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Abstract—This paper develops a framework for the efficient the residual problem and shaping region are reduced. Thus
maximum-likelihood decoding of lattice codes. Specifically we extending the scope of established tree-based ML detectors to

apply it to the spherical Lattice Space-Time (LAST) codes i,a decoding of spherical LAST codes, at a computational cost
recently put forward by El Gamal et al. that have been proven ble to that of lattice d di

to achieve the optimal diversity-multiplexing tradeoff of MIMO comparable 9 at of latice decoading. .

channels. Our solution addresses the so-called boundary control ~We emphasize that the proposed ML decoding methodology

problem within the same search tree structure as existing sub- is not restricted to space-time systems. It can be used to decode
optimal LAST decoders. We demonstrate its performance and QAM-modulated signals transmitted over MIMO fading chan-
complexity by applying two of the most efficient tree-based ML o5 ' |attice coded signals transmitted over AWGN channels,

| in the li h herical . . .
EeAtSegtoCrcs)dZuLr:aon;glsergp?or:e?hem2 txez |t|\</|e:ratgrecr§gntn§ Z? Sggi over SISO fading channels and in multi-user CDMA systems.

length 2. Our optimal decoders exhibit improved performance The fading channels may be flat or frequency selective, and
over the naive lattice decoder with MMSE-GDFE pre-processing quasi-static or time-varying; the problem formulation used in

at a comparable complexity. our work can be equally applied to these cases.
maIQidn?l)J(mTl?lzreT:;; é—gtggiojﬁ]agce'“me codes, boundary control, e gpen in Section Il with an outline of the mathematical
' structure of the LAST decoding problem. Next we present a

generic lattice decoding framework that facilitates the appli-
cation of existing lattice decoding algorithms to new prob-

In their recent paper [1], El Gamat al. introduce the class lems. Specifically, the ML decoding of spherical LAST codes
of Lattice Space-Time (LAST) codes, which are shown teequires the specification of an efficient tree-based boundary
achieve the optimal diversity-multiplexing tradeoff under germechanism, as detailed in Section IV. This innovation leads
eralized minimum Euclidean distance lattice decoding (witte the development of two new ML LAST decoding schemes.
MMSE-GDFE pre-processing and assuming a sufficient blogection V compares their ML performance and competitive
length). However, the lattice decoder employed in their wodomplexity to the profiles of current sub-optimal proposals.
is sub-optimal. Thus motivating our present investigation dfinally, concluding remarks are offered in Section VI.
efficient Maximum Likelihood (ML) decoding of spherical
LAST codes, or more generally any spherical lattice codes. |- PROBLEM FORMULATION AND PRELIMINARIES

The codebook of a lattice code can be described as thdn this paper we consider problems that can be modelled as
intersection of a (infinite) lattice with a bounded shapinthe minimization of the squared Euclidean distance metric to a
region. One of the critical advantages offered by lattice cod&sget v over anM -dimensionaldiscrete search set C RL:
is that the algebraic structure of the lattice lends itself to the
use of efficient decoding techniques, e.gitice decoding
Given the received signal vector, a naive lattice decoder returns
the closest point of the underlying lattice, ignoring the shapifgnerev € R, H € R¥*A and the search setéarvedfrom
region entirely. Therefore its performance can be far frogn M -dimensionainfinite latticecomprising all integer linear
optimal, since it must declare a decoding failure if the closeg@mbinations of the columns generator matrixG € R~
point found does not lie within the boundaries of the codebook. AG)2 [\ : A=Gz, z c ZM) @)

In the literature, the problem of ensuring that the decoder
only considers feasible lattice points, i.e., those lying withidy means of aranslation vectom € R and ashaping region
the shaping region, is referred to Beundary control[2]. It S € R [3]. The search set is then given by the intersection
is generally recognized as a “complicated” problem. One 6f a translateof the lattice with the shaping region:
the main contributions of our work is an efficient means of
achieving boundary control when the shaping region is spheri- €=MAG)+uns. 3)
cal, within the familiardivide and conquetree-based decoding SinceC ¢ ZX, the problem can be viewed as a constrained
framework. We show how at each stage, the dimension of batlosest lattice point search with lattice generdibG.

I. INTRODUCTION

s, = argmin |v — Hs|?, 1)
seC



We are often interested in centering the lattitgG) un- Following the pioneering paper on this work [1], next we detail
derlying the search set at the origin. The subscript 0 notatitime specific parameterization of this problem.
is used to denote entities defined with respect to this frame ofLattice Space-Time (LAST) codes are designed for the
reference. For instance, instead of translating the latticea byMIMO fading channel, which can be modelled by ahx A
as in (3), we may translate the shaping regionugy> —u:  complex matrixH of fading coefficients and a block length of

A T channel uses, wher® and M are the numbers of receive
C=Cotu ) and transmit antennas, respectively. In the case of quasi-

Co = A(G)N(S+up). (5) static fading, where the fading coefficients remain unchanged
over the duration of the transmission block, the effective real

Then minimization (1) can be written equivalently as )
(1) q y channel matrix can be expressed as a Kronecker product

2
s, =+ Gagmin |y Hu-=d] : Gac CO} SRR S {Eﬁ% B ﬁ“gﬂ € RNuerust (1)

:XO
A A
where 2 £ HG is the effective generator matrix of the"VNere Niast = 2NT and M, psy = 2MT are the numbers
éeal received and real transmitted signals per codeword, re-
spectively. The search set ocodebookrom which transmitted

transformed lattice and search set, and we call the elemeﬂft
of z optimization variablesand |v, — Zz|” the cost function . b
a?ggeword$ are drawn with equal probability is given by

Problem formulation (6) is advantageous because the se

set has an underlying Cartesian product structzi#é that Ciast = (A(GrasT) + uLast) N Siast(0, D), (12)

lends itself easily to divide and conquer solution techniques. ] )
We assume in this work an overdetermined problem, i.&'here as suggested by the name given to the codes, the shaping

that M < N, and thafH is of full rank M. For multi-antenna "€gion takes the form of &losed) sphere

fading channe_ls, this assumptlon means that there are at least Siast(0,D) £ {€ e — 0|2 <D tc RM} (13)

as many receive as transmit antennas. We also make use of

the following notational conveniences: Given a squafex of squared radius) centered at the origin. The specification

M matrix A, let a;; denote the element in thd&D row and of the lattice generator matriG ast € RMXM  translation

column position A~ the inverse transpose, a#d " theit"  vector uiast € RM and sphere squared radiilis comprises

column vector ofA~T. Given a vectorx, let z; denote the the design of a spherical LAST code.

it element. Lewo and e; denote appropriate length all-zeros Assuming circularly symmetric additive white (complex)

and elementary vectors, add; the M x M identity matrix. Gaussian noise, the resulting ML detection rule can be written
Finally, we introduce three useful geometric notions: First the form of minimization problem (1), where we denote by

we define theaffine sets vy ast the (real) received vector

FrE) 2{€: (€-EzE")=0}, z€Z (1) v 2 Re{v[I}T Im{v1}7 - Im{v[T]}7]" (14)

J
in which the points of lattice\(E) are embedded. Geometri-formed by stacking the real and imaginary components of

—

cally, 7;/(E) is a hyperplane defined with respect to normahe complex signal vectors|[1], ... v[T] received during the

vectorE; " and offsetz. Algebraically, it contains the subsetdesignated fading block. It can also be written in the alternate

of lattice points where;; takes a particular valug € Z. form of (6) with the effective generator matrix of the trans-
The orthogonal projectionof a vectory onto affine set formed lattice and search set givenByast = H| st GrasT.

F;(2) is defined as

}T

Ill. GENERIC LATTICE DECODING FRAMEWORK

In this section, we overview a lattice decoding framework
that facilitates the application of established decoders to new
problems sharing the generic structure of (6). It employs a
and the correspondingguared orthogonal distancas divide and conquer approach, recursively decomposing the

||y _f£(5)||2 5 in |y_€|2 ©) minimization intoresidual problem®f decreasing dimension.
= 77 L eerxm = We also demonstrate how the so-calledundary control
2 problem can be tackled naturally within this framework.
= ‘Z—projff(s) (X)‘ : (10) In the absence of noise, the observed signals are drawn
from atransformed codebookvhich can be defined as follows
with respect to the underlying transformed lattit€E) being
centered at the origin:

=T
. Yy, = - &_‘_
PrOiji(E)(Z) 2 y - <j>’2‘=‘j ) (8)

It should be clear thairoj z= =) (y) is the point in the affine
. . . J o
set that is closest in Euclidean distanceyto

A. Decoding of spherical LAST codes T, £ HC, (15)
The lattice decoding framework presented in this paper :X(E) N (HS + Hup). (16)
is primarily demonstrated with reference to the decoding of T =~

spherical LAST codes used in a MIMO fading environment. 2ag



The optimal cost of (6) can then be written as a function takirtg the effective generator matri, as is done in many sphere
the target vectorv,, and asearch set/; as its arguments: decoders [2], [4]-[6] and detectors such as V-BLAST [7].
The following sections address Tasks 1 and 4, which may be
referred to in the literature collectively dsundary contral

We remark that both the target and the search set are furtﬁé?Ofs have been deferred to the sequel [8].
embedded in @earch spac@®L of dimensionM.

Next, we recall that those lattice poinis € 7, where
variablez; takes a particular value i@ are contained in affine  We determine the candidate range by applying a sort of
set ]-";”'(E). Therefore we can divide the cost function intgelaxationto the representation of the search set. Instead of
two terms: a partial cost incurred by assigning a particulapnsidering whether there is at least one point indfserete
value toz; and a (lower-dimensional) cost function evaluategearch set where variable; takes a particular value, we
over the remaining variables. The first term is precisely thmnsider whether there is at least one point inoatinuous
squared distance between the target and the affin@js'éE) relaxation of the search set, namely in the shaping region,
associated with the chosen valuezgf The second term is a where variablez; takes a particular value.
function having the same structure as the original cost, whichRecall that the affine sef-‘f(E), which contains those
allows for a recursive implementation. Before proceeding weanslated signal vectors where variabletakes a particular
need to specify its target and search set arguments. value z € Z, is defined as a hyperplane with normal vector

To do so, we start with a few observations about the affirEj‘T and offsetz. If the intersection of the shaping region
set]-‘j"(E). It is of dimensionM — 1, since it represents thewith the affine set is empty for some offsete Z, then there
part of the search space that remains after one variable has no points in the search set satisfyifjg= = and we say
been constrained. We may therefore cﬁﬁJ(E) aresidual thatz is not afeasible valugfor variablez;.
search spacelt also follows that the recursive cost function, If the intersection is non-empty for some offset Z, then
as well as its arguments, should all be embedded in thieeremay or may nobe a point in the search set satisfying
residual search space. Hence we definesidual targetas z; = z. In this case we cannot declare thais infeasible, and
the projection of the target onto a residual search space so we call it acandidate valueand keep it in the search set.
Thus we define theandidate rangdor variablez; as follows:

9(vo, T0) = }}Iél% vy — U|2- (17)

A. Determining the candidate range

N s
Yo = proij’(E)(XO)’ (18) Definition 1: Given shaping regio® c R and generator
and aresidual search seas the intersection of the search sepatrix E ¢ RMX.M, let the candidate rangeof values for
with a residual search space variablez; be defined as
T 2 TN F (B). (19) Rj£{z€Z: SNF;(E)#0} (21)

Armed with these notions and definitions, we can then Because the shaping region is connectedl,is a sequence
decompose the optimal cost function (17) by decoupling ofé consecutive integers that can be described by specifying its
of the optimization variables from the main problem. Withoupwer and upper bounds. More precisely, we definestiedow
loss of generality, lej = 1, then we can write the following: Of the shaping region on a normal vector:

Definition 2: Given shaping regiols ¢ R and normal
9(vp, To) = min ||lvy - F (B +g (26770')} , (20) vectorn € RM, let the(closed) shadowf S on n be defined

eR .
. o . ) as the interval
whereR; is called thecandidate rangeof values for variable

z1 and will be discussed in more detail shortly. We say that shad, (S) £ |min(v, n), max(v,n)| . (22)

z1 has beerdecoupledrom the problem because aside from ves ves

the computation of its arguments, the recursive optimal costThe lower and upper bounds of the candidate raRgeare

function in the right hand side of (20) is independent:pf  then given by the ceiling of the lower bound in (22) and the
In the next stage of the decomposition, another variablefleor of the upper bound in (22), respectively.

decoupled from the second term of (20) and the dimension

of the residual search space is again reduced. WheMall B. Constructing the residual search set

variables have been decoupled from the problem, the residuaAS before, we approach the task of constructing the residual
search space is of dimension zero and the recursion terminag '

. . . " Sarch set by applying a relaxation to its representation.
To apply the ideas beh_lnd recursive decomposition (20) Mstead of trying to obtain a simple concise description of
lattice decoding, we require efficient means of

the points in the discrete residual search set where variable
1) determining the candidate range for a selected variable, takes a particular value, we seek to describe a continuous
2) finding the distance from the residual to an affine setelaxation of the residual search set, namelgsidual shaping
3) projecting the residual onto an affine set, and region, where variablez; takes a particular value.
4) constructing the residual search set. Recall from (19) that a residual search set is defined as the
Tasks 2 and 3 can be realized by applying the QR factorizationersection of the search set with a residual search space, i.e.,



with an affine set of the forn#;(E). Therefore we can arrive
at the desired description by applying the definition directly: L —7(E)

Ty =ToNF;(E) (23)
=A(E)N [(HS +ag) N f}(E)] , (24)

where the intersection of the shaping region with the affine set
gives the residual shaping region. Thus the residual search sets
can be represented as intersections of the transformed lattice
with a residual shaping region, as in the definition of the search
set itself. This decomposition enables boundary control to be \
implemen in conjunction with ing. ¥
plemented in conjunctio th decoding A

C. Tree-based lattice decoding

The notion of tree-based lattice decoding arises from the
recursive decomposition of (20) and forms the basis for many
current detectors, most notably the sphere decoder [2], [5].
We associate with each (residual) problem a node in the trég, 1. Transformed lattice\ (=) and codebookTo for LAST decoding
starting from the root node, which corresponds to the mapmblem with M =2 and Shapmg regio€ (ag, H™', D), along with its
search. Next, we select an optimization variable to decouysfeadow or&; " . Affine set7; " (=) is highlighted for further commentary.
from the problem, say:;,. The candidate rang®;, then
provides a superset including all feasible valuesAor

Recall from (20) that each candidate value € R;,
generates a partial cost, namely the squared distance from
target to an affine set, as well as a residual problem having the
same structure as the main problem. In the tree, the size of the
candidate range for the next varialj®e;, | gives the number
of children generated by the current node. The weight of the
connecting branch to each child is given by the partial cost
incurred by assigning a particular valueto variablez;,, and  projs 2 Proj s 1) (Vo) @ Proj ro(g ( Proj £ (g (Vo)
each child node iteslf is associated with a residual problem. (no children)

Continuing in this way, we select subsequent variables to
decouple from the residual problems,, ..., z;,,, and extend
the tree to its full depth of\/ + 1 levels. Each leaf node of - 7= ]
the tree represents a point in the search set. The corresponding
value of the cost function is computed by accumulating thmy. 2. A tree-based decomposition for computing values of the cost function
partial costs incurred at each stage of the decomposition, i%en transformed LAST codebodk shown in Fig. 1.
by summing the branch weights along the path from the root
node. Thus the search tree encapsulates all possible values §¥€ note in particular that for a spherical LAST coelach
the cost function in the weights of its leaf nodes. node, even those at the same level, may have a different num-

Although the structure of the tree, i.e., the number gger of children, or no children at allFor instance, consider
levels and the number of children at each node, underlies the node assomated with the projection of the tasggbnto
decoding operation, only the properties of the root are knovfine setF; ' (Z). Observe that although the offset coefficient
at the outset. Decomposition (20) enables us to compute ffethe associated affine set, i.e:1, is in the shadow of the
properties of the children of a node, and hence to explore tH@aping regiorshad_-r (£), there are in fact no elements of
tree. We refer to a lattice decoder whose operation is goverriBg codebools = Gz such thatz; = —1. Recall that in this
by a tree asree-based This class includes optimal spherecase we call-1 a candidate value for variablg, but it is not
decoders [2], [5] and sub-optimal successive detectors [7].in fact a feasible value.

To find the desired candidate ranges, we work in the compu-
IV. "ML DECODING FOR SPHERICALLAST CODES tationally simpler codeword domain, where the shaping region

To see how this framework can be applied to the decodifg spherical. A similar result for the case of an ellipsoidal
of spherical LAST codes, consider the graphical view of théhaping region can also be easily derived from the following:
LAST decoding problem as shown in Fig. 1. The codebook proposition 1:Given (closed) spherd(uo, D) ¢ RM with
is illustrated in the form of transformed |attICA( ) and Centreuo c RM and Squared rac“u@ and normal vector
codebook7; with ellipsoid shaping regiod (ag, H ™', D).t € RM, the shadow of5 onn is given by

1The spherical shaping region, transformed by the channel m&lix -3 [T\ _ L/ /
becomes an ellipsoid from the perspective of the received signal space. shadn (S) - <u0, n) D |n\ ’ <u0, r1> +vD |n| : (25)

The search tree that arises from a decomposition of the cost
fypetion for this decoding problem is provided in Fig. 2.

A7)
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Having determined the candidate range for the variablleat the sphere decoder can be described as a lattice decoder
under consideration, application of the tree-based lattice dmwnploying axis-aligned rectangulaboundary control, which
coding framework involves specifying rules for computingesults in ML decoding for lattice codes whose shaping regions
the properties of a child node from those of its parent, @hare this structure. The axis-aligned property means that each
equivalently, the parameters of a residual problem from thogariablez; takes values in somixedalphabet, independently
of its parent. As discussed previously, a key ingredient in theskthe values taken by variables, i # j. Equivalently, from
derivations is the affine set associated with the variable undetree-based perspective, each node has the same number of
consideration and the value to which it is being constrainechildren, corresponding to the cardinalify of the alphabet.
Given this affine set, the residual target is then the projectiédthough the standard algorithm can easily be extended to
of the target onto it, the partial cost (or branch weight) is thalow the alphabet associated with each variable to vary on a
orthogonal distance from the target to the affine set, and agginbal scale, it cannot be trivially modified to perform efficient
working in the codeword domain, the following result enabledecoding over more general search spaces.
us to easily compute the parameters of the residual search

Proposition 2:Given (closed) spher§(ug, D) C R with
centreug € RM and Squared radiug, normal vectom € RM To implement bOUndary control EfﬁCientIy, we pre-process

et: - . .
B. Remark on efficient implementation

and offseth € R, the intersection o with hyperplane the code generatoi via the QR factorization to obtain or-
N thogonal matrixQc and upper triangular equivalent transform
P(n,b) = {v : (v,n) =b} (26)  matrix P. The translation vector of the shaping region is
is an (M — 1)-dimensional sphere that can be written a@rthogonally transformed ta = ch0 and the candidate
S(ul, D') N P(n,b) where centre range for the first variable to be constraingg is then
!/ : 2 2
Uy = Projp(n,p)(W0) (27) Rar = {{“M _ \/5—‘ . {“M 4 \/EJ} (29)
and squared radius P [parn| punt ||
H H —1
D —D— _ NS 28 Equation (29_) takes such a 5|mple_ form bechsandP
Ilto =P (n, by (28) are upper triangular, and sP~7 is lower triangular and
Proposition 2 allows us to construct the residual search sl%};[ LeM

or residual codebookvhen decoding spherical LAST codes The gmmcatlon offered by the upper triangular form of
by means of the same two parameters used in the definit@guivalent generator matriR also extends to the computation
of the codebook itself, namely tlresidual translation vector of the parameters of the residual search sets. For the first
ug, of the shaping region and itesidual squared radiu®’. variable to be constrained,; the residual translation vector
The additional computational requirements incurred by thghd residual squared radius are as follows:

proposed spherical boundary control arise from the storage

and updating of these variables at each node. u = [plzt[\ﬁx} (30)
A. Ordered Traversal LAST Decoder D'=D — (uy — pMMw)2 ; (31)

The ordered traversal LAST decoder (OTD-L) maintains agherez ¢ Ry is the value under consideration.
ordered list of nodes defining the border between the explored
and unexplored parts of the tree. Initially it contains only the V. PERFORMANCE AND COMPLEXITY RESULTS
root node. At each iteration, it selects the border node with Finally, we discuss the performance and complexity profiles
the smallest weight and computes fist child and itsnext obtained using the spherical LAST code of [1], designed for
sibling nodes in the tree. The expanded node is then deleth@ M/ = N = T = 2 scenarid Fig. 3 shows the average
from the list, since it is no longer on the border. codeword error rates attained by various decoding strategies.
By definition and as suggested by its name, the OTD Although a large part of the gap between the performance
explores the nodes of the tree in order of increasing nodearves of the naive lattice and ML LAST decoders is recov-
weight. Therefore when the smallest weight border node ésed by the efficient naive decoder with MMSE-GDFE pre-
a leaf, it returns the corresponding point in the searchzsetprocessing proposed in [1], we see that there remains about
which must represent an ML solution [9]. 1dB of room for improvement. This gap can be completely
closed by the proposed ML detectors, or roughly halved
by applying the proposed ML strategies, i.e., with boundary
The SEA LAST (SEA-L) sphere decoder applies the sam@ntrol, following MMSE-GDFE pre-processing. The resulting

depth-firstapproach as its counterpart for uncoded MIM@seudo-MLperformance curve is labelled “p-ML.” We also
fading channels, which is studied in detail in [2].

B. Schnorr-Euchner Adaptive LAST sphere decoder

. 2Although it does not meet the block length conditidh ¥ M + N — 1)
C. Remark on standard sphere decoding necessary to achieve the optimal diversity-multiplexing tradeoff, we use the
. . simplest possible LAST code here just to illustrate some properties of the
Contrastlng the tree_Of Fig. 210 tha)mplete(M + 1)' ‘ML decoders. Higher dimensional LAST codes satisfying the condition are
level B-ary tree underlying a standard sphere decoder, we fiauhsidered in an extended work [8].



= competitive computational requirements. For the code under

3 oy consideration, the OTD-L has a slight edge over both the ML
T N SEA-L and the sub-optimal naive decoders, all with MMSE-
B b e GDFE pre-processing, because of the significantly reduced
i % ° 1 number of nodes that it expands.
* T Finally, we note that the number of nodes expanded by

the naive decoder is oftelarger than that explored by the
OTD-L. This result may seem counter-intuitive at first; it

Average codeword error rate
%
Q

2| * © | .
10 arises because the OTD-L only expands those nodes whose
- associated residual targets lie both inside the search sphere,
o aive * . .
o Naive+MMSE-GDFE X as well as on affine sets that correspond to candidate values
* ML . . . .
|l = pML+MmsE-GDFE ‘ : of the optimization variables. Therefore, in many (but not all)
%% 5 10 15 20 cases it actually expands fewer nodes than the naive decoder.

Average received SNR per codeword [dB]

, _ VI. CONCLUSIONS
Fig. 3. Average codeword error rate vs. average received SNR per codeword . )
for the (sub-optimal) naive lattice and ML LAST decoders, shown both with In this paper we have presented a generic framework

and without the MMSE-GDFE front end. for the efficient ML decoding of lattice codes. Specifically
we apply it to the spherical LAST codes pioneered in [1]

. d demonstrate that improved performance over the naive
remark that the performance gap between the naive+MMS ecoder with MMSE-GDFE pre-processing is available at a

GDFE decoder and the ML curve is small for the scenarig : -
. - . comparable complexity. Within our framework, the problem of
depicted in Fig. 3, whereas we expect that it becomes maqre . : )
e ) ) oundary control is handled naturally, alongside the decoding
significant for problems of larger dimension. o .
process, within the same search tree structure. Thus existing
detection algorithms, as well as pre-processing stages such as

lattice reduction and ordering, which are known to provide

55

T, further complexity improvements, can be easily applied.
sl e | In addition, for delay-limited rather than processing-limited

S 8ee g o, ly . applications, traversal operations relating to detection and to
[— T T T . boundary control can be done in parallel, as there is no data-

dependence between them. Such a strategy would reduce the
required computation time by a factor of twBlATLAB im-
oo plementations of the decoders discussed here can be found at
www.comm.utoronto.ca/  ~karen/research.php
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