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Abstract

We propose a simple PAM-based coded modulation scheme that overcomes two

major constraints of power-line channels, viz., severe insertion-loss and impulsive noise.

The scheme combines low-density parity-check (LDPC) codes, along with cyclic random-

error and burst-error correction codes to achieve high spectral efficiency, low decoding

complexity, and a high degree of immunity to impulse noise. To achieve good per-

formance in the presence of inter-symbol interference (ISI) on static or slowly time-

varying channels, the proposed coset-coding is employed in conjunction with Tomlinson-

Harashima precoding and spectral shaping at the transmitter. In Gaussian noise, the

scheme performs within 2 dB of un-shaped channel capacity (the sphere-bound) at a

BER of 10−11, even with simple regular LDPC codes of modest length (1000–2000

bits). To mitigate errors due to impulse noise (a combination of synchronous and asyn-

chronous impulses), a multi-stage interleaver is proposed, each stage tailored to the

error-correcting property of each layer of the coset decomposition. In the presence of

residual ISI, colored Gaussian noise, as well as severe synchronous and asynchronous

impulse noise, the gap to Shannon-capacity of the scheme to a Gaussian-noise-only

channel is 5.5 dB at a BER of 10−7.
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1 Introduction

Over the past decade, advances in coding, equalization and VLSI design have combined

to enable spectacular increases in throughput over power lines cables. This is despite the

severe constraints the medium imposes, viz., severe signal attenuation (insertion loss) over

long cables, impulse noise, and inter-symbol interference. In particular, impulse noise is a

severe impairment, and occurs in the form of time-varying periodic noise synchronized to

the line frequency, periodic but asynchronous noise caused by switching power supplies, and

asynchronous noise caused by random switching transients in the network (cf. [8, 31, 32]).

Electro-magnetic interference (EMI), in the form of narrow-band sinusoidal noise from radio

and TV sources, is also an impairment. Furthermore, transmission over power-lines is

constrained by statutory electromagnetic compatibility (EMC) emissions constraints, which

restrict the total transmit power and PSD during transmission.

In this paper, we propose a simple PAM-based coset coding scheme to overcome these

impairments. For brevity, we focus on static or slowly time-varying channels, which has

been shown to be a reasonable assumption in [7]. However, extensions to the rapidly

time-varying case are also briefly outlined. The modulation scheme offers high spectral

efficiency, immunity to multiple impulse noise sources, good coding gains, but yet, requires

low complexity overall. The idea of coding with cosets within a lattice framework was first

generalized in [13, 14]. An important result, proven in [15, 29], is that coset codes can

achieve the sphere bound – channel capacity without shaping – with simple 1-dimensional

lattices, and with two or three levels of coset partitioning. Motivated by these ideas, the

scheme proposed here for power-line channels is based on a 3-level coset decomposition

with different codes at each layer of the decomposition. Viewing the bottom layer as a

Gaussian channel at low SNR, the scheme relies on simple regular low-rate LDPC codes

of 1000-2000 bits [22] for steep BER reduction. Meanwhile, the middle layer is treated

as a binary symmetric channel (BSC) that is coded with hard-decision random and burst

error-correcting cyclic codes. In particular, a high-rate Reed-Solomon (RS) code is applied

here to protect against random and phased-burst errors. By virtue of its large intra-coset

distance, the top layer of the decomposition can be viewed as a BSC channel that is only

vulnerable to burst noise. Both RS codes and single-burst-error correcting codes from [23]

are investigated. On an AWGN-only channel, the scheme performs within 1.5 dB of the

sphere-bound at a BER of 10−7, and within 2 dB at a BER of 10−11. At this BER, the

corresponding coding gain over uncoded PAM is about 8.5 dB.
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In work related to LDPC-based coded modulation, a coset-coding scheme was proposed

in [11] for DMT modulation over digital subscriber lines. The authors demonstrated that

coset codes can be constructed with relatively short LDPC binary codes, thus keeping

latency to a minimum. Independently of this work, one of us proposed a coset-coding

scheme for twisted-pair transmission at 10 Gbit/sec [25], with LDPC codes on the order of

2000 bits. Here, performance at a BER of 10−12 was 2.5 dB from the sphere-bound. As

noted by one of the reviewers, a DMT-based LDPC coset-coding scheme was also proposed

recently in [3] for ISI-constrained channels; the scheme makes use of RS component codes

at high layers due to their low complexity and their well-known construction at high rates.

However, the motivation of our proposal is broader, as we view the coset decomposition with

different noise characteristics at each layer. The partition between modulation, coding and

equalization is also different from what is proposed here. For example, in [3], the bottom

layer is actually a concatenation of an irregular LDPC code (of length 105 bits) and an

ensemble of repeat-codes of various rates. This is to support the different capacities of each

sub-carrier of DMT. The problem is avoided with the PAM-based scheme proposed here,

where one designs the coset code for a single AWGN channel without loss of optimality [17].

In other recent work related to coset-coded modulation, bit-interleaved coded modulation

(BICM) and multi-level coding (MLC) schemes with LDPC codes were investigated in [21].

With quasi-regular LDPC component codes on the order of 106 bits, performance within

0.1-0.2 dB of the sphere-bound was achieved.

To extend the burst error-correction ability of the proposed coding schemes, the well-

known technique of interleaving is applied. Uniform interleaving is widely used in concate-

nated coding where, for example, a soft-decision code like trellis-coded modulation (TCM)

is concatented with an RS code, separated by a byte-interleaver [26]. The RS code in

such schemes corrects burst-errors that are left uncorrected by, or sometimes caused by,

the Viterbi decoder. However, the scheme proposed in this paper differs in the sense that

interleavers are used at each layer of a coset decomposition independently, each tailored

to different properties of the component codes and noise at different layers. Simulation

results show good performance with sufficient interleaver depth. In the presence of non-

stationary impulse noise, the scheme operates at a gap of 5.5 dB to Gaussian-noise-only

channel-capacity at a BER of 10−7. The gap to true channel-capacity in impulse noise could

not be computed.

The PAM-based baseband modulation proposed here offers advantages over other mod-
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ulation schemes that utilize discrete multi-tone (DMT) transmission [2, 4], or spread-

spectrum techniques [10]. These will be discussed further in Section 2.3. In terms of sig-

nalling on a static or slowly-varying channel with ISI, a well-known technique to mitigate ISI

is the combination of ideal decision-feedback equalizer (DFE), spectral shaping at the trans-

mitter, and noise-whitening matched filter. In Gaussian noise and under the condition of

zero excess-bandwidth, this combination of techniques is asymptotically capacity-achieving

at high SNR (cf. [17, 12]). In particular, we employ Tomlinson-Harashima precoding, which

asymptotically approaches the sphere-bound of the channel at high SNR and large constel-

lations. We integrate the proposed coset coding with these techniques to show that good

performance can be achieved on the power-line channel, even in the presence of ISI, severe

impulse noise and colored noise. On channels with rapidly time-varying transfer functions,

the scheme can be extended to adaptive and turbo-equalized receivers.

The remainder of the paper is organized as follows. In Section 2, the power-line system

model is outlined, along with details of the channel and noise. We also motivate the proposed

transmission scheme in this section. Section 3 elaborates on the design of the proposed

coset code in Gaussian noise as a first step to designing for the power-line channel. In

Section 4, the scheme is augmented to handle synchronous and asynchronous impulse noise.

Simulation results are also presented. Section 5 concludes the paper.

2 System Descriptions

In this section, we review the transmission model and channel conditions for power-line

communications, focusing on last-mile access over low-voltage lines.

2.1 Channel Transfer Function

One of the major impairments of PLC channels is its insertion loss (signal attenuation)

with increasing distance. The length of typical “last-mile” access power-lines is on the

order of 150 meters, although it varies among countries. A major drawback of power-lines,

compared to other kinds of cables, is that the cable follows a bus topology, rather than

a point-to-point connection. Each power-line connecting each house or main to the bus

(branch) can have a different terminating impedance. Terminations (e.g., open mains or

connected appliances) represent a complex impedance causing reflections (return loss), and

consequently, a multi-path channel at the receiver. The more branched the network is, the
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larger the number of paths. Moreover, longer paths experience higher attenuations since the

signals travel longer distances. Thus, the frequency response of the PLC multi-path channel

H(f) can be approximated by a sum of N paths [33]. The sum accounts for multi-path

propagation and frequency-selective fading, viz.,

H(f) =
N∑

i=1

gi︸︷︷︸
weighting

e−(a0+a1fk)di︸ ︷︷ ︸
attenuation

e
−j2πf

di
vp︸ ︷︷ ︸

delay

, (1)

where gi represents a weighting factor along path i with distance di; a0, a1 are attenuating

parameters; k is the exponent of the attenuation, usually in the interval 0.2 to 1. The

last term represents the propagation delay, with vp denoting the velocity of propagation.

Typical values of a0, a1, and k are given in [27, 33].

In this paper, we consider values of gi, di, N, a0, a1, and k that represent a typical refer-

ence channel for last-mile access based on three-phase underground distribution grids using

PVC isolated cables, whose parameters are given in [27] (channel 3) and are based on real

measurements in Germany [33]. Channel 3 represents a hostile channel consisting of a 210m

line with 8 branches, and hence multiples sources of reflected signal power. The impulse

response lasts on the order of 10µs. The frequency response of this channel is shown in Fig.

1, along with a more benign channel of length 100m with no branches (channel 1 in [27]).

In general, most channels exhibit long-term variations in the transfer function. In [7],

the channel transfer function was observed to also exhibit small variations that were periodic

with line frequency; however, the authors showed that even these channels can be modelled

as a sequence of static channels. Hence, we focus on slowly time-varying channels in this

paper. An important characteristic that we depend on is the symmetry of the transfer

function (cf. [5]), which holds true when the terminating impedances of the transceivers are

identical at both ends of the link. This property permits transmitter-side techniques, as will

be shown in Section 2.3. Techniques for rapidly time-varying channels are also discussed.

2.2 Additive Noise

A comprehensive analysis in [32] characterized the noise sources that afflict power lines. The

authors showed that the various noise sources can be classified broadly into the following

categories:

a) Colored Gaussian noise.
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b) Narrow-band sinusoidal noise (EMI) that originates from commercial AM, FM and

ham radio sources.

c) Periodic impulsive noise that is synchronous to the mains (i.e. every AC cycle) origi-

nated by transients in appliances connected to the power lines.

d) Periodic impulse noise that is asynchronous to the mains, caused by switching power

supplies.

e) Asynchronous and aperiodic impulsive noise usually caused by random switching tran-

sients.

The noise sources d) and e) are highly time-varying, with their properties changing in

micro-seconds. In this paper, we consider all noise sources mentioned above, except b).

While narrow-band EMI is a significant constraint in practical schemes, for this paper, we

assume that the narrow-band interference can be mitigated with a frequency notch, using

a combination of spectral shaping at the transmitter and noise-whitening matched filter at

the receiver. Meanwhile, the Gaussian noise is assumed to be strongly colored, with higher

energy at low frequencies [31]. The spectral shape of the colored noise, relative to a level

of -128 dBm/Hz, is shown in Fig. 2.

2.2.1 Synchronous Impulse Noise

It has been measured that a high percentage of the impulsive noise occurs periodically

and synchronously to the mains. In general, the impulsive noise consists of a collection of

damped sinusoids [8], with higher content in the low frequencies. The periodic impulses can

be modelled as a collection of Is damped sinusoids

ns(t) =
Is∑

i=1

Ai sin(2πfi(t− tarr,s) + αi)e
− t−tarr,s

τi Π
(

t− tarr,s

tw,s

)
, (2)

where fi is the “pseudo-frequency” of the sinusoid, and αi the phase, of the i-th damped

sinusoid. A plot of a single burst from such an impulse train is shown in Fig. 3. Π(t)

is defined as a square pulse of duration tw,s sec, with constant amplitude in the interval

0 < t ≤ 1 and zero elsewhere. tarr,s is the periodic arrival time, and Ai denotes the

amplitude of the i-th sinusoid. We assume Ai ∼ N (0, Giσ
2
v) , i = 1 . . . Is, where Gi

represents the increase over the variance of Gaussian background noise σ2
v , and can range

from 20− 30 dB. The gain Gi of sinusoids at higher pseudo-frequencies is selected to match
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the typical low frequency content observed in impulsive noise measurements, usually below

1 MHz. The term τi denotes the damping factor. Meanwhile, the pulse amplitude equals

the standard deviation of the background noise, i.e.,

Π
(

t− tarr,s

tw,s

) ∣∣∣∣
t=tarr,s

= σv . (3)

In [32], impulses of approximately tw,s = 50µs have been measured, and this value is used

in the simulations. In [8], pseudo-frequencies were characterized from 500 KHz to 3 MHz.

In this paper, we consider 3 component sinusoids (Is = 3), with pseudo-frequencies of 300

KHz, 2 MHz, and 3.5 MHz.

2.2.2 Asynchronous Impulse Noise

The combination of all impulsive noise sources that are asynchronous to the main frequency

can be modelled as a sum of damped sinusoids as in (2), but where arrival time tarr,a

is modelled as a random variable [32]. The asynchronous bursts are usually caused by

switching transients. Let tIAT,a = t
(p)
arr,a − t

(p−1)
arr,a denote the inter-arrival time between

consecutive bursts of asynchronous impulse noise, viz., burst p and p−1. Then, as discovered

in [32], tIAT,a can be modelled with an exponential distribution. In the simulations, we

select tIAT,a to be exponentially distributed with mean of 100ms. We assume the impulse

width tw,a to be constant, approximately 100µs. However, the amplitudes of the sinusoids

Ai, i = 1 . . . Ia remain Gaussian distributed, as in Section 2.2.1.

2.3 Transmission Model

Nearly Static Channels: We employ a simple baseband PAM-based scheme in this paper,

with an emphasis on static or slowly time-varying channels. In stationary Gaussian noise

and under the condition of zero excess-bandwidth, a PAM-based scheme – when combined

with ideal DFE, spectral shaping at the transmitter, and noise-whitening matched filter – is

asymptotically capacity-achieving at high SNR (cf. [17]). On the other hand, the impulse

noise statistics are time-variant on the order of a few micro-seconds [32]; this makes it

difficult to compute even the capacity of such a channel.

To simplify the design of a transmitter in impulse noise, we take a decidedly sub-optimal

approach. First, the shaping transmit-filter, equalizer and matched-filter are computed with

well-known methods for an ISI-constrained Gaussian channel. For slow variations of the

channel, periodic training sequences can be transmitted to update the equalizer and shaping
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filters via an adaptive update algorithm (cf. [19]). For very gradually changing channels,

decision-directed updates should suffice, obviating the need for a training sequence. In

summary, these techniques present a flat AWGN channel to a channel decoder, which greatly

simplifies the design of a coding scheme (Section 3). The code is then augmented to protect

against non-stationary impulse noise (Section 4).

Rapidly Time-Varying Channels: For channels with short-term variation, a combination

of adaptive and iterative (turbo) equalization is warranted, as transmitter-side shaping

and pre-equalization are impractical. Periodic adaptation of the equalizer is needed to

account for the channel variation. Furthermore, to improve the performance of the equalizer,

iterative schemes have been proposed (cf. [30]). The soft-output extrinsic information from

a channel-decoder can be used to update the equalizer, and vice versa, in an iterative

manner. However, for brevity, we do not investigate these techniques in this paper.

Modulation: The PAM-based baseband scheme employed here offers advantages over

other power-line schemes that utilize discrete multi-tone (DMT) transmission [2, 4], or

spread-spectrum techniques [10]. Besides simplicity and low latency, PAM constellations

have low peak-to-average (PAR) ratios compared to multi-carrier schemes. This eases the

design of the analog front-end of tranceivers, and also eases EMC compliance. Further, the

channel-shortening needed for multi-carrier schemes via time-domain equalization (TEQ)

is obviated [26].

In terms of baseband modulation compared to carrier modulation, a baseband scheme

has the advantage of operating in the frequency region exhibiting least insertion loss over

a cable (cf. Fig. 1). Furthermore, at high frequencies, a power-line cable that is designed

to operate at 50-60 Hz starts to behave like an inefficient antenna [20]. A baseband scheme

would naturally occupy the spectral region of least electromagnetic leakage, enhancing EMC

compliance. The choice of baseband spectrum also minimizes exposure to external EMI from

TV and radio sources. However, a disadvantage is that the signals are exposed to severe

impulse noise due to line currents operating at 50-60 Hz and at harmonics thereof. Overall,

the proposed scheme resembles the PAM-based schemes used for T1/E1 telephone-data

transmission in North America and Europe (via symmetric DSL, g.SHDSL [1]).

Constellation Shaping: For simplicity, we do not address constellation shaping, al-

though shaping schemes can be applied to obtain additional shaping gain in Gaussian

channels. Here, the optimal N -dimensional shaping region is the well-known N -sphere,

which can yield up to πe/6 (1.53 dB) of shaping gain as N → ∞ for large constellations
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[17]. However, in this paper, both the coset code and the pre-equalization are designed to

approach only the sphere-bound of the channel, discounting gains that can be achieved by

shaping. Furthermore, for impulse-noise channels, the exact shaping loss is not known.

Transmitter Spectral Shaping: Let xn represent a sequence of transmitted PAM symbols

with power spectral density Sxx(f). Let T (f) represent a spectral-shaping filter, designed

to achieve the optimal water-filling spectrum for the power-line channel H(f). The lat-

ter was defined in (1). In the system proposed here, T (f) is used to shape xn prior to

transmission, although this might not be practical for an actual power-line system (due to

EMC compliance requirements). The filter also inserts a spectral null at half-baud rate to

ensure zero excess-bandwidth. Since H(f) decreases steeply at high frequencies, this can

be done with simple first-order filters with negligible loss in capacity. Since the system is

transformer-coupled to the power network, we also insert a spectral null at DC to minimize

power loss. Ideal low-pass filtering for anti-aliasing and noise-rejection is assumed at the

receiver. Let P (f) denote the pulse response of the combined system, i.e.,

P (f) = T (f)H(f), (4)

and let pn denote the time-domain impulse response. Then, we can write the signal model

for the proposed scheme quite simply as

yn = pn ⊗ xn + vn , (5)

where ⊗ denotes convolution and vn represents the additive colored Gaussian noise only.

Let the PSD of the latter be denoted by Svv(f). Then, given a total power constraint PT

such that ∫

B
Sxx(f)|T (f)|2df ≤ PT mW , (6)

we can write optimal water-filling spectrum [17] as

T (f) =





K − |H(f)|2
Svv(f) , f ∈ B
0 , f /∈ B

(7)

where B is a capacity-achieving region that must be computed, and K is a constant chosen

such that (6) is satisfied.

Channel Capacity: Given capacity-achieving region B, and noise PSD Svv(f), the

capacity of the frequency-selective channel, considering only colored Gaussian noise, is now

given by

C =
1
2

∫

B
log2

(
1 +

Sxx(f)|T (f)H(f)|2
Svv(f)

)
df b/dim . (8)
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Consider “channel 3” of Fig. 1, with colored Gaussian noise PSD of Fig. 2. The optimum

water-filling capacity of this channel is computed with (8) and is shown in Fig. 4 for various

values of transmit power. For a nominal transmit power of 0 dBmW, the graph shows a

capacity of ≈ 49.7 Mbit/sec, achieved over a frequency region B : 0 ≤ f ≤ 3.85 MHz.

Equalization: The well-known minimum mean-squared error (MMSE) DFE is used

to mitigate ISI. Let B(z) denote the feedback filter of the DFE that cancels post-cursor

ISI, assuming perfect decision-feedback. Due to the difficulty of combining DFE’s with

block codes, the proposed scheme makes use of the well-known Tomlinson-Harashima (TH)

precoding [17, 12]. This entails using B(z) in a feedback loop at the transmitter to mitigate

post-cursor ISI a priori, as shown in Fig. 8. The TH-precoding induces a small transmitter

power-penalty; for an M -PAM constellation, the penalty has been shown to be M2

M2−1
, which

is asymptotically negligible for large constellations. However, the TH-precoder also causes

shaping loss by up to πe/6 ≈ 1.53 dB if constellation shaping were employed (which is not

the case in this paper). To avoid the shaping loss in order to achieve Shannon capacity, a

practical alternative is Laroia precoding, which is asymptotically capacity-achieving at high

SNR’s with large constellations [17].

A receiver filter, W (z) in Fig. 8, denotes the noise-whitening matched filter of the

DFE. This filter also mitigates pre-cursor ISI. Since the system is constrained to occupy

zero excess-bandwidth, the receiver is invariant to sampling phase and W (z) can be a

simple baud-spaced equalizer. Under this assumption, we are now left with almost-Gaussian

residual ISI and whitened Gaussian noise at the input to the channel decoder [16]. This

motivates our approach of designing the coding scheme for the AWGN channel first.

3 Coding in Gaussian Noise

In this section, we propose a coset-coding technique that combines both bandwidth-efficiency

and near-sphere-bound performance in the presence of Gaussian noise. The latter assump-

tion holds true under the conditions mentioned in the previous section. However, in Section

4, we also consider impulse noise. The coding scheme proposed in this section is based on

the notion of sphere-bound-achieving coset codes, which were investigated in [15, 29].
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3.1 Code Structure

We start with a brief summary of lattices and multi-level coset-codes, and we refer the

reader to the comprehensive treatments in [6] and [13, 14]. An N -dimensional lattice Λ can

be viewed as an infinite set of uniformly-spaced points in Euclidean space RN . A sub-lattice

Λ′ is a uniformly-spaced subset of the points of Λ. The sub-lattice Λ′ is said to induce a

partition, Λ|Λ′, of the infinite lattice Λ. A partition chain, Λ|Λ′|Λ′′ · · ·, is a sequence of

lattices such that each is a sub-lattice of the previous one, i.e., Λ ⊇ Λ′ ⊇ Λ′′ · · ·. Lastly, the

schemes in this paper use block codes, which will require m-dimensional Cartesian products

of lattices. This is denoted by Λm , Λ ⊗ Λ ⊗ . . . ⊗ Λ. Cartesian products of sub-lattices,

(Λ′)m, (Λ′′)m, and so on, are defined similarly.

The modulation scheme of this paper uses PAM constellations, which can viewed as

sub-sets of lattices. Formally defined, the PAM constellation can be viewed as a finite set of

points belonging to a translate of the N -dimensional lattice Λ and bounded by a rectangular

shaping region S. The constellation can be expressed as (Λ + Ω) ∩ S, where Ω ∈ RN is a

translation vector. Ω is selected to center a constellation symmetrically around the origin.

The sub-lattices of a lattice constellation are similarly bounded by S. Consider a sub-lattice

Λ′ of Λ. A coset of Λ′ can be defined as a translation of Λ′ by λ, such that

Λ′ + λ , {x = u + λ | x ∈ Λ , u ∈ Λ′ , λ ∈ [Λ | Λ′]} . (9)

[Λ | Λ′] represents the set of translates that satisfies (9). The coset partitions Λ′ | Λ′′,Λ′′ |
Λ′′′, · · · of a multi-level partition chain can be defined similarly.

We can now define coset codes formally. Consider a 3-level lattice partition chain Λ |
Λ′ | Λ′′. Let GΛ|Λ′ and GΛ′|Λ′′ denote generator matrices of block codes that respectively

generate codewords cΛ|Λ′ and cΛ′|Λ′′ over alphabets [Λ | Λ′] and [Λ′ | Λ′′]. A third matrix

GΛ′′ generates codewords cΛ′′ that selects m points from a sub-set {(Λ′′ + Ω) ∩ S}. Now,

a coset-code L can be defined as a set of codewords selected such that

L ,
{

x = cΛ|Λ′ + cΛ′|Λ′′ + cΛ′′ | x ∈ Λm
}

. (10)

The examples in this paper use a 3-level coset partition over Z. The bits mapped on

{ (Λ′′+Ω)∩S} are left uncoded in Gaussian noise, but coded for impulse noise. If the rates

of each component code of the coset decomposition are RΛ|Λ′ , RΛ′|Λ′′ and RΛ′′ , it is easy to

see that the coding rate of L is given by

R(L) =
1
N

[
RΛ|Λ′ log2 |Λ|Λ′|+ RΛ′|Λ′′ log2 |Λ′|Λ′′|+ RΛ′′ log2 |(Λ′′ + Ω) ∩ S| ] b/dim .

(11)
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3.2 Code Construction in Gaussian Noise

In this section, we discuss the code construction, coset decomposition, and choice of coding

rate for a slowly time-varying power-line channel.

Capacity Considerations and Rate Allocation: Let C(L) denote the capacity of a coset

code L over a lattice partition Λ | Λ′ | Λ′′, and let CΛ|Λ′ , CΛ′|Λ′′ and CΛ′′ denote the capacities

of each layer of the coset decomposition. A key result proved in [29] is that C(L) can be

achieved by any combination of coding rates, provided RΛ|Λ′ + RΛ′|Λ′′ + RΛ′′ = C(L). In

particular, apportioning C(L) by matching coding rate to partition capacity, i.e.,

RΛ|Λ′ := CΛ|Λ′ , RΛ′|Λ′′ := CΛ′|Λ′′ , RΛ′′ := CΛ′′ , (12)

has an important benefit in terms of reducing complexity. This choice of rate-allocation

allows soft-decision multi-stage decoding to be used without loss of optimality, assuming

capacity-achieving component codes are used. This rate allocation strategy is used in the

paper, but for simplicity, we use hard-decision decoding.

To compute the rate allocation, consider a nominal transmit power of 0 dBmW. The

water-filling capacity analysis in Section 2.3 revealed a capacity of approximately 49.7

Mbit/sec for “channel 3” over a frequency band 0 ≤ f ≤ 3.85 MHz. We implement a

zero excess-bandwidth PAM-based scheme, operating at 7.7 MHz, leading to transmission

of 6.44 b/symbol. On the other hand, the capacity of a multi-level decomposition of 128-

PAM in Gaussian noise is shown in Fig. 5. The figure shows that a capacity of 6.44 b/dim

can be achieved at a minimum SNR of about 38.9 dB at the input to a coset code demodula-

tor. For slowly time-varying channels, the rate-allocation must be re-computed periodically

with coordination from the receiver.

With this approach in mind, the analysis of Fig. 5 shows that rate RΛ|Λ′ ≈ 0.5 is optimal

to code the Λ | Λ′ partition, while RΛ′|Λ′′ ≈ 0.9 is optimal to code Λ′ | Λ′′. The analysis also

shows that the bits mapped onto {(Λ′′+Ω)∩S} can be transmitted at full rate in Gaussian

noise. This justifies the choice of a simple 3-level coset partition.

Selection of Component Codes: To obtain a steep reduction in BER, we select GΛ|Λ′

as short (3,6)-regular LDPC codes from [22], which are known to have good performance

at low rates. The codes have length 1000-2000 bits which results in low complexity. For

GΛ′|Λ′′ , we consider two choices: a rate-0.9 regular LDPC code from [9], and a rate-0.9

Reed-Solomon (RS) code. It can be shown that a relatively weak algebraic code GΛ′|Λ′′ is

sufficient for the Λ′ | Λ′′ partition, under hard-decision multi-stage decoding.
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Let Pe(Λ|Λ′) denote the bit-error probability on Λ|Λ′, Pe(Λ′|Λ′′) the corresponding prob-

ability on Λ′|Λ′′, and so on. Then, assuming hard-decision multi-stage decoding, we can

write the error probability of a PAM symbol in Λ as

Pe(Λ) = Pe(Λ|Λ′) + [1− Pe(Λ|Λ′)]Pe(Λ′|Λ′′) + [1− Pe(Λ|Λ′)][1− Pe(Λ′|Λ′′)]Pe(Λ′′) .(13)

When Pe(Λ|Λ′)9 0, Pe(Λ) is dominated by errors in Λ|Λ′ and the resulting error-propagation

in subsequent layers. When Pe(Λ|Λ′) → 0 at the bottom of the turbo-cliff region, (13) can

be approximated by

Pe(Λ) ≈ Pe(Λ′|Λ′′) + [1− Pe(Λ′|Λ′′)]Pe(Λ′′) . (14)

For a code on the Z | 2Z | 4Z lattice partition, Pe(Λ|Λ′) → 0 implies that GΛ′|Λ′′ operates

on the correct coset of Λ′ in Λ with high probability. However, notice that constellation

points on Λ′ have 6 dB higher intra-coset separation than points in Λ.

Fig. 6 compares the performance of the rate-0.5 LDPC code GΛ|Λ′ and a rate-0.9 RS

code GΛ′|Λ′′ with 2-PAM modulation. The performance is shown relative to gap-to-capacity

[26] or normalized SNR [17], which can be defined as

SNRnorm , SNR
22R − 1

dB , (15)

where R is the rate of the code. A capacity-achieving code operates at SNRnorm = 0 dB,

while a sphere-bound achieving code operates at SNRnorm = 1.53 dB. Though the RS code

is considerably weaker than GΛ|Λ′ , the operating point of GΛ′|Λ′′ is a constant 6 dB ahead

of the operating point of GΛ|Λ′ , provided that GΛ|Λ′ is decoded correctly. This effectively

makes Pe(Λ′|Λ′′) ¿ Pe(Λ|Λ′), at least within the SNR region shown in Fig. 6. In this range,

(14) reduces to Pe(Λ) ≈ Pe(Λ′′). Hence, a weak algebraic code like an RS code suffices on

the Λ′|Λ′′ partition, up to a point.

To estimate the asymptotic performance, we assume that the BER of Fig. 6 reduces at

the same rate as shown, as SNR increases. The difference in the BER slopes implies that,

at some SNR, say α0 dB, we will have Pe(Λ|Λ′) ≈ Pe(Λ′|Λ′′). This marks the error-floor

region of the code, since errors in the region SNR > α0 are now dominated by Λ′ | Λ′′

as in (14). To ensure that overall Pe(Λ) is sufficiently low asymptotically, GΛ′|Λ′′ must

be designed so that α0 is sufficiently high. For example, the RS(250,236) code shown in

Fig. 6 exhibits a factor of BER reduction of 10 per 0.25 dB, while GΛ|Λ′ shows a decrease

in BER of 10 per 0.1 dB. At a BER ≈ 10−7, the coding gain between GΛ|Λ′ and GΛ|Λ′ is
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about 3.5 dB. Assuming that the trend continues, the difference increases to 6 dB when

Pe(Λ|Λ′) ≈ Pe(Λ′|Λ′′) ≈ 10−22. As explained earlier, this is the “cross-over” point, and can

be viewed as the error floor region of the code. As SNR increases, Pe(Λ) is dominated by

errors in Λ′|Λ′′. In this example, we see that the choices of GΛ|Λ′ and GΛ′|Λ′′ are sufficient

to keep the error floor low enough for power-line communications.

Estimating of the Code Length: As shown in [29], the Gallager random-coding exponent

[18] can be used to estimate the block lengths needed to achieve a certain probability of

block-error. As pointed out by one of the reviewers, these code lengths must be viewed as

lower bounds, as neither LDPC codes nor Reed-Solomon codes have been proved to achieve

the random-coding exponent. In particular, we are interested in block-error rates below

10−7 to be competitive with performance on digital subscriber lines. The random-coding

analysis shows that a code length of 1000-2000 bits at each level of the partition is sufficient,

in theory, to achieve the required error rate.

3.3 Discussion of Simulation Results

Based on the code construction discussed previously, two coset codes are investigated here:

one making use of LDPC codes, and the other a combination of LDPC and RS codes.

Both schemes use hard-decision multi-stage decoding. By the capacity analysis of Fig. 5,

both schemes use the same (3,6)-regular rate-0.5 regular LDPC code from [22] for GΛ|Λ′ .

Furthermore, the top layer is left uncoded in both schemes. However, the schemes differ in

the choice of encoder matrix GΛ′|Λ′′ : one is a rate-0.94 regular LDPC code from [9], while

the other is a binary expansion of an RS code of same rate. Codes around 1000-2000 bits

in length are used in all cases. To our knowledge, the family of LDPC codes in [9] exhibit

the best performance among regular high-rate codes.

The performance of the schemes is shown in Fig. 7, relative to gap-to-capacity or nor-

malized SNR. The scheme combining LDPC and RS codes lies within 2 dB of the sphere-

bound – 3.5 dB of Shannon-capacity – at a BER of 10−11, measured with simulations over

2.5 × 1012 bits. There is almost no difference in performance to the LDPC-only example

proposed above for BER’s measured up to 10−7. A second example – with a (3,6)-regular

code of 1000 bits for GΛ|Λ′ – shows similar performance to recent proposals for 10G-Base-T

Ethernet [25, 28] which uses (6,32)-regular codes of 2048 bits. However, the complexity

of the schemes proposed in this paper is far lower due to the small degree of the nodes in

GΛ|Λ′ .
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The results can be compared to other LDPC-based coded modulation schemes. In [21]

for example, 2-level coding schemes over Z | 2Z with a total rate of 1 b/sym were analyzed.

The schemes considered irregular and quasi-regular LDPC codes for GΛ|Λ′ and GΛ′|Λ′′ with

length 106 bits each. Here, a gap to the sphere-bound of 0.2-0.3 dB was observed. In [11],

the authors investigated LDPC coset-coding over DMT modulation on Z2 | 4Z2 with QAM

constellations for VDSL applications, with component codes on the order of 2000-4000 bits.

The scheme is about 1 dB away in performance from proposals in this paper. As mentioned

in Section 1, the authors of [3] proposed a combination of LDPC and RS codes for coset-

coding over DMT on Z2 | 2Z2 | 4Z2. In the presence of AWGN, the gap to Shannon capacity

of the scheme in [3] was found to be about 2.3 dB (0.8-1.2 dB gap to the sphere-bound).

The justification for RS codes was to reduce complexity and to ease code selection, which

is only part of the rationale of our paper. Meanwhile, to handle different coding rates on

each sub-channel, a concatenation of LDPC and various repeat-codes are used on the Λ|Λ′
partition.

Soft-Decision and Iterative-Decoding Considerations: As noted by one of the reviewers,

it is possible to gain further improvements in the proposed scheme via soft-decision multi-

stage decoding, rather than hard-decisions. Soft-decision decoding also permits iterative

equalization, which is useful on time-varying channels that preclude pre-equalization. For

the RS code GΛ′|Λ′′ , it is well known that a soft-decision binary decoder shows ≈ 1.7 dB of

coding gain over a hard-decision binary decoder of the same rate [24]. Analysis in [29] has

shown this to be less – about 0.9 dB – for an 8-PAM scheme. In particular, it was shown

that there was no significant advantage to soft-decisions beyond the bottom layer Λ | Λ′ in

terms of gap to capacity. However, we expect the improvement in soft-decision decoding to

improve the error-floor behavior of the code, since a coding gain in GΛ′|Λ′′ only increases

α0, the SNR at which errors in Λ′|Λ′′ start to dominate.

Further improvements in performance are possible by feedback of soft extrinsic infor-

mation from sub-lattice Λ′′ back to Λ|Λ′, and so on iteratively. As also pointed out in [29],

feedback from high layers of a decomposition – if properly de-correlated by interleaving –

reduces the multiple mappings of bits to symbols on Λ | Λ′. In other words, the decoder

on Λ | Λ′ eventually operates on a reduced constellation (2-PAM for a binary lattice de-

composition), after sufficient iterations. Similar arguments can be drawn for every layer

of the coset decomposition. To take advantage of iterative decoding, a good soft-decision

code GΛ′|Λ′′ on Λ′ | Λ′′ is necessary as such a code can be viewed as “amplifying” extrin-
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sic information, i.e, a code that can accurately compute soft a posteriori bit-probabilities,

given soft extrinsic information a priori. At first glance, it would appear that an LDPC

code is better suited for GΛ′|Λ′′ than a soft-decision RS code. However, in asymmetric DSL

modems [26], near-capacity performance has been shown with iterative soft-RS decoding

concatenated with trellis-coded modulation (TCM). In this example, extrinsic information

is iteratively exchanged via a byte-interleaver. Hence, we speculate that the gap to the

sphere-bound can be reduced further with soft-decision RS decoding on Λ′|Λ′′, combined

with interleaving and iterative decoding. However, the improvement is difficult to quantify

without further simulations.

4 Coding in Gaussian and Impulse Noise

In this section, we investigate LDPC-based coset coding under the simultaneous constraints

of colored Gaussian noise and impulse noise. Both synchronous and asynchronous impulse

noise models from Section 2.2.2 are considered, and different coding schemes are compared.

Detailed results are presented in Section 4.3. The schemes proposed in this section also

incorporate interleaving to mitigate against long bursts of impulse noise without sacrificing

coding rate.

4.1 Error-Correction Schemes across Λ | Λ′ | Λ′′

• Coding on Λ | Λ′. This layer is affected by both Gaussian noise and burst impulse

noise. However, the coding scheme here makes use of the same LDPC codes GΛ|Λ′

used in the AWGN case of Section 3.3. The goal is to obtain a steep reduction in

BER. The LDPC construction is based on [22], and at low coding rates (only), seems

to perform well even in the presence of impulse noise.

• Coding on Λ′ | Λ′′. The capacity analysis of Fig. 5 in Gaussian noise showed that the

Λ′ | Λ′′ partition could be coded at a high rate due to the smaller impact of Gaussian

noise at this layer. However, the effect of impulse noise is to cause bursts of errors,

either in the form of a single-burst or as multiple phased-bursts. Viewing Λ′|Λ′′ as a

binary symmetric channel (BSC) for simplicity, we are now interested in a code GΛ′|Λ′′

that can correct both random and burst errors efficiently, with little loss in rate. The

burst-correction efficiency, η, of an (n, k) code can be defined [24] by the amount of
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redundancy required to correct all error bursts of length l-bits or less, viz.,

η =
2l

n− k
. (16)

A code that can correct all bursts of length l-bits or less with an efficiency of η = 1

is said to achieve the Reiger bound. Though not optimum, we rely on the random

and phased-burst error-correcting properties of RS cyclic codes for Λ′|Λ′′. A binary

expansion of a t-error correcting (n, k) Reed-Solomon code over GF(2q) can correct:

– Any combination of t or fewer random bit errors.

– A single burst of length l = (t− 1)q + 1 bits, or less.

– Any combination of
t

1 + b(l + q − 2)/qc (17)

separate bursts of length l, in bits [24].

These properties follow from the fact that a GF (2q) RS code operates on q-bit symbols.

Notice that, as q → ∞, η = 1. Hence, RS codes are asymptotically optimum. For

comparison, LDPC codes are also investigated for Λ′|Λ′′.

• Single-Burst and Phased-Burst Error-Correction of Λ′′. Depending on the sources

of impulse noise, the errors of this layer can be either be dominated by long single-

burst errors or multiple phased-bursts. There are virtually no errors due to Gaussian

noise. Viewing Λ′′ as a BSC channel, we investigate RS codes, as well as simple cyclic

codes over GF (2) optimized for single-burst error-correction [23]. For comparison,

LDPC codes are also considered. The main attraction of single-burst error-correcting

codes is their low complexity (lengths on the order of 100-200 bits) coupled with high

efficiency η. In particular, a (195,182) code from [23] is considered, with η ≈ 0.77.

To generate codes that fit the coset codeword length m, longer burst-correcting codes

can be constructed by interleaving. Simple code-shortening can be used to align the

codes on coset codeword boundaries.

4.2 Multi-Level Interleaving

To extend the burst error-correction ability of the coding schemes above, uniform inter-

leavers are used at each layer of a coset decomposition. The proposed scheme is depicted in

Fig. 8 and consists of uniform interleavers ΠΛ, ΠΛ′ , and ΠΛ′′ respectively. In the presence of
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non-stationary impulsive noise, simulation results (Section 4.3.3) will show that interleaved

LDPC coding is not sufficient. On the other hand, a coset coding scheme with a combina-

tion of LDPC and cyclic codes is seen to perform well. For the combination of LDPC and

cyclic codes, the scheme can be summarized as follows:

1. Uniform Bit-Interleaving of LDPC Code Bits with ΠΛ|Λ′: Let dH(GΛ) denote the

minimum Hamming distance of the LDPC code, and let ΨL denote the interleaver depth

of coset code L. Then, with optimal decoding, a well-known result from coding theory [24]

allows one to correct bΨL dH(GΛ)
2 c burst errors by uniform interleaving with depth ΨL.

2. GF(2q) Symbol-Interleaving of RS Codewords with ΠΛ′|Λ′′: Now, by GF-symbol

interleaving with depth ΨL, a uniformly-interleaved cyclic code over GF(2q) can correct

any single burst of ΨL((t − 1)q + 1) bit errors. This motivates the use of a q-bit symbol

interleaver ΠΛ′|Λ′′ at the Λ′|Λ′′ partition.

3. GF(2p) Symbol-Interleaving of Cyclic Codewords with ΠΛ′′ : For a GF(2p) cyclic code

used on (Λ′′+Ω)∩S, similar arguments can be drawn to motivate interleaving with ΠΛ′′ on

p-bit boundaries. If the single-burst correcting short codes of [23] are used, a uniform bit-

interleaver over GF (2) is sufficient. Since these are already constructed with interleaving

to fit the coset codeword length (say, with depth ΨΛ′′), the effective interleaver depth is

ΨLΨΛ′′ .

Due to the multi-level nature of the interleaver, notice from Fig. 8 that the decoded bits

from one stage have to be re-interleaved in order to be used as the coset-labels of the next.

4.3 Simulation Results with Colored Noise and Impulse Noise

In this section, we present performance analysis of the proposed coding scheme under the

conditions of ISI, colored noise and impulse noise. In particular, we augment the PAM-

based scheme designed in Section 3.3 to withstand impulse noise. This is difficult to do

in an optimal sense due to the non-stationary nature of the impulse noise, which makes

it hard to analyze. Our approach is to define a worst-case condition, and then design the

coding and interleaving scheme accordingly to handle this case. This is clearly a sub-optimal

approach. Furthermore, even the worst-case scenario is a simplified assumption that does

not always hold true, as will be explained further. However, to gauge the performance of

the scheme, the results – in impulse and Gaussian noise – are compared to channel-capacity

with only Gaussian noise. This provides a bound on the gap to the true channel-capacity

in the presence of impulse noise.
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Table 1 briefly outlines the combination of coding schemes that were investigated to this

end. The channel under consideration is “channel 3”, as depicted in Fig. 1. Rb(L) refers to

the final transmission rate after additional coding to handle bursts of impulse noise.

Coset code Rb(L) GΛ|Λ′ GΛ′|Λ′′ GΛ′′ ΨL

L1 47.7 (3,6)-reg., [22] (6,32)-reg., rate-0.87 [9] (7,80)-reg., rate-0.99 [9] 1, 24

L2 46.3 ” (6,32)-reg., rate-0.86 [9] (7,80)-reg., rate-0.93 [9] ”

L3 47.1 ” RS GF (28), rate-0.88 RS GF (210), rate-0.95 ”

L4 46.4 ” RS GF (28), rate-0.88 Single-Burst [23], rate-0.93 ”

Table 1: Combination of coding schemes investigated under realistic noise conditions.

4.3.1 A “Worst-Case” Scenario

Consider the example of Section 3.3, which operates at zero-excess bandwith at a baud-rate

of 7.7 MHz. Since we have a binary lattice partition Z | 2Z | 4Z, each coset codeword in L

consists of 2000 128-PAM symbols, as length of GΛ|Λ′ = 2000. This implies a PAM symbol

duration of Ts ≈ 0.13µs and a frame duration Tf = 2000 · Ts ≈ 260µs. Notice that this is

much smaller than the periodicity of channel variations observed in [7], which is on the order

of 10–20 ms. Consider the European electricity network and assume 6 synchronous noise

impulses per 50Hz AC cycle. To design for maximum number of burst errors during the

cycle period, we assume the impulses are equally spaced in time. Then, an impulse event

occurs every 3.3 ms, or approximately every 12.7 coset codewords. We assume that the

duration of each synchronous impulse noise burst is tw,s ≈ 50µs. Since the peak amplitudes

of the synchronous bursts follow a Gaussian distribution N (0, Giσ
2
v) in (2), we assume that,

in the worst case, all symbols exposed to this burst would result in incorrectly decoded bits

in the absence of coding. The synchronous burst spans, in the worst case, 385 PAM symbols

as depicted in Fig. 3.

Recall also that the duration of each asynchronous noise burst is assumed to be tw,a =

100µs, which corresponds to 770 PAM symbols. The average inter-arrival time of the asyn-

chronous bursts is τIAT,a = 100ms. Since the asynchronous impulses follow a Poisson arrival

process, any number of asynchronous impulse bursts can arrive within a given interval. In

particular, the probability of 2 or more such asynchronous impulses within a codeword
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interval is given by

P {≥ 2 Poisson arrivals , t = Tf} = 1− e
− t

τIAT,a

(
1 +

t

τIAT,a

)
≈ 3.4× 10−6 . (18)

Consider an example of an interleaved scheme with ΨL = 24, and hence t = 24Tf sec’s.

Then, P {≥ 2 Poisson arrivals} ≈ 2 × 10−5. When ΨL = 100, the probability of 2 asyn-

chronous arrivals is ≈ 3.3×10−4. These probabilities are small, but of course, not negligible.

For now, we assume that 2 asynchronous impulses will not occur within a ΨLTf time inter-

val; if it does, the error will be detected and corrected by a different means of error control

discussed in Section 4.3.3.

Hence, the “worst-case” scenario can be stated as follows: one asynchronous impulse

and a commensurate number of synchronous impulses occur within an interval ΨLTf sec’s.

The burst-lengths Tw,s and Tw,a of the impulses are spanned completely within ΨLTf . Let

lbΛ|Λ′ , lbΛ′|Λ′′ , and lbΛ′′ denote the total phased-burst lengths, in bits, on Λ|Λ , Λ′|Λ′′, and Λ′′

respectively. Let lbΛ denote the burst length in terms of PAM symbols in Λ. Then,

lbΛ =
(

ΨLTf

tarr,s
.
Tw,s

Ts

)

︸ ︷︷ ︸
# of synchronous impulses × length

+
Tw,a

Ts︸︷︷︸
asynchronous length

symbols, (19)

lbΛ|Λ′ = log2 |Λ|Λ′| × lbΛ = lbΛ bits , (20)

lbΛ′|Λ′′ = log2 |Λ′|Λ′′| × lbΛ = lbΛ bits , (21)

lbΛ′′ = log2 |(Λ′′ + Ω) ∩ S| × lbΛ = 5 lbΛ bits . (22)

These burst-lengths are used in subsequent sections. We also use l̂bΛ|Λ′ , l̂bΛ′|Λ′′ , and l̂bΛ′′ to

denote the correctable total phased-burst lengths, in bits, on Λ|Λ , Λ′|Λ′′, and Λ′′ respec-

tively.

4.3.2 Trade-off Between Interleaver Depth and Burst-Error Coding

Our goal is to find a good combination of interleaving and burst-error correction needed

to correct all burst-errors in the worst-case scenario. To correct one asynchronous burst

and a commensurate number of synchronous bursts within a period ΨLTf , we first estimate

the rates by which GΛ|Λ′ ,GΛ′|Λ′′ , and GΛ′′ have their coding rates lowered to correct only

the burst-errors. Computing this rate reduction can be very complex, since some codes

can correct both random and burst errors simultaneously, and some errors due to Gaussian

noise may overlap with burst errors. To simplify this analysis and to obtain just an estimate

of the reduction in rate needed, we assume that all the code redundancy created by rate
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reduction is available for optimal phased-burst error correction. Then, the coding rates

RΛ|Λ′ , RΛ′|Λ′′ , and RΛ′′ are reduced by factors ρΛ|Λ′ , ρΛ′|Λ′′ , and ρΛ′′ respectively, where

ρΛ|Λ′ = 2
lbΛ|Λ′
m ΨL

b/sym, ρΛ′|Λ′′ = 2
lbΛ′|Λ′′
m ΨL

b/sym, ρΛ′′ = 2
lbΛ′′

5m ΨL
b/sym. (23)

The final rate is therefore

Rb(L) =
1
Ts

[
RΛ|Λ′(1− ρΛ|Λ′) + RΛ′|Λ′′(1− ρΛ′|Λ′′) + RΛ′′(1− ρΛ′′)

]
bit/sec , (24)

which is sketched in Fig. 9 for various values of ΨL and Tw,a. Naturally, it can be seen that

the performance increases with interleaver depth ΨL. However, the full Gaussian capacity

cannot be reached, irrespective of ΨL, since

lim
ΨL→∞

ρΛ|Λ′ = lim
ΨL→∞

ρΛ′|Λ′′ = lim
ΨL→∞

ρΛ′′ =
1
m

Tf

tarr,s

Tw,s

Ts
b/sym . (25)

The limit is determined by the fraction of PAM symbols affected by synchronous noise,

which is independent of ΨL.

Suppose we are provided with a 2 dBmW budget in transmit power, or corresponding

SNR, for protection against burst noise. From the optimal water-filling capacity graph

of Fig. 4, this corresponds to 2.6 Mbit/sec decrease in information rate to be used for

impulse-noise protection. From Fig. 9, we estimate that ΨL = 24 is a good choice for error-

free transmission at Rb(L) ≈ 49.7 − 2.6 Mbit/sec. With these rate and interleaver-depth

estimates, our goal is to design a practical scheme with LDPC, RS, or burst-error correcting

codes. Our design choice is to leave the LDPC code GΛ|Λ′ unchanged since the code has

been observed to perform well in the presence of impulse noise, even without reducing the

rate. Table 2 shows the various component codes used in the simulations, along with their

reduction in rate ρΛ|Λ′ , ρΛ′|Λ′′ , and ρΛ′′ , as well as the worst-case burst-lengths experienced

at the corresponding layers. To our knowledge, the LDPC codes selected from [9] are the

best high-rate regular LDPC codes in AWGN channels.

4.3.3 Discussion of Simulation Results

The coset codes of Table 1 were tested under the channel and noise conditions described

in earlier sections. The details of the component codes are listed in Table 2. All the coset

codes, L1, . . . ,L4 use the same regular LDPC code from [22] for GΛ|Λ′ . The comparative

performance of the schemes with ΨL = 1 is shown in Fig. 10. The performance in all the
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ΨL = 1 ΨL = 24

Component Code b/sym bits bits bits bits

GΛ|Λ′ ρΛ|Λ′ lbΛ|Λ′ l̂bΛ|Λ′ lbΛ|Λ′ l̂bΛ|Λ′

(2000,1000), rate-0.5 [22]: L1,...,4 0.000 1.1e+03 0.0e+00 1.5e+003 0.0e+00

GΛ′|Λ′′ ρΛ′|Λ′′ lbΛ′|Λ′′ l̂bΛ′|Λ′′ lbΛ′|Λ′′ l̂bΛ′|Λ′′

(6,32)-reg, rate-0.87 [9] : L1 0.065 1.1e+03 7.7e+02 1.5e+03 1.5e+03

(6,32)-reg, rate-0.86 [9] : L2 0.078 1.1e+03 9.4e+02 1.5e+03 1.9e+03

(250, 214) RS - GF(28) : L3,L4 0.064 1.1e+03 7.7e+02 1.5e+03 1.5e+03

GΛ′′ ρΛ′′ lbΛ′′ l̂bΛ′′ lbΛ′′ l̂bΛ′′

(7,80)-reg, rate-0.99 [9] : L1 0.014 5.7e+03 8.6e+02 7.5e+03 1.7e+03

(7,80)-reg, rate-0.93 [9] : L2 0.069 5.7e+03 4.2e+03 7.5e+03 8.3e+03

(1000, 948) RS – GF (210) : L3 0.052 5.7e+03 3.1e+03 7.5e+03 6.2e+03

(195, 182) Single-Burst [23] : L4 0.067 5.7e+03 4.0e+03 7.5e+03 8.0e+03

Table 2: Component codes used in the simulations, along with estimates of worst-case

burst-lengths lb, and correctable lengths l̂b. ρ denotes the rate-reduction chosen to support

additional burst-error correction.

figures is shown in terms of gap-to-capacity in Gaussian noise (since capacity in impulse-

noise is difficult to compute). It can be seen that the impulse noise, coupled with lack of

interleaving, has a devastating impact on BER performance for all schemes, irrespective of

code type. This is can be seen from Table 2, where it is not possible to have n − k ≥ 2lb

for any of the coding rates selected when ΨL = 1; this makes it impossible to correct the

noise bursts experienced across the coset decomposition.

With interleaver depth of ΨL = 24, the BER performance is also shown in Fig. 10. It

can be seen that code L3 exhibits best performance, with no apparent error floor. The gap

to capacity for rate Rb(L3) is about 5.5 dB at a BER of 10−7. The code L4 also shows good

performance until a BER of 3×10−6, at which point an error floor is seen. The advantage of

phased-burst error protection afforded by RS codes is evident. However, the complexity of

a 1000-symbol RS code over GF(210) is vastly higher than an interleaved (195,182) binary

cyclic code. The LDPC-only scheme L2 performs well until a BER ≈ 5 × 10−6, but then

exhibits an error floor. L1 still exhibits poor performance. This suggests that low-rate

LDPC codes are more capable of handling burst errors.

Handling scenarios worse than the “worst-case”: Although the simulations results
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show good performance with code L3 and ΨL = 24, we have not adequately character-

ized the system at BER’s below 10−7 due to simulation complexity. In particular, con-

ditions worse than the “worst-case” scenario of Section 4.3.1 occur with a probability

Pb , P {≥ 2 asynchronous impulse arrivals, t = 24Tf} ≈ 2 × 10−5; i.e., on average, the

worst-case is exceeded every 1.2×106 coset codewords. Since these are uncorrectable errors

with high probability, we would expect to see an error floor around BER ≈ 10−7, which can

be inferred from block-error rates already measured.

To solve this anticipated error-floor, we briefly summarize a well-known solution in

analytical form; due to the length of the simulations, we could not provide supporting

results. An effective solution is to combine the proposed scheme with an automatic repeat-

request (ARQ) protocol. Such schemes maintain coding rate – without sacrificing noise

immunity – by using forward error-correction (FEC) until, say, probability of block error

< 10−3. In the event of an uncorrectable error, a re-transmit of the interleaved set of

codewords is performed. There exists several variations on this theme, cf. type-I hybrid-

ARQ protocols [24]. A well-known technique, viz., type-I with selective-ARQ, yields an

effective error-free transmission rate of

Rb
type−I(L3) = Rb(L3) [1− Pb . (1− Pu)] bit/sec , (26)

where Rb(L3) is the rate of code L3, and Pu is the probability of an undetected error for a

codeword in L3. Pu can be made very small with cyclic-redundancy codes, with little loss

in rate [24]. Since Pb ≈ 10−5, it is easy to achieve error-free transmission at nearly the full

rate Rb(L3).

5 Conclusion

A simple LDPC-based coset coding scheme for power-line channels was investigated. The

scheme combines LDPC and cyclic codes to achieve near-capacity performance in Gaussian

noise, and to correct burst errors in impulse noise. At a BER of 10−11, the gap to un-shaped

channel capacity is about 2 dB in Gaussian noise (corresponding to a coding gain of 8.5 dB

over uncoded PAM). The component codes are based on simple regular LDPC codes of small

length. To mitigate impulse noise, Reed-Solomon and burst error-correcting cyclic codes

were investigated. An interleaving scheme is also proposed, consisting of distinct interleaving

stages tailored to each level of the coset code. This results in increased immunity to burst

noise caused by impulses. To mitigate ISI, the coding scheme is investigated on slowly-
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varying power-line channels with TH-precoding. In the presence of colored Gaussian noise,

synchronous and asynchronous impulse noise and residual ISI, the gap to channel-capacity

of a Gaussian-noise-only channel is about 5.5 dB at a BER ≈ 10−7.
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Figure 1: Frequency response of PLC access reference channels 1 and 3.
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Figure 2: PSD mask of colored Gaussian noise.
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Figure 4: Capacity of “channel 3” under optimum water-filling transmit spectrum.
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Figure 8: LDPC coset coding combined with Tomlinson-Harashima precoding.
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