larger dimension.
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Fig. 4. Average complexity exponent vs. average received SNR per codeword
for the (sub-optimal) naive lattice, and ML LAST decoders, shown both with
and without the MMSE-GDFE front end.

Next we consider the complexity profiles of the detectors
in Fig. 4. Following [2], our results are reported in terms
of the average complexity exponent, defined as the base-M
logarithm of the average number of floating point operations
consumed by the decoding stage, exclusive of pre-processing.
This figure is roughly the product of the number of nodes
expanded by the decoder and the detection (and any boundary
control) operations performed at each node.

At low SNRs, the complexities of the ML decoders, both
with and without MMSE-GDFE pre-processing, are slightly
higher but comparable to those of the naive lattice decoder
using the same front end. This increase in computational cost
is consistent with the improved performance that is offered.

At higher SNRs of interest, i.e., such that a codeword error
rate of around10−3 is attained, the ML decoders have very

competitive computational requirements. For the code under
consideration, the OTD-L has a slight edge over both the ML
SEA-L and the sub-optimal naive decoders, all with MMSE-
GDFE pre-processing, because of the significantly reduced
number of nodes that it expands.

Finally, we note that the number of nodes expanded by
the naive decoder is oftenlarger than that explored by the
OTD-L. This result may seem counter-intuitive at first; it
arises because the OTD-L only expands those nodes whose
associated residual targets lie both inside the search sphere,
as well as on affine sets that correspond to candidate values
of the optimization variables. Therefore, in many (but not all)
cases it actually expands fewer nodes than the naive decoder.

VI. CONCLUSIONS

In this paper we have presented a generic framework
for the efficient ML decoding of lattice codes. Specifically
we apply it to the spherical LAST codes pioneered in [1]
and demonstrate that improved performance over the naive
decoder with MMSE-GDFE pre-processing is available at a
comparable complexity. Within our framework, the problem of
boundary control is handled naturally, alongside the decoding
process, within the same search tree structure. Thus existing
detection algorithms, as well as pre-processing stages such as
lattice reduction and ordering, which are known to provide
further complexity improvements, can be easily applied.

In addition, for delay-limited rather than processing-limited
applications, traversal operations relating to detection and to
boundary control can be done in parallel, as there is no data-
dependence between them. Such a strategy would reduce the
required computation time by a factor of two.MATLAB im-
plementations of the decoders discussed here can be found at
www.comm.utoronto.ca/ ∼karen/research.php .
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