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Abstract

In recent years, impressive advances have been made in the performance of local

area networks. In particular, network interfaces have been developed that can be

accessed directly by applications at user-level, through a protected mapping onto

the network adapter. These user-accessible network interfaces deliver consid-

erably lower overhead and latency than traditional interfaces. However, the high

performance of these networks has not been made available to ordinary distributed

applications.

This dissertation argues that the CLAN network model is sufficiently flexi-

ble to support a range of distributed programming interfaces, and delivers high

performance with comparatively simple hardware. This thesis is supported by a

description and analysis of the CLAN network, and the implementation of higher-

level interfaces in software over CLAN.

The design of a flexible low-level interface to the CLAN network is presented,

together with a shared-memory technique that reduces the cost of passing infor-

mation between the application and device driver in the kernel. Techniques for im-

plementing message-passing and stream interfaces over CLAN’s shared memory-

model are then described, including a software implementation of the Virtual In-

terface Architecture. The latter is compared with a hardware implementation, and

found to have superior latency. The CLAN network model is shown to have a

number of advantages over other networks.

Finally, support for distributed applications is provided with an implementa-

tion of CORBA middleware over CLAN and other networks. CORBA is found

to incur low overhead in this efficient implementation, and the lowest latency yet

published for a CORBA ORB is achieved with the CLAN network. It is argued

that CORBA’s high level of abstraction and high performance make it a suitable

level at which to integrate user-accessible networks into existing and future appli-

cations.

In summary, this work describes the complete implementation of a network,

low-level software and middleware that brings a new level of performance to dis-

tributed applications.
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Chapter 1

Introduction

In recent years, impressive advances have been made in the performance of local

area networks. However, despite a great deal of research in this area, these per-

formance gains have yet to be made available to ordinary programmers writing

distributed applications. This dissertation addresses the design and implementa-

tion of software for high-performance networks that contributes toward achieving

that goal.

A major barrier to high performance is the interface between the network and

host, which in the traditional architecture incurs high overhead. This is largely due

to the costs of interrupt processing, context switches and copying payload between

buffers in memory. To address this problem, network adapters have been devel-

oped that can be accessed directly by user-level applications. Such user-accessible

network interfaces remove the operating system from the common path, reducing

overhead on the host processor and improving application performance consider-

ably.

User-accessible network architectures have not yet been widely adopted, for

a number of reasons. Firstly, user-accessible line cards are typically more com-

plex than those supporting the traditional interface, and are therefore expensive.

Secondly, exposing the hardware interface at user-level introduces a management

problem, since it is the operating system that traditionally performs the function

of hardware abstraction. Thirdly, there is the problem of integration with existing

and future applications.
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At the lowest level, each user-accessible network technology exports a differ-

ent interface to the host software. To support existing applications, and to ensure

portability between technologies, it is necessary to support standard interfaces.

This is done by providing a layer of software between the low-level network in-

terface and application. Integration can be performed at a low level, for example

at the socket layer; or at a higher level, for example by providing support in com-

munications middleware. The latter is attractive, because middleware provides a

high level of abstraction that is easy to use, and hides the details of the underlying

network. No single solution will be ideal for all applications, and so a variety of

interfaces need to be supported.

Adding a layer of software to change the interface necessarily adds overhead.

The amount of overhead will depend on the two interfaces being bridged, and may

be high if the low-level interface is inflexible, or if the interfaces are very different.

It is common to have an intermediate interface that provides an asynchronous,

zero-copy interface, suitable for high performance applications. The intermediate

interface is then used to build higher-level abstractions. There have been recent

attempts to standardise such high performance interfaces; a notable example is the

Virtual Interface Architecture.

However, layering multiple protocols or interfaces on top of one another adds

more overhead, and each layer may need to make assumptions and compromises

that are detrimental to performance for some or all applications [Crowcroft et al.,

1992].

The conclusions that can be drawn are: that a flexible, low-level network inter-

face that supports a range of higher-level abstractions is needed; and that layering

should be minimised, with high-level abstractions built directly on top of the low-

level network interface.

1.1 Contribution

The work presented in this dissertation builds on work performed by members

of the CLAN project at the former AT&T Laboratories–Cambridge. They have

developed a new user-accessible network that has excellent performance charac-

teristics at the level of the raw network interface. The network interface consists of
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distributed shared memory, with a novel synchronisation primitive (the tripwire),

and constitutes a new network programming model.

This dissertation addresses aspects of software support for high performance

distributed computing using the CLAN network. It is the thesis of this dissertation

that:

• The CLAN network model is able to support efficient implementations of

a range of distributed programming interfaces, and has the potential to out-

perform alternative network models.

• High-level abstractions, such as the OMG’s CORBA, can deliver perfor-

mance that is close to that of the raw network interface; and provide a con-

venient level at which to integrate user-accessible network interfaces.

In the discussion of the above goals, particular emphasis is placed on the fol-

lowing:

• The importance of low latency and overhead for small messages.

• The interaction between the data transfer model and flow control.

• The use of programmed I/O (PIO) and direct memory access (DMA) for

data transfer on the transmit side.

This dissertation makes the following contributions to the field of high perfor-

mance local area networking:

• A detailed description of the CLAN network model, and a prototype imple-

mentation.

• A comparative analysis of programmed I/O and direct memory access for

data transfer on the transmit side of network interfaces.

• An efficient interface that combines shared memory and system calls to

reduce the cost of using resources that are managed by a device driver.

• The design of a low-level hardware abstraction layer for CLAN that sup-

ports a wide range of higher-level interfaces efficiently.
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• A critique of the Virtual Interface Architecture (VIA).

• A novel implementation of VIA over the CLAN network, and a comparative

analysis of its performance and that of a commercial implementation.

• A detailed description of support for CLAN and VIA network interfaces

in a high performance CORBA ORB, and an analysis of the performance

achieved.

1.2 Scope

This dissertation is primarily concerned with efficiency and performance in dis-

tributed systems. Only technologies that support general-purpose multiprogram-

med systems are considered, and therefore protection, fairness and efficient syn-

chronisation are important considerations. In addition, all of the technologies

and techniques presented are applicable to existing main-stream workstations and

operating systems. The support of applications requiring quality of service guar-

antees is not an explicit goal of this research, but is considered where pertinent.

1.3 Extent of collaboration

This dissertation builds on the work of the CLAN project at AT&T Laboratories-

Cambridge. The CLAN network was conceived, designed and built largely by

Steve Pope and Derek Roberts. Chapter 3 gives a description of the pre-existing

CLAN network. It also contains an analysis of the properties and performance of

the CLAN network, which is the author’s own. The work described in chapter 4

and those that follow is the author’s own.

1.4 Outline

This dissertation proceeds as follows:

Chapter 2 gives an overview of recent research in the field of high performance

local area networking, including an analysis of the bottlenecks in the traditional

4



architecture, techniques employed to improve performance, alternative architec-

tures and representative user-accessible network technologies.

Chapter 3 describes the CLAN network and the prototype implementation in

detail, and presents an analysis of its key features and performance. This presents

the context for the work presented in the remainder of the dissertation.

In chapter 4, low-level software support for the CLAN network is described.

A novel interface between the application and kernel is presented that reduces the

cost of using resources that are managed by the device driver. This chapter also

presents techniques for scalable event notification.

Chapter 5 presents a novel implementation of the Virtual Interface Archi-

tecture as a layer of software over the CLAN network. This serves to demon-

strate how CLAN’s shared-memory interface can be used to implement message-

based interfaces, and support alternative flow control models. The performance of

CLAN VIA is compared with that of a commercial hardware implementation.

Chapter 6 is concerned with support for distributed applications using the

CORBA middleware standard. It describes modifications to an existing CORBA

ORB to add support for CLAN and VIA, and to improve scalability. The latency

achieved with CLAN is the fastest yet reported for communication with CORBA.

Finally, chapter 7 concludes with a summary of results and contributions from

the dissertation, and outlines areas for further work.
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Chapter 2

High Performance Networking

This chapter gives an overview of recent research in the field of high performance

local-area networking. It includes an analysis of the factors that limit performance

in the traditional network architecture; techniques that have been developed to

improve performance; alternative network architectures that have been proposed;

and descriptions of a number of representative user-accessible network technolo-

gies.

2.1 Limits to network performance

The most important thing to consider in an analysis of network performance is the

effect on applications of the various performance parameters. What follows is a

list of performance parameters and their impact on the performance of distributed

applications:

CPU overhead is the processor time taken up directly or indirectly by network

processing. This includes all work done getting payload data between application-

level buffers and the line card. It depends not only on the number of instructions

executed in order to get the required work done, but also on time lost to processor

stalls caused by TLB misses, cache misses or loads and stores to I/O devices.

CPU overhead limits the transaction rate by reducing the amount of processing

resource available for the application to make progress. If less CPU time can
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be spent on networking overheads, then more time is available for useful work.

CPU overhead is often approximated by considering per-message (or per-packet)

overheads and per-octet overheads, but other aspects, such as the cost of managing

multiple network endpoints, are also significant.

Bandwidth is the rate at which messages of a particular size can be passed be-

tween applications. Maximum bandwidth is the most commonly quoted metric for

network performance, and limits the rate at which bulk data can be transfered. The

bandwidth available to an application is most obviously limited by the raw band-

width on the physical link. For high bandwidth network technologies, link-level

bandwidth is rarely achieved, with performance being limited by CPU overheads

or the performance of the host’s I/O subsystem. When per-message overheads

are large compared with per-octet overheads, the achievable bandwidth is very

dependent on the size of the messages. Bandwidth may also be constrained by

congestion in the network—but this is a matter for provisioning and is beyond the

scope of this dissertation.

Latency is the time taken between a sending application requesting that a mes-

sage be sent, and it arriving in the address space of the receiver. It constrains

distributed applications that are tightly coupled—a common characteristic of par-

allel scientific computations and also of distributed programming techniques such

as remote procedure call (which generate a great deal of request-response traf-

fic). If a node has to wait for a message from another node in order to make

progress, then reducing the latency will reduce the amount of time wasted. Martin

et al. [1997] found that many applications can be structured to avoid sensitivity to

latency, but in practice this is hard to do. Also, a goal of high performance net-

working must be to make distributed computing easier, rather than complicating

the task of writing higher-level applications.

In traditional network architectures the latency of small messages is dominated

by CPU overheads rather than the physical network hardware. For large mes-

sages latency depends heavily on the bandwidth: very approximately, a 1500 octet

packet takes 120 µs to transmit on a Fast Ethernet (100 Mbit/s), but just 12 µs on a

Gigabit Ethernet.

8



Message rate may limit transactional workloads. For small messages it is likely

to be limited by per-message overheads, but can also be limited by the rate at

which the line card or network can handle packets.

Per-endpoint resources limit the number clients a server can handle. Each end-

point consumes network resources, memory resources (buffer space and protocol

state) and may have other associated resources. The maximum number of simul-

taneous endpoints may be subject to operating system limits (such as a maximum

number of file descriptors), or physical resource limits (such as the amount of

memory, address space or resources in the network). Some connection-oriented

network technologies, such as ATM, require per-flow state in the switches.

The CPU resource is also shared between clients, and as the number of clients

increases the share of processor time available decreases. For various reasons1 the

per-message overheads increase with the number of clients, so the maximum re-

quest rate decreases—in some cases catastrophically—when there are large num-

bers of clients.

In wide area networks, the bandwidth available in the network, and the latency

due to speed of light and routing delays, are usually limiting factors. Local area

networks often have plenty of bandwidth and very low latency at the link layer,

but the traditional network interface architecture imposes relatively high overhead

on the host processor. High CPU overhead contributes to all of the performance-

limiting factors described above.

On low bandwidth networks, the time taken to transmit large messages is dom-

inated by the transmission time on the physical link, and hence advances in net-

work bandwidth yield improvements in performance. However, whilst network

bandwidth has increased, software overheads have remained high. It is these

overheads that are the limiting factor for most applications on high bandwidth

networks [Martin et al., 1997, Keeton et al., 1995], preventing applications from

benefiting from further improvements in raw network bandwidth.

1See section 2.5.
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2.2 Traditional network architecture

For many typical server applications, the operation of the server can be reduced

to the following three steps:

1. Moving message payload from the network into the receiving application’s

address space and into the cache.

2. Performing some work based on the contents of the message.

3. Forming a response that is transmitted onto the network.

The interface between the application and the network must at least provide

the services of data transfer and synchronisation, and must ensure intra-node and

inter-node protection.

In order to hide the complexity and diversity of network hardware, the ap-

plication is presented with an abstract model of the network at the system call

interface. A device driver in the operating system kernel manages the network

hardware, and the kernel multiplexes requests from multiple applications onto

the network resource. The system call interface provides intra-node protection.

Network protocols are usually implemented in the kernel, which prevents appli-

cations from masquerading and violating protocol specifications for the transport

layer and below.

The following sections describe the send and receive paths of a representative

modern TCP/IP stack for a packet-based network such as Ethernet.

The receive path

The receive path for a TCP/IP packet is illustrated in figure 2.1. The device driver

supplies the line card with a list of buffers in host memory, into which incoming

packets are to be placed. This list of buffers is known as a receive DMA ring.

When a packet that is destined for this host arrives at the line card, the contents are

delivered directly into one of these buffers. The line card then raises an interrupt to

alert the device driver that one or more packets have been delivered. The interrupt

handler may at this stage enqueue more buffers on the DMA ring. The bulk of the
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Figure 2.1: Receive path for a TCP/IP stack. In the traditional model, the
line card delivers packets into host memory and raises an interrupt. The
interrupt service routine invokes the protocol stack, which after process-
ing the packet delivers the payload to a socket. The application receives
data by invoking the recv system call.

processing of the packet is then scheduled to run in an interrupt bottom-half in

order to avoid spending long periods with interrupts disabled.2

In most cases the packet contains multiple encapsulated protocols, which are

processed in turn. Each layer decodes its headers and passes the packet on to the

next protocol layer, interface or endpoint. At the IP layer, the header checksum

is verified, IP fragments are reassembled and header options may be processed.

The TCP layer verifies the packet checksum, puts segments back in order and

generates acknowledgements as required. The application-level payload is then

delivered to a queue on the correct endpoint (known as a socket in Unix systems).

If a process is blocked waiting for data to arrive on this endpoint, it is awoken, and

a reschedule may occur at this point. The application makes a request to receive

data on an endpoint by invoking the recv system call. Data is copied from the

endpoint’s receive queue to the application’s buffers. The kernel buffer is then

returned to a pool of available buffers, and is eventually placed on the receive

DMA ring again.

2Bottom-halves run immediately after interrupt handlers return, and with interrupts enabled.
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Packets that contain out-of-band data are usually handled entirely in the ker-

nel. Some network services can be implemented entirely in the kernel for reasons

of performance. For example distributed file services, such as NFS, are often

implemented in this way so that they can be closely integrated with the file and

block-device subsystems.

The send path

The send path is by comparison relatively simple. Application data is copied into

operating system buffers, and a number of protocol headers are added. In addition

to addressing information, headers may contain error control (checksums for TCP

and IP), flow control and congestion control information. To avoid copying the

payload multiple times, sufficient space is reserved at the beginning of the buffer

for all of the protocol headers. Modern line cards maintain a transmit DMA ring

for outgoing packets, and read the packet contents directly out of host memory

using DMA. The line card may raise an interrupt when a packet has been sent, or

when the DMA ring empties.

For unreliable datagram protocols, such as UDP, it is appropriate to send the

packet immediately, and discard the buffers when the data has been transmitted.

Reliable protocols such as TCP take steps to avoid overrunning the receiver or

congesting the network, and thus may not send the packet immediately. Data may

also be held back in order to meet traffic shaping constraints. After a packet is sent

by TCP, the buffers are retained until the data is acknowledged, in case it needs to

be retransmitted. In addition, a timer is initialised and used to detect packet loss.

2.2.1 Sources of overhead

The sources of overhead incurred by the traditional network model described

above are as follows:

Interrupts

Interrupts are expensive in current systems. The costs incurred include:

• flushing the processor pipeline
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• saving the context of the current process

• installing a new context

• invoking the appropriate interrupt handler

• interrogating the device

• scheduling a bottom-half to deal with whatever happened

• enabling interrupts

• running any bottom-halves

• performing a reschedule (if needed) or restoring the context of the inter-

rupted process

A simple technique to reduce the number of interrupts is interrupt hold-off.

The line card only interrupts the CPU when at least n packets have arrived, or a

timeout, t, has expired. Thus the cost of each interrupt may be amortised over a

number of packets. This comes at the cost of potentially increasing the delivery

latency by t.

System calls

System calls are moderately expensive due to the overheads of switching con-

text, and housekeeping (including accounting, signal handling and scheduling).

Lightweight system calls save less of a process’s context and do less housekeep-

ing, and so have lower overhead [Swanson and Stoller, 1996]. However, they

cannot be used in all circumstances, and in particular a process cannot block in-

side a lightweight system call.

The Alpha processor has a special mode of operation, PAL mode [Sites, 1993],

in which a sequence of instructions are executed uninterrupted. PAL code se-

quences must be installed by the kernel, and can then be executed by unprivileged

applications. In some cases these can be used instead of system calls to implement

protected operations without the overhead of a context switch [Leslie et al., 1996,

Markatos et al., 1997].
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Protocol processing

The application-level payload is usually encapsulated in a number of layers of

protocol, such as TCP or UDP over IP over Ethernet. Overheads incurred in a

protocol suite may include error control, flow control, multiplexing and coding.

Each layer of protocol also consumes network bandwidth due to the addition of

headers.

Per-packet overheads can be reduced by using a large MTU, such as the “jumbo

frames” proposed for Ethernet. This improves bandwidth when shipping bulk data

within local area networks, but does not improve small message performance.

Buffer copying

The traditional architecture requires that the packet payload be staged in buffers in

the operating system, and be copied between these and buffers in the application’s

address space. Not all implementations are this efficient, and some copy data

between layers in the protocol stack.

It is possible to move data into an application’s address space without copying

the data; the buffers can be mapped into the application’s virtual address space.

This is known as page re-mapping or page flipping. However it requires that the

payload be a multiple of the page size, and that the application’s buffers be page

aligned—conditions that are rarely met. Also this technique does not improve

small message performance.

Synchronisation

If an application is managing multiple network endpoints, it needs some way of

identifying which ones have incoming data or outgoing buffer space available.

The application may use multiple threads, or poll the endpoints, or use an operat-

ing system interface such as select to gather events from multiple sources. Each

of these techniques has overheads that depend on the behaviour of the application.

They are discussed in detail in section 2.5.
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Cache effects

Due to the ever increasing memory gap, it is essential that applications operate

largely from the cache. Mogul and Borg [1991] found that for context switches,

the effect on the cache dominated other costs. Any activity that increases the cache

footprint of the application is likely to degrade performance, including complex

protocol processing and unnecessary data copies. Further, depending on the archi-

tecture, TLB invalidations and top-level cache flushes may be needed on certain

types of context switch.

Discussion

There have been many attempts to address these sources of overhead. Clark et al.

[1989] showed that the fundamental cost of TCP/IP processing on the fast path is

in fact surprisingly low: around 200-300 instructions. However, substantial over-

heads were associated with per-byte operations (checksums and buffer copies)

due to limited memory bandwidth in the system they analysed. The next high-

est source of overhead was found to be operating system mechanisms, including

interrupts.

For a message-passing interface on a CM-5 supercomputer, Karamcheti and

Chien [1994] found that more than half of the software overheads were due to

bridging the semantic mismatch between the network interface and messaging

layer. These overheads could be eliminated if the network were to guarantee in

order delivery, end-to-end flow control and error control.

Integrated layer processing [Clark and Tennenhouse, 1990] seeks to perform

processing from a number of layers in the protocol stack in a single pass over

the packet contents. This reduces memory bandwidth and improves locality of

reference, hence improving cache performance. A simple example that is used

in existing TCP/IP stacks is to calculate the checksum in conjunction with a copy

between buffers. Abbot and Peterson [1993] describe a general technique for inte-

gration that preserves the modularity of independently expressed protocol layers.

A number of micro-optimisations can be applied to any protocol implemen-

tation to improve code density and cache performance, including careful place-

ment of data in cache lines, in-lining code on the critical path and outlining error
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Figure 2.2: One-way bandwidth for TCP/IP over Fast- and Gigabit-
Ethernet. The figure in parentheses is the MTU size.

handling. Together they may have a substantial effect on latency and overhead

[Mosberger et al., 1996].

2.2.2 Performance of Ethernet

Until recently, Ethernet was not regarded as a viable technology for high perfor-

mance networking. It had low bandwidth, and the media access protocol meant

that it did not scale well to large numbers of hosts, and performance collapsed

when under load. In addition, Ethernet was not able to provide the quality of

service (QoS) guarantees needed for emerging media applications. However, the

introduction of switched technology, link-level flow control, several increases in

raw bandwidth and low cost have meant that it remains the dominant technol-

ogy. For most applications, the provision of excess bandwidth capacity has made

explicit QoS support unnecessary.

Figure 2.2 shows the bandwidth achieved by Fast and Gigabit Ethernet on the
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testbed platform described in the appendix.3 For Gigabit Ethernet, bandwidth is

limited by CPU overhead: on the receive side for small messages, and on the

send side for large messages. Increasing the MTU from 1500 to 9000 octets helps

because it reduces the packet rate, and therefore per-packet overheads. The Gi-

gabit Ethernet line cards tested use interrupt hold-off to further reduce overhead.

However, this has the effect of increasing latency when the packet rate is low.

The round-trip latency for TCP/IP over Gigabit Ethernet was measured as 96 µs,

compared with 61 µs for Fast Ethernet.

While raw bandwidth has improved substantially, the per-message overheads

have changed very little with the successive generations of Ethernet. For many

applications little or no performance increase is seen when moving from Fast to

Gigabit Ethernet, and in some cases the additional latency due interrupt hold-off

damages performance.

Packet size distribution

Figure 2.3 shows the cumulative distribution of the sizes of packets handled on a

web server and login gateway at the Laboratory for Communications Engineering.

The network technology is Fast Ethernet, which has an MTU of 1500 octets. The

plot shows that about half of the packets are smaller than 100 octets, but about

90% of the data is carried in large packets (larger than 1400 octets). The large

number of packets at the full MTU suggests that the application-level data unit is

frequently larger.

This bi-modal distribution is very typical. The large packets contain bulk data,

such as the content of web pages or files. The small packets typically contain

requests or other meta-data. The plot shows that a great deal of bandwidth is

consumed by bulk data, so improving bandwidth is important. It also shows that

a large proportion of packets are very small. Figure 2.2 shows that only a small

proportion of the link-level bandwidth is available at small messages sizes, and

the achievable bandwidth is lower still when a real application that does work is

used. This is due to high per-message and per-packet overheads, so the problem

is not solved by increasing bandwidth at the link-level.

3The Gigabit Ethernet curves were obtained with the line cards connected back-to-back. Band-
width is reduced when they are connected by a switch.
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2.2.3 Receive livelock

The interrupt-driven architecture for the receive path introduces a number of prob-

lems in addition to the high overhead already discussed. The most severe is that

received packets are processed at high priority as soon as they arrive (in the inter-

rupt handler and bottom-half). As the packet arrival rate increases, applications

receive decreasing amounts of processor time, and performance is degraded. If

the packet arrival rate is sufficiently high, the processor will spend all of its time

servicing interrupts, and no useful work will be done. This condition is known as

receive livelock [Ramakrishnan, 1992].

This problem does not affect disk I/O, because the rate at which a disk gener-

ates interrupts is limited by the rate at which the operating system makes requests

to the disk. The interrupt rate for disks is therefore self limiting. Network pack-

ets, however, may be unsolicited. Both TCP/IP and human clients tend to keep

retrying if they do not get a timely response from an overloaded server.

Received packets are processed as soon as they arrive, and are then placed on

a per-endpoint queue. When a server is overloaded, the queue’s consumer cannot
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keep up. The queue will eventually overflow and packets must be discarded. This

happens after significant processor resources have been invested in the packet.

It is clear that it is better to discard a packet early, before resources have been

dedicated to processing it.

Mogul and Ramakrishnan [1997] analysed this problem, and demonstrated a

number of techniques to avoid receive livelock, including limiting the interrupt

rate, and using a hybrid interrupt/polling mechanism. In the latter scheme inter-

rupts are enabled when load is low (in order to minimise latency) but interrupts are

disabled and the interface polled when busy. When the packet queue fills, input

from the line card is temporarily disabled, so packets are discarded early to avoid

wasting processor resource.

2.2.4 QoS cross-talk

Because all received packets are processed at high priority in interrupt-driven sys-

tems, high priority tasks may be held up by the processing of low priority network

traffic. Also, the time spent processing a received packet may not be accounted

to the process that ultimately receives it. This is because the network process-

ing is not done in the context of the receiving process. These pathologies impact

on fairness, and make it impossible to provide guarantees regarding the proces-

sor and networking resources available to individual applications. The processing

requirements of one application interfere with those of another because the pack-

ets are not demultiplexed to the destination application until after much work has

been done. This is one aspect of QoS cross-talk [Tennenhouse, 1989], which is the

interaction between independent processes multiplexed onto a shared resource.

Lazy Receiver Processing (LRP) is a network architecture that addresses QoS

cross-talk and receive livelock [Druschel and Banga, 1996]. The modified receive

path for LRP is illustrated in figure 2.4.4 Incoming packets are demultiplexed as

early as possible—either by the line card or the interrupt service routine—and

placed on per-endpoint receive queues without further processing. If the queue is

full the packet is discarded early. Processing of received packets happens when the

application requests the data, and thus happens in the context and at the priority

4This diagram is based on one in [Druschel and Banga, 1996].

19



applications
User−level

IP

UDPTCP

Sockets

recv()

Hardware

O/S
kernel

NIC

Figure 2.4: The receive path for Lazy Receiver Processing. The line card
demultiplexes packets directly into per-endpoint queues, but does not gen-
erate an interrupt in the common case. The protocol stack is invoked when
the application calls recv(), and protocol processing happens in the con-
text of the receiving application.

of the correct application. The processor time is accounted for properly. Because

traffic is separated early, and processed in the application’s context, the delivery

latency of a packet is not affected by subsequent packets with lower priority.

A system with LRP shows improved throughput under load, partly because re-

sources are not wasted on packets that will be discarded, and also because context

switches are reduced. Importantly, performance degrades less dramatically as of-

fered load increases. Another benefit, not noted in their paper, is improved cache

performance: by processing packets on demand, the payload is brought into the

cache just as it is needed by the application. This is in contrast to the traditional

architecture, where there may be a large gap between the processing of a packet

and the application requesting its contents, especially when the system is experi-

encing high load. Bringing data into the cache before it is needed is detrimental

to system performance, as live data may be evicted [Pagels et al., 1993].
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2.3 Other architectures

A wide variety of alternative network I/O architectures have been proposed with

the aims of improving performance and/or functionality. Three classes of archi-

tecture are described in this section.

2.3.1 Protocol offload

In protocol-offload architectures, part of the burden of protocol processing is taken

by the line card, hence leaving the host processor more time for useful work. This

architecture has much in common with the I/O processors used in mainframe sys-

tems. The Nectar network had a general purpose communication processor which

as well as performing transport protocol offload for TCP/IP and other protocols,

could also be used for application-specific computation [Cooper et al., 1990].

A number of commercial products are available that accelerate TCP/IP per-

formance, including products from 3Com, Alteon and Alacritech. They range

from simply calculating and verifying checksums, through send-side segmenta-

tion to complete implementations of the TCP/IP protocol, including automatic

generation of acknowledgements. Received data may be delivered directly into

per-endpoint buffers, in order.

The highest reported TCP/IP bandwidth to date was achieved using a combi-

nation of large MTUs, checksum offload, interrupt hold-off and page re-mapping

[Chase et al., 2001]. The peak bandwidth of 1.18 Gbit/s was was limited by

the memory write bandwidth at the sender.5 This result was achieved using the

Trapeze interface [Chase et al., 1999] for the Myrinet network [Boden et al.,

1995]. Myrinet line cards are programmable, with an on-board processor, some

SRAM, and DMA engines to transfer data between the line card and host memory,

and between on-board memory and the network.

To be useful, a protocol offload solution must reduce overhead on the host

processor. This is not obviously true, since the interface between the host and

line card is likely to be more complex and may incur higher overhead. In addi-

tion, the processor on the line card may become the bottleneck. It is likely to be

5A bandwidth of 2 Gbit/s was achieved when the payload was not touched by the sender or
receiver, but this result is not applicable to real world systems.
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substantially less powerful than the host processor, and so may increase latency

or limit the message rate. The price/performance ratio for host processors will

always be better than that of special purpose processors, since they are manufac-

tured in higher volumes. In addition, host processors receive greater investment,

and their performance advances quickly. Protocol offload is a point-solution: any

given implementation may offer superior performance for a while, but will soon

be overtaken by a faster host processor.

Given that the fundamental cost of TCP/IP processing has been shown to be

relatively low [Clark et al., 1989], it appears there is little to be gained from off-

loading per-packet operations, unless their implementation on the host processor

is inefficient. Checksum calculation can easily be implemented in the line card,

but it has been argued that performing an end-to-end checksum in host memory

adds a valuable level of protection [Saltzer et al., 1984].

2.3.2 Protocol processing at user-level

A number of architectures have been proposed where protocol processing is car-

ried out at user-level, rather than in the kernel. A commonly cited reason for doing

this is flexibility: user-space code is easier to customise, debug and test, and it is

easier to add support for new protocols such as remote procedure call or realtime

media [Thekkath, Nguyen et al., 1993]. The Exokernel [Engler et al., 1995] takes

this concept further, and where possible places services that are usually imple-

mented in the kernel in libraries that execute at user-level.

Micro-kernel architectures place operating system services, including protocol

processing, in user-space servers [Golub et al., 1990]. However, this arrangement

leads to more context switches, and performance suffers relative to monolithic

kernel implementations [Maeda and Bershad, 1992]. An alternative is to perform

protocol processing in a library linked to the application program. This architec-

ture is illustrated in figure 2.5. The system call interface deals in raw packets,

and a packet filter in the kernel is used to deliver incoming packets to the correct

application [Mogul et al., 1987]. A template may be applied to outgoing packets

in order to prevent applications from masquerading. Maeda and Bershad [1993]

describe an implementation of TCP/IP for the Mach micro-kernel that performs
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Figure 2.5: Protocol processing at user-level. Incoming packets are de-
multiplexed to the correct application by a packet filter. The application
receives raw link-level packets, and a protocol library linked to the appli-
cation performs protocol processing.

as well as the monolithic BSD kernel. This approach is equally applicable to tra-

ditional operating systems, and Edwards and Muir [1995] describe a user-level

TCP implementation based on the BSD kernel implementation. Those aspects of

protocol processing that are done by an interrupt bottom-half in the kernel imple-

mentation are managed by a helper process in the user-level version.

A further benefit of performing protocol processing at user-level is that it is

possible to take advantage of application-specific structure or knowledge to im-

prove performance [Felten, 1992]. To some extent this can be done automatically

by partially evaluating a protocol with respect to the application [Felten, 1993].

Watson and Mamrak [1987] show that disparity between application-level abstrac-

tions and the transport interface reduces efficiency. One way in which this can be

addressed is by integrating the buffer management of the application and transport

implementation. Another example of how application-specific knowledge can be

exploited is behaviour in the presence of packet loss: an application may choose

to retransmit the data, recalculate and retransmit, send new data or simply tolerate

the loss.

A general approach to enabling such flexibility is application level framing

[Clark and Tennenhouse, 1990, Floyd et al., 1995], wherein the transport layer

preserves frame boundaries specified by the application. The application-specified
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data unit is used as the unit of error control and delivery for the low-level network

protocol. The motivation is to allow applications to process frames out-of-order,

so that presentation processing need not be held up when packets are lost.

Performing protocol processing at user-level has a number of disadvantages

in common with user-accessible network interfaces. They are described in sec-

tion 2.4.3.

2.3.3 Remote memory operations and RDMA

In the traditional network model, applications specify the source of a data trans-

fer in terms of a local buffer, and the destination in terms of an endpoint ad-

dress. The receiving system decides where incoming data is placed, and hence

this model is termed the receive-directed model. In the alternative send-directed

model [Wilkes, 1992, Swanson and Stoller, 1996], the initiator of the transfer also

specifies into which buffers at the receiver the payload should be delivered. The

principal advantage of this model is that the receiving system is always able to

deliver incoming packets. In the more common receive-directed model, the queue

or pool of receive buffers may be exhausted, in which case packets are usually

discarded.

Thekkath et al. [1994] propose constructing distributed systems using remote

memory operations. Operations are provided to read data from, or write data to

memory regions in a remote node. The remote memory regions are identified by a

segment descriptor. The operations are invoked by executing special co-processor

instructions, which are emulated in the kernel in the implementation described.

An advantage of this approach is that transfer of data and control are separated.

Remote DMA (RDMA) [Sapuntzakis and Romanow, 2000] allows a device to

read or write memory in another node without the intervention of the CPU in that

node. It is conceptually similar to a local DMA operation, except that the request

and data are forwarded across a network. This is useful for network attached I/O

devices, particularly storage devices [DAFS, 2001].

RDMA can also be used to transfer data between communicating processes.

For an RDMA write transfer, the payload is read out of host memory using DMA,

transmitted across the network and delivered directly into the receiving applica-
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tion’s buffers by the remote line card. Efficient implementations of RDMA require

support in the line cards.

The proposed TCP RDMA option is an annotation for the TCP protocol that

allows the sender to identify segments of the TCP payload that should be deliv-

ered directly into application-level buffers [Sapuntzakis and Cheriton, 2000]. This

is particularly useful for protocols that transfer uninterpreted data interspersed

with headers, such as distributed file systems and HTTP. The RDMA option field

identifies the data, and an identifier indicates to which buffer the data should be

delivered.

RDMA read operations are also possible. The initiating node sends an RDMA

read request to the remote line card, which reads data directly from the specified

buffers and performs an RDMA write to transfer the data back to the destination

buffers. This requires that the line card be capable of handling the full transport

protocol, and hence is significantly more complex than RDMA write.

2.4 User-accessible network interfaces

A user-accessible network interface gives applications direct access to the net-

work hardware, removing the operating system kernel from the communication

path. This is illustrated in figure 2.6. User-accessible networks reduce overhead

and latency by eliminating system calls and interrupts on the common path, re-

ducing the number of times data is copied, and in some cases simplifying pro-

tocol processing. In addition, protocol processing is carried out at user-level, so

user-accessible networks have all of the advantages cited in section 2.3.2.

Only interfaces that provide protected communication in a multiprogrammed

environment are considered in this dissertation. As a minimum, a user-accessible

line card must multiplex requests from concurrent applications in a safe, protected

manner, and must demultiplex incoming data into applications’ receive buffers. A

user-accessible line card must necessarily maintain state relating applications and

network addresses with buffers in host memory. Consequently user-accessible

line cards are often more complex than those used in traditional architectures.

Many user-accessible network technologies provide guarantees beyond those

normally provided by the network. Some provide an reliable network abstraction:
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Figure 2.6: A user-accessible network interface. Each application has a
protected mapping onto the line card, and the line card has direct access
to the application’s communication buffers. Data path operations can be
carried out entirely at user-level.

errors are detected by the line card, and retransmissions are handled in hardware.

Some short range interconnects have very low transient error rates, and can be

considered reliable, so no retransmission logic is necessary. Most guarantee to

deliver messages in order, and some provide end-to-end flow control. Applica-

tions can take advantage of such guarantees to reduce the complexity of protocols

implemented in software, and hence reduce overhead.

Networking support is not completely removed from the operating system ker-

nel; a device driver allocates resources on the user-accessible line card to applica-

tions, may handle out-of-band events, and is usually involved in connection set-up.

In multiprogrammed systems, applications must be able to block efficiently until

some network event happens. This means making a system call so that the kernel

can reschedule without waiting until the process’s time-slice expires.

Within each node, protection is achieved by two mechanisms. Firstly, each

application is given a virtual memory mapping onto a distinct portion of the line

card’s I/O address space. Secondly, the line card demultiplexes incoming data to

the correct applications, preventing applications from snooping data intended for

others. Pages of memory that contain buffers that may be accessed by the line

card are typically pinned to ensure that they are not swapped out by the virtual

memory subsystem.
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Figure 2.7: Virtual memory-mapped communication: a form of dis-
tributed shared memory in which a virtual address range in one applica-
tion is mapped over the network onto physical memory in another node.

2.4.1 Distributed shared memory

User-accessible network interfaces have grown along two evolutionary paths. The

first type are shared memory network interfaces, and have come from large mul-

tiprocessors. The second are message-based network interfaces, which provide a

user-level interface to traditional packet networks.

Large shared memory multiprocessors typically consist of large numbers of

processors, each with local memory, connected by a high-speed interconnect.

Each processor can access all the memory through a single physical address space.

However, access to memory attached to other processors has relatively high la-

tency, and hence these machines are termed Non-Uniform Memory Architecture

(NUMA) machines. The Stanford FLASH multiprocessor is a notable example

that supports multiple protocols and flexible synchronisation with a dedicated pro-

tocol processor in each node [Kuskin et al., 1994].

It is a small conceptual step from this model to a network of workstations,

each with one or a few processors. In this case each node runs a separate instance

of the operating system, and has a separate physical address space. Distributed

shared memory enables applications in separate nodes to communicate using the

shared memory model.

There are a variety of architectures, but in the prevalent model, part of the
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physical address space of a node is mapped over the network onto physical mem-

ory in other nodes. Part of the virtual address space of an application is mapped

onto part of the physical address range occupied by the line card. The line card

forwards memory accesses across the network to a remote line card, which reads

or writes physical memory in the remote node. This is illustrated in figure 2.7.

The line card simply performs mappings between I/O bus addresses and network

addresses, and encapsulates memory accesses in a network protocol.

Distributed shared memory as a transport for local area networks differs in a

number of important ways from multiprocessor interconnects. In a network, errors

or failures should be reported to the affected applications, not cause failure of all

nodes. Distributed shared memory may be addressed with a flat address space, or

with a structured scheme, such as {host,segment,offset}. Distributed shared mem-

ory is normally not completely transparent: a programming interface is provided

to set up mappings, perform error notification and provide support for synchroni-

sation. Cache coherence algorithms have high complexity and overhead, and thus

distributed shared memory networks often implement a less strict consistency, or

alternatively may not permit non-local caching.

Scalable Coherent Interface

An example of this model is the Scalable Coherent Interface (SCI), an IEEE stan-

dard [IEEE, 1992]. Although much of the specification deals with cache coher-

ence, implementations targeted at distributed systems (such as those developed by

Dolphin) are non-coherent [Ibel et al., 1997]. CPU load/store operations are not

expected to fail, so shared memory interfaces must ensure reliability at the hard-

ware level. To reduce host processor overhead for bulk data transfer, SCI provides

a DMA mechanism which moves large chunks of data between hosts.

Support for synchronisation is one way in which shared memory systems dif-

fer markedly. Data is written to (and read from) the shared memory without inter-

vention from the host processor, so there is no hook with which applications may

synchronise. The line card has no knowledge of the application-level protocol,

and thus cannot distinguish between memory accesses that correspond to inter-

esting events, and those that require no synchronisation. Applications may poll
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the relevant memory locations, but this is an inefficient use of the host processor

if a message is not expected soon, and scales poorly as the number of endpoints

increases. Polling is used on clusters that are dedicated to a single task, or when

using gang-scheduling, but is not suitable on general purpose systems.

SCI allows the sending process to request an interrupt at the receiver, which

can be used for synchronisation. A problem with this scheme is that an interrupt

should only be needed if the receiver is blocked and needs waking, but the sender

has no way to know whether this is the case. To avoid races, an interrupt must

usually be delivered with each message, incurring high overhead. Ibel et al. [1997]

found this to be very expensive, so resorted to polling only.

SHRIMP VMMC

Virtual Memory Mapped Communication (VMMC) is a network interface for the

SHRIMP multicomputer developed at Princeton. It is a shared memory interface

built with custom hardware, and an off-the-shelf routing backplane. It differs from

SCI in that regions of physical memory in one node are mapped onto physical

memory in another. That is, updates to the local memory are forwarded to the

remote memory. It provides two modes of communication.

1. Automatic update

Stores to a mapped region of memory are snooped by the network interface,

and propagated to the corresponding locations in a remote node.

2. Deliberate update

Stores to the mapped region are not automatically sent to the remote node.

The application must ask the network interface to transfer a portion of a

mapped region by DMA.

Each page of mapped memory has an associated command page, which is a

virtual mapping onto the network interface hardware. To transfer n bytes starting

at location l, the application writes the value n to the command page location

corresponding to l. Since the DMA engine may be busy (and only supports one

request at a time), a compare-and-exchange instruction is used to check whether

the DMA engine is free and initiate a transfer in a single atomic step. Thus DMA
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transfers are initiated at user-level with only a single instruction. Note however

that this instruction will take many clock cycles since it makes a read to I/O space,

and the process may have to retry multiple times if the DMA engine is busy.

In addition a great deal of virtual address space is consumed, which degrades

performance because the TLB miss rate is increased.

The atomic compare-and-exchange instruction can only be used where the

network interface is directly attached to the system bus. Blumrich et al. [1996]

describe an alternative that uses separate store and load instructions, but requires

the operating system kernel to inform the line card of context switches. Markatos

et al. [1997] describe a further refinement that uses context keys so that special

kernel support is not needed.

VMMC-2 [Dubnicki et al., 1997] is the second generation network interface,

and is implemented using Myrinet. Automatic update is not supported in this

implementation, because the Myrinet line card is not able to snoop PIO stores

(whether to host memory or to its on-board SRAM). Whereas VMMC has a fixed

mapping between source and destination buffers, VMMC-2 is more flexible. A

user-managed TLB (UTLB) identifies buffers in an application’s address space

that are pinned, and hence may be accessed by the line card. It is stored in

host memory, with a cache on the line card to reduce latency. Each send and

receive request consults the UTLB, and invokes the device driver to add entries

for send/receive buffers that are not already registered.

A further improvement is transfer redirection, wherein incoming data may

temporarily be directed to an alternative buffer. If the application invokes a re-

ceive operation before the data arrives, a suitable redirection allows the data to

be delivered directly into the application-specified buffer. If no redirection is re-

quested, data is delivered to a default buffer, and must be copied into the appli-

cation’s receive buffer when it invokes the receive operation. Transfer redirection

was shown in [Dubnicki et al., 1997] to substantially improve throughput on a test

system, but it was a system with very poor memory-to-memory copy performance

compared with more modern systems.

In order to support blocking synchronisation, the application may request that

the line card raise an interrupt when a particular page of local memory is accessed.

This is an improvement on the SCI scheme, as it puts the receiver in control of
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synchronisation. Reliable data transfer is guaranteed: Myrinet already has a very

low transient error rate, and this is backed up with a per-node retransmission queue

in each line card.

Other distributed shared memory interfaces that are similar to those described

above include Memory Channel [Fillo and Gillett, 1997] and Telegraphos [Markatos

and Katevenis, 1996]. Both additionally support multicast, and atomic operations

on remote memory which can be used for synchronisation.

All of these networks share host memory. Memnet however, shares memory

that resides in the line card [Delp et al., 1988]. Each page of memory has a fixed

home location, but may be cached at other nodes. Disadvantages of this approach

are that host memory is typically cheaper and more plentiful than memory on net-

work devices, and the cost of accessing memory over the I/O bus is high compared

with the cost of delivering data into host memory by DMA.

2.4.2 Message-based interfaces

Message-based user-accessible interfaces have been developed to improve the per-

formance of applications on local or system area networks. Early examples are

described in [Davie, 1993] and [Thekkath, Nguyen et al., 1993]. Packets in such

networks are addressed to endpoints, which typically have addresses of the form

{host,port}. The line card may either expose an interface to send and receive link-

level packets, or may have a higher-level message-based interface. Applications

form messages or packets in user-level buffers, and invoke the line card to trans-

mit them onto the network. Incoming messages are demultiplexed by the line card

into user-level buffers, and some mechanism is used to notify the application that

a message has been delivered. Message-based interfaces are similar to traditional

kernel-managed interfaces: each application is given direct access to one or more

send and receive DMA rings.

As with shared memory interfaces, data is delivered into user-level buffers

without intervention from the CPU. In this case, however, the line card is party to

the protocol being used, and may perform a suitable synchronising action such as

raising an interrupt as necessary.
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U-Net and VIA

The goals of U-Net were to provide near link latency, achieve full network band-

width with small messages, and facilitate use of novel protocols [von Eicken et al.,

1995]. These goals are achieved by removing the kernel from the critical path, and

putting buffer management under the control of the application. Two implemen-

tations using off-the-shelf hardware are described: an ATM controller with an

on-board processor is directly accessible at user-level, whereas for a less sophis-

ticated ATM controller the U-Net interface is emulated in the kernel. U-Net has

also been demonstrated on Fast Ethernet [Welsh et al., 1996].

The network interface is queue-based. To send a message, the application

composes the message in a buffer, constructs a descriptor that describes the buffer

and gives the destination, and places the descriptor on the send queue. Incom-

ing messages are demultiplexed into buffers provided by the application in a free

queue, and as each message is received a descriptor is placed on a receive queue.

The application may poll the receive queue, register a callback, or block wait-

ing for messages to arrive on one or more queues with the Unix select system

call. Small messages can be stored in the descriptors themselves, which simplifies

buffer management and reduces latency.

The direct access version of the architecture adds an RDMA write facility,

which permits the application to specify the location in the receiver at which

the payload will be delivered. In addition, message payloads (other than RDMA

writes) may be placed anywhere in an application’s address space. Welsh et al.

[1997] describe an implementation with a TLB on the line card, which is kept

consistent with the kernel’s page tables. Pages that are mapped by the TLB on the

line card are not eligible for swapping. However, the problem of how to deliver in-

coming data to addresses that are not resident in RAM is not handled completely.

It is assumed that all data in a page will be overwritten, so its contents are not

copied back in from the swap device.

The Virtual Interface Architecture [VIA, 1997] is an industry standard that

formalises some of these ideas from academic research. It presents a similar com-

munication model to U-Net, based on queues of send and receive descriptors. It

also has the RDMA write primitive, and adds RDMA read. Unlike U-Net, it is
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connection oriented: there is a one-to-one mapping between connected endpoints,

so descriptors need not contain endpoint addresses. VIA is discussed in detail in

chapter 5.

Arsenic

Arsenic is a user-accessible network interface designed to improve the perfor-

mance of existing protocols on packet networks such as Ethernet [Pratt and Fraser,

2001]. It is implemented using an off-the-shelf programmable line card designed

for protocol offload. Arsenic gives applications direct access to the payload of

link-level Ethernet frames, and processing of higher level protocols (TCP and

UDP) is carried out at user level. Like U-Net, the interface is based on queues of

descriptors.

Packets are demultiplexed using filters uploaded to the line card by the kernel.

Outgoing packets are validated against a template, in order to prevent applications

from masquerading or violating key protocol requirements. In addition, traffic

shaping is supported: a packet scheduler ensures that in-credit flows are treated

fairly, and traffic is smoothed. Together with the early demultiplexing of packets,

this ensures good separation of flows, minimising cross talk. The performance

of latency sensitive applications in the presence of competing bulk transfers is

substantially improved.

Like the user-level TCP/IP described by Edwards and Muir [1995], a dedicated

thread is employed to perform the work usually done by the interrupt handler in

a kernel implementation. Applications may request that an event be delivered

when the receive queue contains at least n entries, or has been non-empty for a

specified period. This is implemented by raising an interrupt and delivering a

signal. Only one such event may be outstanding for each application. This limits

the number of interrupts an application can generate, and hence the amount of time

the application may cause to be spent beyond the control of the system scheduler.

It is not made clear how the application can use this to wait on multiple endpoints.
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Hamlyn

Hamlyn provides a send-directed model much like RDMA write, with the receiver

explicitly notified about each incoming message [Buzzard et al., 1996]. Together

with the assumption of a reliable network, Hamlyn’s send-directed model ensures

that messages can always be delivered. Hamlyn supports networks that may de-

liver packets out of order, and can therefore benefit from the increased throughput

achieved by adaptive routing networks.

Message areas are pinned regions of memory that contain transmit and receive

buffers. They are identified by slots which may be exported to the sender. Each

slot has an associated 64 bit protection key, which is checked before messages are

delivered. This ensures that receive buffers cannot be overwritten by unauthorised

applications or faulty nodes. Messages may also contain out-of-band data, which

is deposited in a separate buffer.

A stated goal was that “Hamlyn should be simple enough to be implementable

using hardware state machines, since programmable controllers are often slow.”

However the model is arguably significantly more complex than distributed shared

memory type networks. For the Myrinet implementation given by Buzzard et al.

[1996], the programmable controller on the line card contributes half of the total

latency for small messages.

2.4.3 Disadvantages of user-accessible interfaces

Whilst user-accessible networks have achieved significant improvements in per-

formance over other models, they come at a cost. This section outlines the dis-

advantages and trade-offs associated with user-accessible technologies, and per-

forming protocol processing at user-level.

• User-accessible line cards are typically substantially more complex, and

therefore more expensive than traditional line cards. The complexity arises

from the need to provide multiple protected interfaces, manage per-endpoint

state, and perform demultiplexing. Some user-accessible line cards also do

higher-level protocol processing.
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• The number of applications and clients that can be supported simultane-

ously is limited by the resources on the line card. In traditional networks

the number of endpoints is limited only by host memory, which is compar-

atively very cheap. Some line cards also keep state relating to each node

in the network, which may limit the scalability of the network as a whole.

VMMC-2, for example, keeps one retransmission queue per node in the

network.

A solution to this problem is to virtualise per-endpoint resources: a working

set of endpoints are kept on the line card, with state for all other endpoints

in host memory. The kernel’s page fault handler is used to move an end-

point back into the line card when it is accessed by the application. Note

however that enough information must be kept in the line card to deliver in-

coming packets, or alternatively sufficient buffering to hold the packet until

the endpoint’s state is restored.

• Protocol processing is stalled if the process is otherwise blocked. For ex-

ample, the host processor sits idle while a process is blocked on disk I/O,

even if data has arrived at one of the application’s network interfaces. In the

traditional model the packet would be processed by the interrupt handler on

delivery. This can be worked around with extra threads or signals, but it

is hard to make this work transparently for existing applications. Note that

this criticism also applies to the lazy receiver processing model.

• Many system utilities rely on the system call hook. For example, the Unix

ptrace interface permits one process to monitor or control another by inter-

cepting system calls. Intercepting network I/O in this way is not possible

when a user-accessible line card is used.

• The flexibility of protocol processing at user-level may come at the expense

of ease of management. Networking is no longer managed by a single entity

(the kernel) but potentially in many applications and libraries. There is no

longer a single interface for monitoring, accounting and management of

policy.

• One of the main purposes of the operating system is hardware abstraction.
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User-accessible network interfaces require that hardware-specific code be

executed at user-level. It can be encapsulated in dynamically linked sys-

tem libraries, but there is no standard mechanism for this on existing Unix

systems, and different solutions tend not to work well together.

2.5 Managing multiple endpoints

Servers are increasingly required to support large numbers of concurrent clients.

Since network I/O may block for an arbitrary length of time, servers must manage

clients concurrently to maximise throughput and prevent any one client from hold-

ing up progress. Perhaps the simplest way to do this is to fork a separate process

to handle each client, with the scheduler choosing another process to run when

I/O causes the running process to block. To reduce the cost of context switches

and simplify sharing of state, threads may be used instead of separate processes.

This model has limited scalability, however, as processes and threads are typically

limited resources, and some schedulers perform poorly when many processes are

runnable.

An alternative is the single-threaded event-driven model. Non-blocking I/O

is used to ensure the server is not held up while processing any individual client.

The interaction with each client is represented by a state machine which is driven

by up-calls from an event processing loop. This model is harder to use because

it inverts the programming model: I/O drives the thread of control rather than

the other way around. However, it puts the application in control of scheduling

between clients, and typically performs better at high load than thread-per-client.

In order to take advantage of multi-processors, a number of threads may be used,

each handling a share of the clients.

Operating systems provide interfaces to inform an application which of a set of

endpoints are ready for I/O, or to block if none are. The best known mechanisms

are the Unix select and poll system calls. The endpoints can be files, IPC endpoints

or other devices as well as network sockets. There are two classes of interface:

1. State-based interfaces report whether or not receiving and sending from and

to the endpoint will block. For network sockets this translates to whether
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data is available for receiving, and whether there is buffer space available

for sending. Exception conditions are also reported.

2. Event-based interfaces report changes in the state of an endpoint. This is

potentially more efficient, since it is presumably changes in state that the

application is interested in. However, such interfaces are fragile compared

with state-based ones: it is difficult to avoid subtle race conditions, and if

an event is missed, an application may neglect a client indefinitely.

The select mechanism has been shown to scale poorly with increasing num-

bers of connections, even when aggressively optimised [Banga and Mogul, 1998].

The problem is that the cost of a call to select necessarily grows linearly with

the number of endpoints, as the application must specify the set of interesting

events each time. Performance is particularly bad if many endpoints are idle:

each endpoint may be polled many times for each unit of useful work done, and

the overhead due to select approaches the square of the number of endpoints. Due

to slow dial-up links and congestion, it is common for Internet servers to man-

age large numbers of connections that are idle for much of the time [Banga and

Mogul, 1998].

The poll system call is also state-based, and has the same limitations as select,

but can be more efficient if the set of endpoints is sparse in the descriptor space.

The /dev/poll interface is a refinement that permits the application to register its

interest set incrementally in advance. This reduces overhead because the appli-

cation need not repeatedly restate its interest set each time it requests the current

state.

A number of event-based interfaces have been proposed and implemented. On

many Unix systems it is possible to configure a socket to deliver a signal to the ap-

plication when an I/O event occurs. If POSIX realtime signals are used, the event

notifications can be queued rather being delivered via a preemptive signal handler,

and the notification identifies the socket that generated the signal. Queued POSIX

realtime signals have been shown to be efficient compared with other mechanisms

under Linux [Chandra and Mosberger, 2001].

Banga et al. [1999] propose an event-queue based system for Unix systems

that allows applications to register interest in events on particular endpoints. It
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improves on POSIX realtime signals by reporting the current state of an endpoint

when registering interest. This helps to avoid a race condition when a new con-

nection is registered. Multiple events can be dequeued with a single system call,

reducing overhead.

A serious problem with some interfaces that queue events is that the queue

can overflow. If this happens the application has to resort to polling the endpoints

using a state-based interface. This is most likely to happen when the server is

overloaded, and switching to a less efficient mechanism causes performance to

collapse. Further, designing an application to use two mechanisms is wasteful

and hard. Chandra and Mosberger [2001] suggest modifying the POSIX realtime

signal queue so that only one event from each endpoint may be enqueued at a

time, thus preventing overflow.

Another technique to avoid blocking is asynchronous I/O. In this model the

application makes I/O requests which complete asynchronously. This improves

concurrency because the application need not block, and saves the application

from having to determine in advance whether an endpoint is ready for an I/O op-

eration. Asynchronous I/O more closely matches the way I/O hardware behaves,

and is the model supported by the low-level interface of most user-accessible line

cards. Unfortunately many existing implementations for kernel-managed I/O are

inefficient.6

2.5.1 User-accessible networks

Some user-accessible network interfaces have provided their own interfaces for

managing multiple endpoints. The VIA specification describes a completion queue

to which connections may direct events. It is intended to be a user-accessible re-

source, and potentially has low overhead, but is susceptible to overflow.

The Hamlyn interface has a notification queue which is also susceptible to

overflow. It is assumed that communicating processes will cooperate to prevent

this from happening. When communicating with untrusted peers a paranoid one-

shot mode can be used, where only one message is accepted from each connected

6Most implementations of asynchronous I/O are user-level wrappers for synchronous I/O using
helper threads, and therefore incur extra context switches. An efficient implementation requires
support in the kernel.
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peer before it is acknowledged. This bounds the size of notification queue needed

to avoid overflow, at the expense of additional overhead and restricted semantics.

However, applications using user-level networks still need to use other O/S

resources such as files and pipes or sockets for inter-process communication. In

order for user-accessible technologies to integrate well with these resources they

need to support the standard interfaces. U-Net is integrated with the select mech-

anism so that applications can perform a homogeneous wait on U-Net and other

endpoints. Most other user-accessible networks do not appear to have addressed

this problem.

2.6 Summary

The performance of applications on high-bandwidth local area networks is limited

by host processing overheads and memory bandwidth in the end systems. High

overhead limits the achievable bandwidth, latency and transaction rate. High per-

message overheads limit the performance of small messages, which are common

in practice.

User-accessible network interfaces address this problem by reducing the over-

heads associated with interrupts, context switches and in-memory buffer copies.

By demultiplexing incoming data in the line card and avoiding interrupts, they

also avoid the QoS cross-talk incurred by the traditional network architecture.

Performing protocol processing at user-level has a number of benefits, not least

the ability to exploit application-specific knowledge to improve efficiency.

Distributed shared-memory based interfaces are very low-level, and hence

flexible. The simplicity of the interface permits highly efficient implementations

with very low latency and overhead. Message-based interfaces provide a higher

level of abstraction, and semantics that may be closer to those required by some

applications, but at the expense of flexibility. It is possible to implement mes-

sage passing on top of shared memory and achieve high performance [Ibel et al.,

1997], whereas software distributed shared memory over messaging incurs high

overhead and requires support in the kernel.

There are numerous application-level network abstractions, and a variety of

architectures for applications managing large numbers of clients. If new tech-
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nologies are to support existing applications without substantial modification, it is

important to have flexible and efficient data transfer and synchronisation. The next

chapter presents the CLAN network, which, it is argued, exhibits these desirable

properties.
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Chapter 3

The CLAN Network

The Collapsed LAN (or CLAN) project at AT&T Laboratories–Cambridge was

born of an idea by Maurice Wilkes to move all but the user interface of desk-

top systems into a machine room [Wilkes and Hopper, 1997]. The workstations

would then be physically close to one another and to the servers, and could be

connected by a high performance system area network. The workstations were to

be connected to the users’ terminals by dedicated fiber links. Advantages of this

approach include potentially improved network performance, reduced noise in the

office, centralised maintenance and cost savings.

The project initially addressed the interconnect between the workstation clus-

ter and terminals [Hodges et al., 1998], but it was soon realised that the technol-

ogy they had developed was applicable to general purpose local area networking.

The project moved toward the implementation of a high performance local area

network suitable for general purpose distributed systems, and scalable to large

numbers of applications and endpoints.

This chapter provides a detailed description of the CLAN network model and

prototype implementation, and an analysis of its features. It provides the context

in which the work described in subsequent chapters was performed. The raw

performance of CLAN is analysed, and the PIO and DMA mechanisms for data

transfer are compared.
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3.1 Data transfer model

The CLAN network is a shared memory network, using host memory rather than

auxiliary memory in the network. As in SCI, a region of physical memory in

one node is mapped into both the address space of a local application, and that

of an application in another node on the network (see figure 2.7). Applications

communicate through the shared memory.

A region of memory that is exported to other nodes in the network is known

as a local aperture. It is identified by a descriptor called an RDMA cookie, which

may be passed to other nodes in the network. An RDMA cookie is like a weak

capability which grants an application access to a region of memory in another

node. Applications may create virtual mappings onto the memory region identi-

fied by an RDMA cookie, and such a mapping is known as an outgoing aperture.

Applications may also ask the line card to perform an RDMA write to transfer

data from local buffers to a memory region identified by an RDMA cookie and

offset, thus reducing overhead for large transfers.

CLAN is primarily intended to support the send/receive model of traditional

networks rather than the shared memory programming model. The purpose of

caches and cache coherency protocols in workstations and multiprocessors is to

attempt to keep data close to where it is needed, in the absence of perfect informa-

tion. However, where shared memory is used for data transfer, the best place for

the data is known: at the receiver. Thus CLAN does not permit caching of mem-

ory at remote nodes, and data stored to an outgoing aperture is forwarded imme-

diately to the remote memory. Loads from outgoing apertures incur a round-trip

delay, and therefore have high latency and overhead. No management of cache

coherency is needed in the network, permitting a simple and efficient implemen-

tation.

3.1.1 Properties of the shared memory

In order to put the following discussion in context, a simple message passing

protocol is illustrated in figure 3.1. The sender has a virtual mapping onto the

buffer in the receiver. Access to the buffer is controlled by the two flags: tx ready
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tx_ready

Message
buffer

rx_ready

Local aperture
(host memory) (virtual mapping)

Outgoing aperture

Sender Receiver 1 int sm write(void* message, int size )
2 {
3 if ( ! tx ready ) return NOT READY;
4 tx ready = 0;
5 memcpy(message buffer, message, size );
6 WRITE BARRIER();
7 rx ready = 1;
8 return 0;
9 }

Figure 3.1: Simple message transfer with CLAN

and rx ready. When tx ready is set, the sender writes a message into the receive

buffer and sets tx ready to zero. rx ready is then set to indicate that the receive

buffer contains a valid message. When the receiver has read the message, it sets

rx ready to zero and sets tx ready to allow the sender to transmit another message.

Loads from outgoing apertures are not cached, and therefore incur high over-

head and latency. The data and control variables are therefore partitioned so that

no such loads are necessary. Local apertures are cacheable however, so the re-

ceiver can access and manipulate the message payload efficiently. Spinning (re-

peatedly polling control variables) is efficient, since it generates no traffic on

the system bus until the control variables are overwritten. This model assumes

a cache-coherent I/O subsystem, so that memory locations that are overwritten by

the line card are invalidated in host processor caches.1

If a zero-copy programming interface is used on the send side, messages can

be formed directly in the remote receive buffer. Transferring small messages in

this way consists of just a few processor store instructions. As noted above, care

must be taken to avoid loads from outgoing apertures, which may be non-obvious

at the programming level. For example, an unaligned store typically causes the

two words to be loaded, modified and stored back.

On the receive side, message delivery is asynchronous, and incurs no overhead

on the host processor. The message body may be copied into an application-level

1Druschel et al. [1994] describes a technique to reduce the cost of partial cache invalidations
on systems that do not have cache-coherent I/O.
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buffer, or the application may access the receive buffer in-place with a zero-copy

interface.

The CLAN network guarantees not to reorder memory accesses between two

nodes, and hence the shared memory is PRAM consistent. This is defined by

Lipton and Sandberg [1988] as follows:

“Writes done by a single process are received by all other processes

in the order in which they were issued, but writes from different pro-

cesses may be seen in a different order by different processes.”

Note that while CLAN does not reorder memory accesses, super-scalar host

processors may. The programmer must make appropriate use of memory barriers

to guarantee the ordering when it matters.

3.1.2 Connection management

CLAN also supports small out-of-band messages that are addressed to an endpoint

identified by a port number. They are not interpreted by the network and may be

used for any purpose. CLAN is not connection-oriented at the network level, but

most application-level network abstractions are. Out-of-band messages are there-

fore used to manage connections. Messages used to negotiate new connections

typically contain one or more RDMA cookies that identify the buffers that will be

used for the subsequent transfer of data. Out-of-band messages are also used to

tear-down connections and report errors.

3.2 Synchronisation: Tripwires

As stated in section 2.4.1, synchronisation in shared memory networks is diffi-

cult because the line card has no knowledge of the shared memory protocol, and

so does not know when an “interesting” event has happened. CLAN solves this

problem by allowing the application to specify which memory locations are inter-

esting. Tripwires provide a means for applications to synchronise with accesses to

particular locations within their shared memory. Each tripwire is associated with
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some memory location, and fires when that memory location is read or written via

the network. In response, a synchronising action is performed.

Crucially, tripwires are programmed by applications. An application can set

up a tripwire to detect accesses to a particular memory location in its own address

space, and will be notified when that location is written by another node. The

application will choose a memory location which corresponds to some interesting

event in the protocol it is using.

Tripwire matching happens in the line card, which maintains a table of the

logical addresses to be matched and corresponding synchronising actions. These

logical addresses consist of the aperture and offset that identify the memory lo-

cation that the application has selected. As network traffic passes through the

line card, the logical address of each word of data is computed and the table is

searched. When a match is found, the corresponding synchronising action is per-

formed. This might be to set a flag, deliver an event notification, or wake an

application which is blocked.

In the example given in figure 3.1, the receiver might set a tripwire on the

rx ready flag, which is set when a message is available in the receive buffer. The

receiver can then use this tripwire to block until a message arrives: it initialises

and enables the tripwire, then makes a system call to request that it block until the

tripwire fires. Similarly, the sender might use a tripwire on the tx ready flag to

block until the buffer is available for another message. The synchronising action

in these cases would be to generate an interrupt, which would enable the device

driver to wake the applications.

3.2.1 Properties of tripwires

Tripwires are fine-grained

A tripwire is associated with a single memory location, so applications can detect

specific protocol events. In contrast with schemes that operate on the granularity

of a page, accesses to memory locations that do not require synchronisation (such

as acknowledgements) are ignored. Applications can also support multiple inde-

pendent endpoints on a single page. Applications only receive notifications for

events in which they are interested, minimising overhead.
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Tripwires are flexible and efficient

Tripwires can be used to detect reads or writes by remote nodes. An application

can synchronise with the arrival of a message, or with a remote application having

read a message from its address space (so it knows when it can reuse the buffer).

It is possible to synchronise with accesses to meta-data such as flags or counters,

or with the message payload itself.

Tripwires can also be used to detect reads or writes by local processes to mem-

ory in other nodes. This might be used to detect the completion of an outgoing

RDMA transfer, or for synchronisation between threads.

Synchronisation is orthogonal to data transfer

No explicit support for synchronisation need be added to data transfer protocols.

The use of tripwires is local to a node, and so adds no overhead in the network.

Tripwires may be used to synchronise with any shared-memory protocol, provided

that protocol-level events can be identified by accesses to particular memory loca-

tions. This is likely to be the case for any practical protocol, since this requirement

is also necessary (but not sufficient) to support a polled mode of operation.

Synchronisation is decoupled from the remote endpoint

The sender does not need to do anything special to inform the receiver of the

arrival of a message. This reduces complexity and overhead at the sender. The

receiver decides whether it needs to synchronise, and how it is to be done. Ex-

plicit notification is usually only needed when an application wants to block, or is

managing many endpoints.

Early wakeup

Between a memory access and the application receiving a notification there is a

gap in time which contributes to latency. It may be large if the application has

blocked and has to be rescheduled. In this case the application may choose to

synchronise with a protocol event that is known to precede the event of interest.

For example, the application waiting for an incoming message may synchronise
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Figure 3.2: The CLAN prototype line card

with a write to a memory location that is part of the way through the message,

rather than at the end. The reschedule then proceeds in parallel with the arrival of

the trailing portion of the message, reducing latency. This optimisation depends

on knowledge of the order in which message data is to arrive, and needs tuning on

different machines.

3.3 Prototype implementation

This section gives a detailed description of the prototype line cards and switches

developed by the CLAN team. Figure 3.2 shows a prototype line card, and fig-

ure 3.3 a schematic. The prototypes are based on off-the-shelf parts, including an

Altera 10k50e FPGA clocked at 60 MHz, a V3 PCI bridge (32 bit, 33 MHz) and

HP’s G-Link optical transceivers with 1.5 Gbit/s link speed.

3.3.1 DMA

The V3 PCI bridge chip includes an integrated DMA engine, which can be pro-

grammed to copy data from local buffers to the transmit FIFO. It was not designed

with user-level networking in mind, and so can only be accessed by the device

driver. Unfortunately it can only be programmed with a single request at a time,

and generates an interrupt after each transfer. This enforces a large gap between

each transfer, which limits throughput for small messages, and necessarily incurs

high overhead.
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Figure 3.3: Schematic of the CLAN line card

3.3.2 Link layer protocol and switch

The network uses a novel link layer protocol that has a number of advantages over

existing protocols used in local area networks. Data packets resemble write bursts

on an I/O bus such as PCI, or a multiprocessor interconnect [Culler and Singh,

1998]. The header of a data packet identifies the target address for the payload,

consisting of the node, and a logical address. Notably, the size of the payload

is not encoded in the header, but is implicit in the framing of the packet. This

encoding has a number of desirable properties:

1. A line card or switch can begin to emit a packet as soon data is available

at the output port – even before the length of the packet is known. This

minimises latency and permits worm-hole routing in switches.

2. It is trivial to split a packet in two – the first packet is simply terminated,

and a new header generated for the trailing portion of data. The new header

will differ only in the target address, which is trivial to calculate.

3. Consecutive packets that represent a contiguous burst of data can be merged.

It is possible to determine if two packets can be merged by inspecting their
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headers, and they are merged simply by chopping the header off the second

packet.

Neither splitting nor merging of packets requires whole packets to be buffered.

All that is needed is that the implementation keep track of the network address of

the packet data it is currently processing, by recording the address given in the

packet header, and incrementing it as the payload is processed.

The switch

Network switches are required to deliver some degree of fairness to the traffic

that passes through them. Large packets should not be able to hog an output

port unfairly. In most existing networks packets cannot be fragmented at the link

layer, and so packet size must be limited in order to achieve reasonable fairness at

switches.2

However, in the CLAN network packets can be split at any point, and with-

out knowledge of the whole packet. This feature is used in the CLAN switch to

provide fair arbitration without limiting packet size. An arbiter controls access to

output ports. When an incoming packet is granted access to the switch fabric, it

may transfer up to a maximum amount of data, the switch arbitration block size.

If the packet exceeds this limit, the arbiter may grant access to another input port

and the packet will be split as described above. When there is no contention, there

is no limit to the size of packet that can pass through the switch.

The switch arbitration block size, together with the number of ports on the

switch, determines the maximum jitter that can be experienced by traffic passing

through. At worst, a packet will have to wait for a switch arbitration block to go

through from each other input port before it gets access to the output port. Since

the switch arbitration block size is small (512 octets) and there are only five ports,

jitter is limited to just 16.4 µs per switch on the prototype network.

4 ports ∗ 4096 bits

109 bits per sec
= 16.4 µs

For larger switches this bound will not be so tight, and applications must in

2Packet size may also be limited for other reasons, including fixed size buffers.
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any case compete for the bandwidth available on loaded links. To support more

sophisticated quality of service guarantees some means to share out bandwidth is

also needed. One possible solution is the virtual lanes concept used in Infiniband

[Infiniband, 2000].3 Where the relative priority of competing packets is known,

the ability to split packets would allow a high priority packet to preempt a com-

peting lower priority packet that is already on the switch, achieving even lower

jitter.

The prototype implementation of the switch is based around a non-blocking

crossbar switch fabric. Each of the five ports is managed by an FPGA which

shares much of its logic with the line cards. Another FPGA is used for control

and arbitration. The switch is worm-hole routed, meaning the head of a packet

may be emitted from an output port even before the tail of that packet has arrived

at the input port.

Flow control

Flow control is rate-based on a per-hop basis: the rate at which the transmit-

ter sends depends on the amount of space available in the receiver’s FIFO. Back

pressure through the network limits the rate of the sender to that of the receiver.

The link-level flow control information is passed in-band with packet data. This

ensures that the required changes in flow rate are communicated to the sender with

very low latency, so the transmit rate can be adjusted to prevent buffer overrun in

the receiver.

The size of the receive-side buffers required to prevent buffer overrun is pro-

portional to the product of the link speed and latency of flow control information.

The receive FIFOs in the prototype implementation were limited by the available

space on the FPGAs to just to 512 octets. The low latency of flow control informa-

tion passed in-band with packet data was found to be essential in achieving stable

operation at full link speed.

Like all switched networks, CLAN is susceptible to head-of-line blocking,

wherein a congested link between two switches may hold up traffic that is des-

tined for an uncongested output port. This is only partly mitigated by the switch

3This was partially implemented in the CLAN prototype, but not completed.

50



arbitration scheme. The only solution to this problem is end-to-end flow control,

such as the credit-based scheme used by the Memory Channel network.

Addressing and routing

The CLAN network is packet-switched, so there is no per-connection state in the

network. The switches can either operate in a source-routed mode, or using static

routing tables. Topology is discovered using a tool which programs the routing

tables in the device driver or switches. Host addresses are 32 bits, and the standard

Internet Domain Name System is used for address lookup.

Discussion

The link layer protocol described above leads to a network with the following

properties:

Latency is minimised.

In the absence of congestion, switches and line cards begin to emit packets

as soon as the first word of packet data is available. For a 512 octet packet

on a 1 Gbps network with two hops, this saves about 8 µs compared with a

store-and-forward implementation.

Buffering requirements within the network are small.

There is no need to buffer entire packets at any stage in the network. The

size of buffers needed is determined by the line speed and latency of link-

level flow control, which is very low.

The network imposes no limit on packet size.

This is a consequence of not needing to buffer entire packets, passing link-

level flow control in-band with packets, and the switch being able to split

packets as needed.

Jitter introduced by switches is limited.

The maximum jitter introduced by each switch is bounded, and depends
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only on the number of ports and switch arbitration block size. Where pri-

ority information is available, high priority traffic may preempt low priority

traffic.

In the current implementation, the I/O bus speed and link speed happen to be

closely matched. On implementations where the link speed exceeds the I/O bus

speed, the source line card will tend to emit many short packets, even though they

represent a single logical transfer. This would appear to reduce the efficiency of

the network, but in practice these packets will be merged at the switch if conges-

tion is encountered, or at the destination line card if the transfer rate is limited by

the destination system’s I/O bus. Where no congestion is encountered, the large

number of small packets have no detrimental effect.

However, the fragmenting of packets at switches does reduce efficiency on the

output link due to increased packet header overheads. A congested link will tend

to contain packets whose size is limited by the switch arbitration block size, with

packets from different flows interleaved. Thus there is a trade-off between jitter

and efficiency which is tuned by choosing the switch arbitration block size.

3.3.3 Zero-copy

Many network implementations claim to support zero-copy. In practice this term

usually means “No more copies than are required by the architecture.” For a

traditional network architecture, zero-copy often means the message data is only

copied between buffers in host memory once on the transmit path, and once on the

receive path. User-level networks provide the opportunity for the line card to read

message data directly out of an application’s buffers, and deposit it in user-level

buffers at the receiver. This is often termed “true zero-copy.”

The shared-memory network model permits a further improvement: messages

may be formed directly in the remote user-level receive buffer by writing into a

virtual memory mapping. Perhaps this should be known as “honest to goodness

zero-copy.”

The benefit of zero-copy receive has been overstated in many studies. A single

copy has the side effect of bringing data from host memory into the cache, so

decreasing overhead due to cache misses when the application comes to use the
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data. Thus the measured cost of the copy alone is very much higher than its effect

on overall performance. The benchmarks used in many studies have failed to take

this into account because they do not ‘touch’ the data, so it is never brought into

the cache in the zero-copy experiments [Pratt and Fraser, 2001]. This can make a

dramatic difference: for example, peak TCP throughput for Trapeze on Myrinet-

2000 drops from 2 Gbit/s to 1.18 Gbit/s when the data is touched at both ends

[Chase et al., 2001].

Message copies may also occur in the network hardware. Many networks

buffer whole packets in line cards and/or switches. For example, on Myrinet all

data must be staged in SRAM on the line card. As well as increasing latency, this

necessarily introduces a latency/throughput trade-off [Yocum et al., 1997]. CLAN

does not suffer from any such trade-off because it does not buffer whole packets

at any point in the network.

3.3.4 Tripwires

The tripwire synchronisation primitive is implemented by a content addressable

memory (CAM). Figure 3.4 illustrates how tripwires are matched. The matching

logic snoops the line card’s internal bus for data packets. When the header of

a packet is encountered, the destination address of the payload is recorded in a
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register, which is incremented as each word of data in the packet passes. Each

address is looked up in the CAM. When a match is found, the index of the entry

in the CAM is put in a FIFO, and the host processor is interrupted. In the interrupt

service routine, the device driver retrieves tripwire matches from the FIFO. For

each match it determines which application owns the tripwire and notifies it. If

the application is blocked waiting for the tripwire, it is awoken.

The latest revision of the line card uses ternary CAMs, for which it is possible

to specify “don’t care” bits in the logical address. This makes it possible to set up

a tripwire that matches any of a number of addresses. The addresses may form a

contiguous range, or be at fixed intervals. However, there are restrictions on the

size and alignment of such ranges.

The address of every word of data that traverses the line card must be checked

against all tripwires. At the full line speed of 1 Gbps an address must be checked

approximately every 30 ns. Unfortunately the CAMs have a cycle time of 70 ns,

and so cannot keep up with this data rate. The solution employed is to pipeline

a number of CAM chips. In this case three are needed, all programmed with an

identical set of tripwire addresses. Sucessive addresses to be matched are sent

round-robin to one of the CAMs. At the maximum data rate each CAM has to

check an address every 90 ns—well within their capability.

The tripwire logic is well separated from the data path logic, and this con-

tributes to the simplicity of the implementation. The CAMs chosen support 4096

tripwires, and typically one or two are needed per endpoint, depending on the

application-level protocol. The CAMs are mapped into the line card’s I/O aper-

ture, which is mapped into the address space of the device driver. Tripwires must

therefore be managed by the device driver, but a future implementation might give

direct access to applications.

3.3.5 Scalability

The data path in the CLAN line cards and switches is simple compared with other

technologies which run at the same line speed. This is a consequence of the sim-

plicity of the network model, the link layer protocol and the clean separation of

synchronisation from the data path. It is implemented entirely as hardware com-
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binatorials and state machines, and runs at full speed on FPGA technology from

1999. This suggests that with integration the design should scale to very high line

speeds.

3.3.6 Limitations of the prototypes

The prototype line cards suffer from a number of limitations imposed by the parts

used. They are are follows:

• There is no protection on the receive path. Once an application has been

given an RDMA cookie that grants access to a region of memory in a node,

access can never be revoked. Thus an application can never guarantee that

the contents of receive buffers will not change asynchronously.

• Tripwires, the RDMA engine and apertures are not directly accessible at

user-level, and must be managed by the device driver.

• Outgoing aperture mappings are inflexible, with the result that changes to an

application’s page tables are made whenever a mapping is changed. A more

efficient implementation would permit existing mappings to be redirected

to different regions of remote memory.

• Tripwires and out-of-band messages are delivered by interrupt, incurring

high overhead.

• The RDMA engine incurs high overhead because it generates an interrupt

per transfer. Because the hardware is not able to queue requests, there is

necessarily a large gap between transfers.

All of these problems have well known solutions, and would have been ad-

dressed with a revision of the line card, had AT&T Laboratories–Cambridge not

closed. They can be mitigated by avoiding the expensive operations on the fast

path. This is addressed in the next chapter.
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3.4 Experimental method

Few published performance results for high speed network interfaces can be mean-

ingfully compared because insufficient detail is given about the benchmark pro-

grams and hardware platform. This section is intended to give as much detail

as possible about the experiments described in this dissertation. Except where

otherwise stated, results quoted were measured by the author using the testbed

described in the appendix.

All results were obtained at user-level, and represent application-to-application

performance. To avoid overstating the benefit of zero-copy interfaces, and to more

closely represent application behaviour, in all experiments each message payload

was initialised by the sender and touched by the receiver. Thus data was brought

into the receivers’ caches—an important contribution to overhead.

A number of standard metrics are given in several parts of the dissertation.

They were obtained as follows:

Bandwidth curves were obtained by measuring the time taken to transfer a large

amount of data, and receive a final acknowledgement from the receiver.

The amount of data was sufficiently large that the time of flight for the final

acknowledgement was negligible. Time intervals were measured with the

gettimeofday system call.

Latency was measured by timing each of a large number of round-trips. Small

intervals were measured with the cycle counter—a register on the CPU that

is incremented each clock cycle.

Overhead for individual operations or messages was measured in one of two

ways. Where a simple code path was measured, the time taken was mea-

sured using the cycle counter. The second technique was to measure over-

head indirectly by observing its effect on performance.

The latencies and overheads measured are very small, and the mean is there-

fore skewed by measurements made when benchmark programs were desched-

uled for relatively long periods. In this dissertation the median is given instead,
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together with a confidence interval. A median of 10 µs with 95% of measurements

below 11 µs is denoted 10 µs (95%<11 µs).

The experimental testbed is described in the appendix.

3.5 PIO and DMA

An interesting feature of the CLAN network is its support for programmed I/O.

Historically there has been a trend away from PIO towards DMA in I/O devices,

and this has also happened in the field of user-level networking. For example,

the first generation SHRIMP interface, VMMC, had both a PIO mode (automatic

update) and a DMA mode (deliberate update). The second generation interface,

VMMC-2, uses DMA only. Myrinet supports PIO to SRAM in the line card, but

this is typically used for control rather than application-level message payload,

and a DMA engine is used to transmit data onto the network. The recent industry

initiatives for user-level networking—VIA and Infiniband—are also DMA based.

The performance of DMA has been improving relative to PIO, for two reasons:

1. The cost of DMA has been reduced by the widespread use of cache-coherent

I/O systems, which do not require expensive cache flushes.

2. The relative cost of PIO has been increasing, as processor performance has

been increasing more quickly than I/O bus speeds.

It is now unambiguous that DMA is the appropriate choice on the receive

side: loads from I/O space are very expensive, because the processor is stalled

for a relatively long time, burst transfers cannot be used, and typically all buses

between the processor and device are locked during the read transaction.

On the transmit side, however, the issue is less clear-cut. This section presents

an analysis of PIO and DMA on the transmit side, and shows that PIO offers

substantially better performance than DMA for small and medium sized messages.

In addition, PIO has advantages in terms of simplicity and the scheduling of data

transfer.
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3.5.1 Mechanism

Sending a message by DMA consists of the following steps: A source buffer must

be allocated in memory that is pinned (the operating system must be invoked to

pin a buffer if it has not been already). The message is formed in the source

buffer, or copied there. A descriptor identifying the source buffer, and possibly

the destination for the message is formed, and must be passed to the line card. It

may be written directly to the line card using PIO, or the line card may read it from

host memory using DMA. The line card reads the message payload identified by

the descriptor from host memory using DMA, and transmits a packet onto the

network. The application must at some time later rendezvous with the completion

of the transfer, so that the source buffer can be freed or reused.

In contrast, transferring a message with PIO is very simple and easier to man-

age from a software perspective. The message is written to the line card’s I/O

aperture using CPU store instructions—either by forming the message directly,

or copying it from a source buffer. When copying, the source buffer need not be

pinned, and buffer management is trivial because the operation completes syn-

chronously.

A disadvantage of PIO is that a mapping onto the remote memory is required.

The expensive part of creating an outgoing aperture is setting up virtual memory

mappings onto the line card, and once this is done it should be cheap to redirect

those mappings to point at different regions of remote memory. However, this

cannot yet be done with the prototype CLAN line cards; changing a mapping

requires changes to the page tables, and is therefore expensive.

A potential problem for PIO is that PCI bridges are permitted to hold up writes

as long as they like—the only constraint being that a read will not complete until

all writes to the device have completed. In theory this could lead to high or unpre-

dictable latency for PIO transfers, but in practice existing PCI implementations do

not hold up data for long.

3.5.2 Overhead

The main reason for using DMA is that it offloads the host processor. However,

for small messages, the relative complexity of DMA leads to higher overhead
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Figure 3.5: Transmit overhead for small messages with PIO and DMA

than for PIO. Figure 3.5 shows the overhead incurred with PIO on CLAN, and

with Emulex VIA which uses DMA. The Emulex implementation is used for this

comparison rather than CLAN DMA because the poor performance of the latter is

not representative of the state-of-the-art. Emulex VIA provides a user-accessible

DMA interface with low overhead. Two types of message transfer were measured,

as follows:

Send message is a traditional interface, where the message is copied out of the

application’s buffers. For DMA it has to be copied into pinned buffers be-

fore being sent. Emulex VIA is multi-thread safe, so to make the compari-

son fair, the CLAN PIO implementation locks a mutex while sending each

message.

PIO has lower overhead for messages up to 40 octets.

Inline message assumes that the size of the message is known at compile time,

and uses a zero-copy interface. It measures the minimum overhead achiev-

able for each mechanism.
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In this case PIO has lower overhead for messages up to 56 octets.

Figure 3.5 does not show the effect of data transfer on the cache. Forming a

message in a DMA source buffer will pollute the cache where allocate-on-write

is used, as in most cases the sending application will not want to read from that

buffer again. If the payload is taken from application-level buffers, a copy can be

avoided by pinning those buffers and transferring data directly from them. How-

ever, pinning requires a system call, and has higher overhead than copying for

small messages.4

Another difference between PIO and DMA is the way in which the system

and I/O buses are used. DMA requires at least two read transactions: to read a

descriptor and to read the message payload. Reads consist of at least a request

and a response, and on most current systems block the bus for the duration of

the transaction. It is sometimes claimed that PIO has higher bus utilisation than

DMA, because data is read out of main memory and then written to the I/O device.

However, in practice the message is likely to already be in the cache, so PIO

actually only requires one or two write transactions, which are (or at least can

be) non-blocking. Efficient use of the system bus is particularly critical on SMP

systems, where it is often a bottleneck. The I/O bus has also been identified as a

bottleneck for cluster applications [Arpaci-Dusseau et al., 1998].

3.5.3 Performance

Figure 3.6 shows the one-way bandwidth achieved using PIO and DMA. A very

large receive window was used, so that bandwidth is not throttled by scarcity of

receive buffers. Also shown is CLAN DMA, which performs poorly for small

messages due to the large gap between requests.

The bandwidth for PIO shows considerable improvement over DMA for small

messages—for example 4.5 times better for 32 octet messages. Latency is also

considerably better, with a 4 octet round-trip taking just 4.8 µs (98%<4.9 µs) for

CLAN PIO, compared with 14.6 µs (95%<15.2 µs) for Emulex DMA.

The PIO bandwidth on the Pentium-based systems used for these benchmarks

reaches a limit at 380 Mbit/s. Figure 3.7 shows that on these systems the over-

4The cost of pinning can be amortised over a number of messages in some cases.
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Figure 3.7: Comparison of PIO performance on Alpha and Pentium III
systems. The Alpha system achieves very low overhead for small mes-
sages. It is also able to achieve almost full link bandwidth with PIO.
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head grows strictly linearly with message size. This suggests that the processor

is stalled until the write transaction reaches the I/O bus, and may not be merging

consecutive writes into bursts. The Alpha system has more sophisticated I/O logic,

and overhead grows in linear phases. For the first 300 octets, the CPU writes data

at up 18 Gbit/s into the write buffer. From there up to 800 octets the throughput is

just over 4 Gbit/s, and beyond that it is limited by the PCI bus to 950 Mbit/s. It is

clear that there is considerable room for improvement in the PIO performance of

the Pentium-based PCs.

The effect is that on the Alpha system PIO overhead for small messages is

substantially smaller than on the Intel systems, and almost the full link bandwidth

is available with messages of 1024 octets or larger. Half the peak bandwidth is

available with messages just 72 octets long, compared with 300 octets for Emulex

DMA. In addition, the Alpha/CLAN results were obtained with just 10 kilobytes

of buffer space at the receiver, whereas Emulex DMA required 256 kilobytes in

order to achieve maximum performance.

Figure 3.8 shows the relative overhead on the receive side, for Emulex VIA

normalised against CLAN. For each point on the bandwidth plots given in fig-

ure 3.6 the percentage of CPU consumed on the receive side was measured. This

divided by the bandwidth gives a measure of “work done per octet received” at a

given message size. Both Emulex and CLAN use DMA to deliver received data,

and the difference seen here is due to the costs of synchronisation and flow con-

trol. For small messages, CLAN is up to five times more efficient, and at least

two times more efficient for large messages. Note that the work measured here

includes touching the data, receive-side synchronisation and flow control. The

difference when considering synchronisation and flow control alone is therefore

substantially greater.

3.5.4 Scheduling

A useful property of PIO at user-level is that the transfer takes place during the ap-

plication’s scheduling time-slice. In contrast, DMA transfers take place when the

request reaches the front of the DMA request queue. In order to achieve some level

of quality of service some DMA schedulers do traffic shaping [Pratt and Fraser,
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2001], or may serve DMA request queues in priority order. With a scheduler in

the line card, it is difficult to provide more sophisticated scheduling policies. The

host processor usually has priority over I/O requests when competing for access to

the system bus, so while DMA transfers may be held up by host processor activity,

PIO transfers cut ahead.

It was shown in section 3.3.2 that jitter within the CLAN network is strictly

limited, and low compared with the granularity of process scheduling. On a sys-

tem with a realtime process scheduler, an application using PIO can therefore

guarantee to deliver a message to a remote application in a bounded (and small)

amount of time.5 A limited form of quality of service can therefore be achieved

without explicit support in the network.

3.6 Summary

This chapter has provided a description of the CLAN network model and pro-

totype hardware. CLAN combines a shared memory data transfer model with a

flexible and efficient synchronisation primitive. It provides RDMA to offload the

processor for large transfers, and out-of-band messages for connection manage-

ment.

The novel link layer protocol minimises latency without sacrificing efficiency.

There is no maximum packet size, and jitter at the switch is strictly limited by

splitting packets as necessary. Link-level flow control is passed in-band with data.

This minimises latency, and combined with cut-through switching leads to very

low buffering requirements in the line cards and switches.

The analysis of PIO and DMA shows that for small messages (and even for

medium-sized messages on some systems) PIO delivers superior latency, band-

width and overhead. PIO incurs lower overhead on the system and I/O buses as

well as on the host processor. Because PIO completes synchronously, it is con-

siderably easier to use. The result is that with PIO a large proportion of the raw

network bandwidth is available to distributed applications that use small mes-

sages, and the buffering requirements in the receiver are potentially significantly

5The problem of contention on the remote system’s I/O buses is not solved, but this is unlikely
to hold up a message for long. For a detailed discussion of these issues, see [Pratt, 1997].
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reduced. A conclusion that can be drawn is that for the best performance over a

range of message sizes, it is desirable to have support for both PIO and DMA.

The prototype CLAN hardware has a number of limitations imposed by the

use of off-the-shelf parts and by lack of space in the FPGA. In particular, a num-

ber of critical network resources are not user-accessible, including out-of-band

messages, tripwires and RDMA transfers. These resources must necessarily be

managed by the device driver. The next chapter describes an interface between

the application, device driver and line card that reduces the overhead associated

with using these resources, and adds support for handling large numbers of end-

points.
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Chapter 4

An Efficient Application/Kernel

Interface

It is possible to design a network interface such that, once an application has

been allocated resources on the line card, all aspects of network communication

(other than blocking) can be performed entirely at user-level. This has not been

done because the benefits would not justify the substantial additional complexity

in the line card. All existing user-accessible network interfaces are a compromise

between performance and simplicity, and resources in the line card. It is common

to ensure that per-message operations can be performed at user-level, whereas

the kernel has to be invoked to perform connection management and out-of-band

operations.

The CLAN network supports data transfer at user-level using PIO, but the

RDMA interface, tripwire synchronisation primitive and out-of-band messages

are not user-accessible in the prototype line cards. These design choices were

made due to lack of space in the FPGA, but in a commercial product the same

decisions might be made for reasons of cost. This chapter describes the design

and implementation of an interface between the application and device driver that

reduces the cost of using resources that are managed by the device driver.

Functionally, the system call mechanism achieves two things: transfer of in-

formation between the kernel and application, and transfer of control. The high

overhead of system calls is largely a consequence of the actions that need to be
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taken to ensure secure transfer of control between protection domains. However,

many operations ultimately result in just the transfer of information: for example,

a non-blocking select system call passes information about file descriptors from

the kernel to the application.

The solution described in this chapter is a novel interface that uses a com-

bination of shared memory to transfer information, and traditional system calls

where a transfer of control is still needed. As well as reducing overhead, the asyn-

chronous nature of the interface improves concurrency in application programs

designed to take advantage of it.

4.1 Shared memory objects

The shared memory data structures used to pass information between the kernel

and application should be efficient and safe. The application is assumed to trust

the kernel, but the converse is not true. On multiprocessor systems, applications

and the kernel can run concurrently, so the kernel must not trust the contents

of memory shared with an application, and must assume that the contents may

change at any time. In addition, applications must not hold up progress in the

kernel, so non-blocking algorithms are needed.

Many lock-free concurrent queue algorithms have been proposed [Michael

and Scott, 1996]. Most are variations on a singly linked list, using a compare-

and-swap instruction to achieve atomic update. The asynchronous ring buffer is a

particularly simple and efficient solution. In contrast with linked list algorithms,

it does not require compare-and-swap1 and does not require management of list

nodes. Disadvantages are that only one reader and one writer may proceed con-

currently, and the size of the queue is bounded. These restrictions turn out not to

matter for this work.

A ring buffer containing four messages is illustrated in figure 4.1. Two pointers

into the buffer give the positions at which messages should be enqueued (write i)

and dequeued (read i). When the pointers are equal the queue may be considered

full or empty, and in the traditional implementation an additional flag (or special

1Compare-and-swap is relatively expensive since the system bus must be locked.
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write_i=7

read_i=3
Figure 4.1: A ring buffer

value for the pointers) distinguishes the two conditions. However, keeping the

pointers and optional “full” flag consistent requires mutual exclusion.

In the lock-free version no additional flag or special values are used. Instead,

the buffer is considered empty when the pointers are equal, and full when there

is just one space left. The enqueue operation only modifies the write pointer,

and the dequeue operation only modifies the read pointer. Checking for the full

and empty conditions entails comparing the two pointers. By convention, the

reader has exclusive access to portions of the buffer containing messages, and

the writer exclusive access to the rest. Thus a single reader and single writer can

proceed concurrently provided that loads and stores to the pointers are atomic with

respect to one another. Mutual exclusion between concurrent readers and between

concurrent writers is achieved with standard mechanisms, but they must be in the

same protection domain.

Consider the operation of enqueueing a message. First the process has to

determine if there is space in the buffer, which is achieved by comparing the two

pointers. A concurrent read can only increase the amount of free space in the

buffer, so this is safe. If there is space, the process then writes the message into

the buffer at the position given by write i and increments write i modulo the size

of the buffer. When the reader notices this change, it will be able to dequeue the

message. The argument for the correctness of a dequeue operation is similar.

Safety is achieved by storing the read and write pointers in memory that is pri-

vate to the reader and writer if either does not trust the other. Figure 4.2 illustrates

a ring buffer used to pass messages from the kernel to an application. A copy of

the write pointer is kept in the shared memory so that the reader can compare it

with the read pointer to determine how many messages are available, and similarly
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Figure 4.2: A ring buffer is used to transfer messages from the kernel to
an application. Note that a very similar mechanism can be used to transfer
messages from a device to the kernel or applications.
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for the read pointer. Because pointers are compared using modular arithmetic, an

incorrect or invalid value can only mislead the reader or writer as to the number

of messages, or free slots, available in the buffer. This cannot cause the kernel to

compromise security or misbehave.

Note that with an asynchronous interface such as this there must be an active

thread of control at each end of the queue. At user-level it is the threads of the

process. In the kernel it can be a process thread that has made a system call, or an

interrupt handler. How a reader (or writer) behaves when the queue is empty (or

full) depends on the scenario, and is discussed below.

4.2 C-HAL programming interface

The first stage in building software support for the CLAN network was to define

a low level programming interface that provides an abstraction of the resources

of the CLAN network. It is known as the CLAN Hardware Abstraction Layer,

or C-HAL. Rather than being a direct representation of the existing hardware, the

C-HAL provides the functionality needed by higher software layers. One design

goal was to ensure that the interface would support efficient implementations both

on the prototype hardware, and on more sophisticated hardware that, for example,

provides direct user-level access to resources that are currently managed by the

device driver. The device driver and shared memory interface were then designed

to support this interface using the prototype hardware.

A primary concern was that the interface should not restrict the programming

model, particularly in terms of threading model and strategy for handling mul-

tiple endpoints. Another was that the support for particular features should not

impose overhead on applications that do not use them. This applies to memory

and resource usage as well as CPU overhead. In particular, the entry-points are

only guaranteed to be multi-thread safe where this can be implemented without

incurring additional overhead. Care was taken to ensure that thread safety could

be implemented efficiently on top of the C-HAL, where needed.

The same interface is exported to both user-level applications and in-kernel

services. Other members of the CLAN team have used this to implement a BSD

sockets compatible interface used both by user-level applications, and by in-kernel
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implementations of IP and NFS. A thin layer of inline subroutines provides an

abstraction of those parts of the C-HAL that require transfer of control into the

device driver. System calls are used for the user-level version, and function calls

for the in-kernel version. The shared memory interface works just as well between

kernel entities as between the kernel and user-level processes.

4.3 Endpoints and out-of-band messages

An application communicates with the line card and device driver via an endpoint.

This is a software entity, identified by an operating system file descriptor. CLAN

resources, including apertures and tripwires, are associated with an endpoint, and

are released when the endpoint is closed or the application terminates. Each end-

point also has a region of memory that is mapped into the address space of the

application and device driver, and is used to communicate between the two.

Small out-of-band messages can be sent between endpoints, which are iden-

tified by host address and a port number. They are mainly used for connection

management: to negotiate new connections and to tear them down. Connection

management is entirely under the control of the application—the device driver

does not interpret the contents of messages beyond the header. This presents a

potential problem, since if an application were to exit unexpectedly (for example

due to a bug) then remote endpoints connected to the application would receive

no notification. To address this, applications may specify a message that should

be sent by the device driver when the endpoint is closed. The application simply

forms a message at a well-known location in the shared memory if needed, and

the device driver sends the message if it is present. When the application closes

a connection explicitly, it clears the message to prevent the device driver from

sending a duplicate.

The line card delivers incoming messages to the device driver by raising an

interrupt. In the interrupt service routine the device driver demultiplexes the mes-

sage to the appropriate endpoint, and it is delivered to the application via an asyn-

chronous ring buffer, known as an out-of-band message queue. The operation of

such a queue is illustrated in figure 4.2. The queue is also used to deliver asyn-

chronous error messages, for example to report link errors. Such errors are rare,
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and treated as catastrophic—data may have been lost, and protocol implementa-

tions usually respond by closing the connection.

The overhead and intrusion of message delivery is no higher than delivery to

a queue in the kernel’s private memory. However the application can dequeue

messages at user-level with very low overhead. Most importantly, the application

can poll the queue very cheaply, and this is multi-thread safe. This is a common

operation, as applications must typically check for a “connection-close” message

whenever receiving data if none is immediately available, and may also do so

before sending.

If the message queue fills, further messages are discarded. This is not an un-

reasonable restriction, since any queue for unsolicited messages must overflow

eventually, and excessive queueing only serves to delay the inevitable while con-

suming resources and increasing response time. When an endpoint is connected

the only message that is expected is a connection-close message, so only a very

small queue is needed. When an endpoint is used to rendezvous with incoming

connection requests, it should be sized appropriately to handle burstiness in the

arrival rate. The queue will overflow if the application is overloaded, and when

this happens it is better to discard connection requests early. Accepting more

connections when overloaded is rarely appropriate.

4.4 RDMA request queues

While the prototype line card has a very primitive, one-shot DMA interface, the

C-HAL programming interface is more general. Most importantly it provides the

ability to enqueue a number of requests that proceed asynchronously. RDMA

request queues support the following operations:

rdma write(dma q, source, destination, size, last)

This subroutine enqueues an RDMA request, and returns an identifier that

can be used to refer to the request later on. The source parameter identifies

a buffer in local memory, and destination consists of an RDMA cookie and

offset. The last parameter is a hint to the RDMA scheduler, which tries to

keep related transfers together. If the request queue is full, an error code is
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returned.

rdma immediate(dma q, destination, value, last)

An immediate request is a transfer of a single 32 bit word, with the pay-

load given in the value parameter. This is an optimisation to support the

common behaviour of following a message’s payload with a store to a sep-

arate location that is used for synchronisation. In the example given in

figure 3.1, rdma write() might be used to transfer the message body, fol-

lowed by rdma immediate() to set the rx ready flag. It is more efficient that

rdma write(), and simplifies buffer management because no source buffer is

needed.

rdma test(dma q, request id)

Determines whether a particular RDMA request has completed.

rdma wait(dma q, request id, timeout)

Blocks until a particular request completes, a timeout expires or an error

occurs.

rdma wait space(dma q, timeout)

Blocks until there is space in the request queue, or an error occurs.

In the current implementation, asynchronous ring buffers are used to pass

RDMA requests from the application to the device driver. Initially there is no

active thread of control in the kernel to service the queue, so the application must

make a system call to register the queue with the RDMA scheduler. If the RDMA

scheduler is inactive, then the first request must be started. When a request com-

pletes, the line card interrupts the host processor, and the interrupt service routine

is used to invoke the RDMA scheduler which starts the next request. The RDMA

scheduler maintains a list of active request queues, and services them in a round-

robin fashion (figure 4.3). To minimise the turn-around time of the DMA engine,

the RDMA scheduler attempts to retrieve, check and map the next RDMA request

before it is needed.

After the first request, the application can enqueue subsequent requests with-

out making a system call. If a request queue empties completely, the RDMA
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Figure 4.3: The RDMA scheduler and request queues

scheduler marks it as inactive and removes it from the “active” list. A system call

is then needed to activate it again. A queue is only removed from the active list

after the RDMA scheduler has noted that it is empty, has serviced all other active

queues once, and it is then still empty. This reduces the likelihood that an ac-

tive queue will be marked as inactive, but does not significantly increase the work

done by the scheduler.

The request identifier returned by rdma write() and rdma immediate() is an

increasing integer. When a request completes the device driver writes the iden-

tifier back to the shared memory. The rdma test() subroutine is implemented by

comparing the request identifier with that of the request that completed most re-

cently. This test is multi-thread safe, and is done in a way that is safe with respect

to the request identifier exceeding the maximum integer and wrapping. Testing

for RDMA completion is therefore very cheap. This is important if the applica-

tion is mixing PIO and RDMA for data transfer: in order to maintain ordering

between messages, the application may choose to use PIO only if outstanding

RDMA transfers have completed. This is discussed further in chapter 5.

The key properties of this application of the asynchronous ring buffer are:

1. It provides an asynchronous interface to the primitive DMA hardware. Al-

though asynchronous interfaces are harder to use than synchronous ones,

they permit higher throughput by allowing the application to do work in

parallel with data transfer, and result in fewer context switches.

2. It minimises the use of system calls. When the RDMA queue is active,

requests are enqueued at user-level with very low overhead. The interrupt-
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driven requests scheduler has high overhead, but this cannot be avoided with

the current hardware. Note that on a multi-processor the request scheduler

may run on a different processor from the application.

An advantage of this implementation is that the request scheduler is written

in software, with the usual benefits for flexibility and maintenance. The existing

scheduler allows applications to specify that a group of requests comprising a sin-

gle application-level message be scheduled together. It could easily be extended

to support a priority scheme, or to perform traffic shaping.

The major problems with this implementation are the high overhead of de-

livering an interrupt per request, and the consequent large gap between requests.

This overhead would be substantially reduced if the hardware were able to support

a queue of requests, as many existing traditional and user-accessible line cards al-

ready do. The line card would then only raise an interrupt when its DMA-ring ran

dry, and the cost would be spread over multiple requests. While this approach will

never perform as well as a well engineered user-accessible DMA implementation,

it is simpler, more flexible and does not require per-endpoint resources in the line

card.

4.5 Tripwires

The tripwire synchronisation primitive necessarily requires a synchronous pro-

gramming interface, so system calls are needed to manage tripwires. The device

driver performs the required mappings, and programs the CAMs on the line card.

Tripwire notification, however, is asynchronous. A bitmap is maintained in the

shared memory, with each bit corresponding to one of the application’s tripwires.

The bit is set by the device driver when the tripwire fires. Tripwires can therefore

be polled with very low overhead at user-level, and large numbers of tripwires can

be polled efficiently by checking the bitmap a word at a time.

It is not possible for an I/O bus master to atomically update individual bits in

host memory, so if this functionality were to be implemented in the line card, an

array of bytes or words would be needed rather than a bitmap.

The programming interface adds to the hardware’s raw capabilities: tripwires
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may be initialised, enabled and disabled, tested (alone or in groups) and the ap-

plication may block waiting for a tripwire to fire. All operations on tripwires are

multi-thread safe, although threads must of course coordinate with respect to how

they use them.

It is a common requirement for applications to block until the value at a par-

ticular memory location changes. Using tripwires, this is done by checking the

value, and if the required condition is not met, enabling a tripwire and blocking

until the tripwire fires. To avoid a race condition the memory location must be

checked again after the tripwire is enabled. This behaviour is so common that it

is handled specially, with a single system call instead of two.

As a further refinement, a tripwire can be configured so that it fires once only.

This is important, because tripwires generate interrupts in the current implementa-

tion, and so should be disabled when not needed. The memory location monitored

by a tripwire may be written multiple times, but the application only needs to be

awoken or notified once. Without this facility a malicious peer could overload a

system with interrupts by repeatedly writing to a memory location monitored by

a tripwire. This is not quite the same as receive livelock, since it can only happen

if the system is attacked, whereas receive livelock can be caused by legitimate

behaviour.

4.6 Scalable event notification

Section 2.5 motivated the need for mechanisms to multiplex state or events from

many endpoints onto a single interface, and the need to integrate with other types

of I/O in the system. The simplest solution is to integrate with the standard mech-

anisms: the select and poll system calls. The way these are implemented in the

Linux kernel is that each device driver provides a subroutine that polls an end-

point to determine its state, and if necessary arranges for the process to be awoken

if the state changes. However, the CLAN device driver is not party to the data

transfer protocol used by the application, so cannot determine whether the end-

point is readable or writable. The solution employed is to perform the following

mapping:
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• An endpoint is readable if any tripwires have fired.

• An endpoint is writable if the RDMA request queue is not full.

• An exceptional condition is reported if the out-of-band message queue is

not empty.

Although usable, this implementation has a number of disadvantages. Firstly it

is fragile: the application has to be careful to keep the state of tripwires consistent

with the state of the endpoint. Secondly, tripwires are often used on the transmit

side as well as the receive side, but the device driver cannot know which are used

in this way. Thirdly, as described by Banga et al. [1999], select has inherently

high overhead and scales poorly with the number of endpoints.

4.6.1 CLAN event notification

The CLAN event queue was developed as a scalable event delivery mechanism

that avoids the undesirable properties of existing mechanisms. In particular the

cost of event delivery is independent of the number of event sources, events are

delivered in FIFO order and duplicate events suppressed in order prevent queue

overflow. The interface is as follows:

evq attach(evq, event source, cookie)

Associates an event source with an event queue. Returns an event id that

represents the association, and is needed to break the association. The

cookie parameter is a token specified by the application which is associ-

ated with events from this source. The event source can be a tripwire, an

RDMA request queue or an out-of-band message queue.

evq detach(evq, event id)

Breaks the association between an event source and event queue.

evq get(evq, events out, max events)

Retrieves one or more events from the queue. Each event notification iden-

tifies the event source and the cookie given in evq attach().

78



evq wait(evq, timeout)

Blocks until the queue is non-empty or the timeout expires. Note that no

event is returned; this enables a multi-thread safe implementation without

locking at user-level. This is discussed further in section 4.7.

evq deliver(evq, event id, event info)

Delivers an application-specified event to the queue. This can be used to

pass information between threads. It might be used to hand-off a connection

from one event queue to another in order to balance load between threads.

The event queue is implemented by an asynchronous ring buffer. Applications

can poll the event queue with very low overhead, and dequeue events without

making a system call. A bitmap stored in the shared memory is used to prevent

duplicates. An event is only delivered if the corresponding entry in the bitmap is

clear, and the entry is then set. When the application dequeues an event, the cor-

responding entry is cleared again. Provided the queue is large enough to contain

one event from each attached event source, it will not overflow.

The “cookie” specified by the application is typically used to identify the

application-level data structure that contains state associated with the endpoint.

When using traditional mechanisms such as select, this is usually done by look-

ing up the state in a table indexed by the file descriptor. These two methods are

functionally equivalent, but using a cookie gives the application more flexibility.

A problem with queue-based mechanisms is that by the time an application

receives a notification, it may be inconsistent with the state of the connection to

which it relates. For example the connection may have been closed, or worse

the same descriptor may now be used for a new connection. By allowing the

application to specify the cookie that represents the endpoint state it is possible to

detect when this happens by never reusing a cookie. For example, low order bits

in the cookie could be used as an index to lookup the endpoint data structure in a

table, and high order bits as a generation counter.

Within the kernel, each event source maintains a linked list of event listeners,

of which the CLAN event queue is one example. Although there is a many to many

relationship between event sources and listeners, it is prudent to only associate an

event source with one listener, since a future hardware implementation would be
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likely to have this restriction. The event listener provides a callback, which is

invoked when an event fires. In the case of the CLAN event queue, the callback

enqueues the event on the ring buffer, and wakes any processes that are blocked.

These event callbacks are also used to drive in-kernel services such as NFS.

This event mechanism is a generalisation of the Linux kernel’s wait queue,

which can only be used to wake a process in response to one or more events. The

implementation described here is separate from the Linux wait queue, but could

replace it in order to provide a flexible event delivery mechanism for the whole

kernel. Since this work was done, such a change has been discussed on the Linux

kernel developers’ mailing list, as it is needed for an efficient implementation of

asynchronous I/O.

The CLAN event queue is implemented within the kernel’s device model, and

hence has an associated file descriptor. This file descriptor can be used with select

or poll, and is readable whenever the event queue is not empty. This allows CLAN

event notification to be integrated with other forms of I/O in the system, without

sacrificing performance.

4.6.2 Polled event queues

Existing user-accessible network interfaces provide event notification mechanisms

with an interface that is similar to the one described above [Buzzard et al., 1996,

VIA, 1997], but implemented in the line card. This is very much more efficient

than the CLAN event queue, which incurs relatively high overhead because it is

interrupt driven. However, a major advantage of the CLAN event queue is that

it can support an arbitrary number of event queues with simple hardware. In

contrast, user-accessible event queues require complex hardware, and each queue

consumes limited resources on the line card.

This section proposes the polled event queue architecture, which has been

designed to support an arbitrary number of event queues with low complexity

in the line card, and to be considerably more efficient than the existing CLAN

event queue. Two key observations lead to this design. Firstly, in order to achieve

low complexity in the line card, demultiplexing should be performed in software.

Secondly, events need not be delivered into applications’ individual queues until
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Figure 4.4: The polled event queue architecture. The line card delivers
event notifications into a shared queue. Events are distributed to individ-
ual applications’ queues in response to a request for more events. Inter-
rupts are avoided, and the cost of system calls is amortised over many
events.

they are polled.

The polled event queue architecture is illustrated in figure 4.4. The line card

delivers event notifications for all applications into a shared queue in host memory,

and in the common case does not raise an interrupt. Each application has one or

more event queues implemented very much like the CLAN event queues above.

When an application attempts to dequeue an event from a queue which is empty,

a system call is made to request more events. This system call delivers events

from the shared event queue to all the appropriate application-level queues (not

just the one that made the request) waking any processes that are blocked on those

queues. When all events have been delivered the system call returns, or may

optionally block if the requesting queue is still empty.

Application-level queues are protected from overflow in the same way as the

CLAN event queues described above. To prevent the shared queue from over-

flowing, the line card raises an interrupt if it gets close to filling, and the interrupt

service routine delivers the events. The line card is also configured to raise an

interrupt if the queue remains non-empty for a period of time, in order to bound

the latency of event delivery for applications that are blocked waiting for events.

This is similar to the interrupt hold-off technique used for packet delivery, except
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that an interrupt may not be needed at all if the shared queue is polled first.

The dynamic behaviour of polled event queues depends on how loaded the

system is. At low load, application-level event queues will often be empty, and

applications blocked. Event delivery will be driven by the interrupt service rou-

tine, with few events delivered per interrupt. The high cost of interrupts does not

matter in this case, as they merely occupy the processor when it would otherwise

be idle.

At moderate or high load, applications will be busy much of the time, and will

poll their event queues at user-level. The cost of invoking a system call to request

more events will be amortised over a large number of events. The shared queue is

not expected to fill if sized appropriately, but if it does the cost of the consequent

interrupt is also amortised over a large number of events, and is offset by the fact

that a system call will not then be needed to request event delivery.

The delivery of out-of-band messages can also be performed lazily. In this

scheme, out-of-band messages are delivered to a shared message queue, and an

event is delivered to the event queue if the shared message queue was previously

empty. An interrupt is delivered if the shared message queue becomes almost full,

to prevent it from overflowing. When distributing events to the application-level

event queues, the device driver also distributes out-of-band messages.

This mechanism has much in common with lazy receiver processing [Druschel

and Banga, 1996]. Both do work in response to requests from applications rather

than in response to interrupts. In this case the work that is being deferred is that of

demultiplexing, whereas with LRP demultiplexing is performed in the line card.

A disadvantage of polled event delivery is that it introduces some cross-talk: an

application that requests event delivery will do work on behalf of others. The

amount of work that is incorrectly accounted for is very small compared with pro-

tocol processing, and considerably less than for the interrupt driven event delivery

scheme.

4.7 Thread support and blocking

One issue that concerns designers of programming interfaces is whether or not

operations should support multiple concurrent threads. It is the view of the author
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that it is not appropriate to put thread safety in low-level interfaces such as the

C-HAL. In practice, the code that uses this interface will also contain state that

needs to be protected from concurrent access. When mutual exclusion is already

guaranteed by the upper layer, using locks in lower layers only serves to increase

overhead. Further, the higher-level code is in a better position to decide what

granularity of locking is required, and when the program logic means that no

explicit locks are needed. This is an example of an end-to-end argument [Saltzer

et al., 1984].

The C-HAL interface therefore only guarantees multi-thread-safe access where

this can be implemented without taking a lock. A potential problem with this ap-

proach is that blocking in the C-HAL while holding a lock in higher-level code

may reduce concurrency, especially if the lock is used to protect more than one re-

source.2 To avoid this, operations that may block are strictly separated from those

that manipulate state, thereby allowing all blocking operations to be implemented

in a multi-thread safe manner. This can be done without taking locks because of

the nature of the shared-memory data structures employed in the C-HAL.

This design decision minimises overhead for both single- and multi-threaded

applications. A further advantage is that the C-HAL has no dependency on any

particular thread synchronisation primitive, so avoiding potential incompatibility

with the thread library used by the application.

Another difficulty with asynchronous interfaces and multi-threaded program-

ming is avoiding race conditions. As an example, consider a thread waiting for

incoming data and blocked on a tripwire. If an out-of-band message arrives for

the endpoint, the device driver wakes all threads blocked on the endpoint (even

those blocked on tripwires or RDMA requests). Thus the thread blocked on the

tripwire will be awoken, and upon noticing the error code will inspect the out-

of-band message queue, which contains a connection-close message. Consider

now a case when two threads are cooperating to manage an endpoint. Again, one

thread blocks on a tripwire. However, if a connection-close message arrives just

before the thread blocks, and is handled by another thread, the first thread will not

be awoken, and will be unaware that the connection has been closed. The solution

2This is very common. Having a separate lock for every resource causes a great deal of
lock/unlock overhead and often leads to deadlock bugs.
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Resource (cycles) (µs)

Endpoint, message queue, RDMA 8138 12.5
Local aperture 15769 24.3
Outgoing aperture 32575 50.1
Tripwires 18019 27.7
Total 74501 115

Table 4.1: The cost of allocating CLAN resources

is to leave connection-close messages on the message queue. Thereafter no thread

can block on any resource associated with the endpoint.

4.8 Per-endpoint resources

In a practical application each connected endpoint typically has a local aperture,

an outgoing aperture, one or two tripwires, an out-of-band message queue and

possibly an RDMA request queue. The cost of allocating these resources is high,

as shown in table 4.1. The high overheads are largely due to the costs of al-

locating memory, managing resources on the line card and creating new virtual

address mappings. Although they could be reduced with optimisation, they are

intrinsically higher than for traditional networks. On the same platform, the cost

of creating and binding a TCP socket is just 11 µs; an order of magnitude less.

To reduce the impact of these overheads, applications can cache endpoints and

their associated resources, and reuse them for new connections. In order to prevent

an application from receiving out-of-band messages from a previously connected

peer, a session identifier is associated with the port number, and changed when the

endpoint is reused. Two caveats are that in the current implementation, receive-

side protection of apertures is not fully supported, and outgoing apertures cannot

be reused.
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4.9 Related work

4.9.1 Shared memory interfaces

Piglet [Muir, 2001] is an operating system for network server appliances on com-

modity multiprocessors. The processors are partitioned so that one or a few are

dedicated entirely to the management of I/O devices. These run a lightweight de-

vice kernel (LDK) which communicates with application processes via an asyn-

chronous shared memory interface. Use of an asynchronous interface reduces the

effects of contention for system resources, increasing concurrency and reducing

the intrusion of operating system mechanisms on the application.

In Piglet the LDK is an active object: a single thread polls devices and appli-

cation interface endpoints, and is the active entity on the kernel side of the shared

memory interface. Asynchronous interrupts are not used. This is in contrast with

the C-HAL, in which interrupt handlers manipulate the shared memory data struc-

tures. An adaptation of the C-HAL for Piglet would work well with the prototype

CLAN hardware, since it would solve the problem of the high intrusion of inter-

rupt processing. However, at least one processor must be dedicated to managing

I/O devices. This is incompatible with a major motivation for user-level network-

ing, which is to make more processor time available to applications.

Nemesis [Leslie et al., 1996] is a vertically structured operating system that

provides fine-grained resource allocation for support of distributed multimedia

applications. Communication between protection domains is achieved using a

shared memory data structure called Rbufs [Black, 1995]. A ring buffer called a

control area is used to pass buffer descriptors from the sender to receiver. The

read and write pointer are implemented using event counters: an operating system

primitive that provides an atomically increasing integer together with synchroni-

sation.

4.9.2 Event notification

Provos and Lever [2000] describe an implementation of the /dev/poll interface for

Linux. It improves on the poll system call in that the interest set can be specified

incrementally in advance. The results from a poll operation can be passed through
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a region of memory shared by the application and kernel. However the interface is

synchronous: results are written to the shared memory only when the application

makes a system call.

Ostrowski’s SEND primitive is a preemptive event notification mechanism

similar to POSIX realtime signals [Ostrowski, 2000]. Like the CLAN event notifi-

cation mechanism, events are delivered asynchronously into a ring buffer in shared

memory. If the ring buffer overflows, the application is notified, and further events

are queued within the kernel.

CLAN event notification differs from many other queued event mechanisms in

that an application can have any number of event queues. For example, a process

may have only one POSIX realtime signal queue, and the mechanism described

in [Banga et al., 1999] also has this restriction. It has been argued that one event

queue per thread is sufficient, and it is probably true that any given application

can be implemented efficiently with this restriction. However, in the real world,

other factors may make this a painful restriction. For example, the event queue

resource might be used by a third-party module. A process or thread that uses

that module cannot also use the event queue resource, or use any other module

that uses the event queue. Another example is that multiple event queues might

be used to support multiple priority levels.

Finally, CLAN event notification also differs from other mechanisms in that it

requires no changes to the core of the kernel: it is implemented using the standard

device model, and can be loaded as a module into a running kernel. This has

significant advantages for installation and maintenance.

4.10 Summary

This chapter has presented techniques to reduce overhead when using resources

that are managed by the kernel, and an application of these techniques to the

prototype CLAN network. The C-HAL interface was carefully designed to give

maximum flexibility to higher software layers, by supporting multiple synchroni-

sation paradigms and thread models. It was also designed with future hardware

enhancements in mind, and therefore provides a portability function.

The motivation for the work in this chapter was to improve the performance
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of the prototype CLAN network; but an alternative way of looking at it is that it

potentially shifts the boundary between resources that are implemented in soft-

ware or hardware. With these techniques, a higher level of performance can be

achieved with software managed resources; and therefore with simpler, more scal-

able hardware. Placing functionality in software on the host, rather than in hard-

ware, benefits flexibility and maintainability. Software also benefits from the rapid

improvements in host processor performance.
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Chapter 5

The Virtual Interface Architecture

The Virtual Interface Architecture is an industry standard [VIA, 1997] for user-

level networking. It was strongly influenced by work on U-Net [von Eicken et al.,

1995]. Its scope is to describe an interface between the line card and software

on the host, and an application programming interface, known as VIPL1 [VIPL,

1998]. The intention is that vendors develop and market devices that implement

this architecture. VIA is also of interest because a similar interface and model

form the basis of the Infiniband Architecture [Infiniband, 2000].

This chapter describes and analyses a novel implementation of the VIA inter-

face for the CLAN network. The implementation demonstrates the efficiency and

expressive power of the CLAN network model, and also illustrates the advantages

of send-directed communication. In addition it increases the usefulness of CLAN

by supporting applications that use VIA. The VIA standard itself is critically ap-

praised, and simple but valuable extensions are presented.

5.1 VIA data transfer model

VIA has two models for data transfer: send/receive and RDMA. The send/receive

model essentially provides a partially reliable, connection-oriented datagram ser-

vice. Each endpoint, known as a Virtual Interface (VI), has a pair of work queues

(a send queue and a receive queue) which are used to pass requests between the

1Virtual Interface Provider Library
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application and line card.

A sending process constructs a descriptor which identifies the buffers that

will comprise a message. The descriptor is placed on the send queue by calling

VipPostSend(), which returns immediately. The send operation proceeds asyn-

chronously when the descriptor reaches the front of the queue. When the data has

been sent and the send buffers are available for re-use, the descriptor is completed.

The application can poll for completed descriptors by calling VipSendDone(), or

block with VipSendWait().

Similarly a receiving process constructs descriptors identifying buffers into

which incoming messages should be placed. These descriptors are posted to the

receive queue with VipPostRecv(). Receive descriptors are completed when data

is delivered into the buffers, and the application synchronises by calling VipRecv-

Done() (non-blocking) or VipRecvWait().

Each descriptor represents a single message. A descriptor may contain a num-

ber of data segments, each of which describes a fixed size buffer. Thus the pay-

load can be scattered/gathered directly to/from application-level data structures.

A descriptor will often have two data segments: one for a header and one for the

application-level payload. Send and receive buffers must be registered with the

VIA implementation before they can be used, and are then identified by a mem-

ory handle together with the virtual address.

Descriptors may also contain immediate data: a 32 bit field that is passed from

the sender to the receiver. This is expected to be used for out-of-band data such as

flow control information.

5.1.1 Flow control and reliability

VIA specifies three reliability levels for connections, which provide differing

guarantees with respect to message delivery, ordering and the handling of errors.

Unreliable delivery

Messages are delivered at most once, but may be lost or arrive out of order.

Corrupt data is guaranteed to be detected, so there is no need for applica-

tions to perform error checking.
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This level of service is suitable for applications that are delay sensitive, and

tolerant of loss. Realtime media applications are an example.

Reliable delivery

Messages are delivered exactly once, intact and in order. Transport errors

and receive buffer overrun are considered catastrophic, and cause the con-

nection to be closed.

Reliable delivery is an appropriate choice for the majority of distributed

applications.

Reliable reception

As for reliable delivery, except that a send descriptor is only completed

successfully when the data has been delivered into the receiver’s buffers.

Once an error has occurred, no further descriptors are processed.

VIA does not provide flow control at the application level. If when a message

arrives at a VI there are no receive descriptors, or the receive buffers are too small,

then the datagram is dropped. For unreliable delivery, the message is dropped

silently. For reliable delivery/reception this results in the connection being broken.

Thus the application must either tolerate loss, hope that the receiver can keep up,

or more likely implement some flow control scheme.

In some cases the application-level protocol may make explicit flow control

unnecessary. For example, where a request–response protocol is used, each side

need only ensure that it posts a receive descriptor before sending a message, and

alternate strictly between sending and receiving. In most other situations a credit-

based flow control strategy is appropriate.

Credit-based flow control

With credit-based flow control, the sending process keeps track of the number of

receive descriptors available in the receiving process. The receiver gives a credit

to the sender each time it posts a receive descriptor, and the sender consumes a

credit each time it posts a send descriptor. If the flow of data is bidirectional, the

“receiver” in this context may choose to piggy-back credits on a message sent in

the other direction. It is convenient to pass credits in the immediate data field, so
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that flow control is kept separate from message payload. Where the flow of data is

not bidirectional, sending a credit message each time a receive buffer is posted has

high overhead. An alternative is to bunch up a number of credits, or send credit

after a timeout. These are tunable parameters that must be carefully selected for

good performance.

Timely flow control information is critical to good performance. However,

messages are processed in order, and the latency may be high if a flow control

message is held up by bulk transfers that go ahead of it. Note also that an applica-

tion must have credit in order to be able to send credit. To prevent deadlock, each

endpoint must not use its last credit unless it can send credit in that message. This

can effectively reduce the amount of useful receive buffer space by one buffer.

5.1.2 Completion queues

The send and/or receive queue of a VI can be associated with a completion queue,

which is an efficient event notification mechanism. Whenever a descriptor com-

pletes, a notification is directed to the queue. The application can poll the comple-

tion queue (VipCQDone()), or block waiting for notifications (VipCQWait()). On

success, these return a VI handle, and a flag to indicate whether it was a send or

receive descriptor that completed.

Completion queues allow applications to manage large numbers of VIs with a

single thread. If implemented as a user-accessible resource, notifications can be

dequeued with very low overhead. Completion queues are fixed in size (but may

be resized) and the application is expected to ensure that the number of requests

posted to associated VIs does not exceed its capacity—otherwise notifications

may be lost.

5.2 Implementations of VIA

Existing implementations of the VIA standard can be broadly placed in three cate-

gories. Native implementations potentially offer the highest level of performance

because they are designed explicitly for VIA, and export a user-accessible network

interface. This architecture is illustrated in figure 5.1. Products available at the
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Figure 5.1: The Virtual Interface architecture

time of writing include the Emulex cLAN 1000 [Emulex cLAN, 2002], Tandem

ServerNet II adapter and Fujitsu Synfinity [Larson, 1998] cluster interconnect.

Emulated implementations conform to the VIPL programming interface, but

not to the architectural model. Given that VIA does not attempt to standardise for

interoperability between implementations, it is arguable that the API, semantics

and performance are the only things that matter in practice. An example is M-

VIA, which consists of a user-level library and a loadable kernel module for Linux

[M-VIA, 2002]. It supports VIA over Ethernet,2 with standard Ethernet line cards,

and achieves improved performance compared with TCP/IP with the BSD sockets

interface.

The third approach is to use a programmable line card. Intel’s proof-of-

concept implementation [Berry et al., 1998] and Berkeley VIA [Buonadonna et al.,

1998] both use Myrinet. The firmware on the line card provides a user-accessible

interface, so performance comparable with native implementations should be pos-

sible. However, the Myrinet hardware does not provide the full set of features

that are needed, and inevitably there are compromises. In particular, such im-

plementations do not scale well to large numbers of applications and endpoints

[Buonadonna et al., 1998]. Nevertheless, programmable line cards do provide an

excellent platform for experimenting with alternative implementation techniques.

2M-VIA also supports custom VIA hardware.
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5.3 VIA over the CLAN network

This section describes an implementation of VIA over the CLAN network. Like

other emulations of the VIA model, it does not conform to the standard architec-

tural model, but does export the standard API and semantics. The architecture

of CLAN VIA is shown in figure 5.2. It consists solely of a user-level software

library, with no support for VIA in the network or operating system.

A fundamental difference between CLAN and the VIA send/receive model is

that CLAN is send-directed, whereas VIA is receive-directed. In the VIA model,

the receiving line card decides where in memory to place incoming data, whereas

in the CLAN network it is the sender that decides. To emulate the VIA model,

two strategies are possible:

1. Transmit the data to a known location in the receiver and then copy from

there into the application’s receive buffers.

2. Inform the sending process of the location of the receive buffers, and deliver

the data there directly.

The former approach is used by Ibel et al. [1997] for an implementation of

Active Messages. However, the latter strategy is superior because it avoids a copy

on the receive side, requires less buffering and bypasses the difficult question of

how big the staging buffer should be. Before this can be done, a mechanism is

needed to pass control messages between two connected VIs.
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5.3.1 Distributed message queues

The asynchronous ring buffer described in section 4.1 turns out to be an excellent

mechanism for building a message queue on top of distributed shared memory.

This arrangement, called a distributed message queue, is illustrated in figure 5.3.

The ring buffer is placed in the address space of the receiver, and the queue point-

ers are distributed so that no cross-network reads are required.

The sender maintains the write pointer, and copies it into the address space

of the receiver whenever it is updated. The receiver maintains the read pointer

similarly. The lazy copies of the pointers are so called because their value may

temporarily lag behind that of the real pointer. This is safe (at worst the writer

may see too few free slots, and the reader may see too few messages) and the

inconsistency is soon resolved.

The update of the lazy write pointer is the synchronisation event that indicates

that one or more messages have been delivered. The receiver can poll lazy write i,

or set a tripwire. Note that the sender may choose not to update the lazy write

pointer immediately in order to delay message delivery, or to deliver a number of

messages at once. Another reason for delaying the update of the lazy write pointer

is to maintain ordering when a message is transferred by RDMA: the lazy write
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pointer update must happen after the message body arrives. This can be achieved

by using an immediate RDMA request to do the pointer update (see section 4.4).

5.3.2 RDMA-cookie based communication

In order to deliver data directly into the VIA receive buffers, the sender needs have

RDMA cookies for the receive buffers. This is achieved by passing RDMA cook-

ies from the receiver to the sender through a distributed message queue, known

as a cookie queue. This method of data transfer is illustrated in figure 5.4. For

each message, the sender retrieves a cookie from the head of the cookie queue,

and uses it as the target for an RDMA or PIO transfer.

5.3.3 CLAN VIA data transfer

CLAN VIA is essentially an extension of the RDMA cookie queue, with support

for the VIA semantics. Basic data transfer is illustrated in figure 5.5, and proceeds

as follows:

The receiving application posts a receive descriptor using VipPostRecv() (1).

Data segments within the descriptor are mapped to CLAN RDMA cookies, and

passed to the remote VI via a cookie queue (figure 5.6). Because cookie queue

messages are small, PIO is used. Control is returned to the application immedi-

ately.
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Some time later, the sending application posts a send descriptor (2). The

cookie queue is interrogated to find the RDMA cookies for the receive buffers,

and one or more RDMA requests are enqueued to transfer the application data

directly from the send buffers to the receive buffers (3). A second distributed

message queue, the transfer queue, is used to pass control and meta-data (includ-

ing the message size and immediate data) from the sender to the receiver (4).

Each entry in the transfer queue corresponds to a completed VIA receive de-

scriptor. The arrival of a message in the receiver’s transfer queue indicates that

a VIA message has arrived, so the transfer queue message must arrive after the

VIA message payload. The payload itself is delivered asynchronously when the

RDMA requests reach the front of the RDMA request queue. This would indicate

that the transfer queue message should also be sent by RDMA, in order to main-

tain the required ordering. However, this would be inconvenient (a source buffer

would have to be allocated in pinned memory) and inefficient (the messages are

small).

Fortunately, messages only arrive in a distributed queue when the queue’s

write pointer is updated. Thus the body of the transfer queue message can be writ-

ten in advance using PIO, while the queue pointer is updated asynchronously by

an immediate RDMA request that follows the VIA message payload. This ensures

that the transfer queue entry logically arrives after the VIA message payload.
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The transfer queue is also used to pass error messages from the sender to

receiver. An example is when a message is too big to fit in the buffer(s) posted by

the receiver. A traditional VIA implementation would detect this on the receive

side, but in CLAN VIA it is detected on the send side when the send descriptor is

posted. A message is sent to the receiver so that the error can be reported there, as

required by the standard.

PIO for payload transfer

PIO can also be used to transfer the payload of VIA messages. A difficulty is

that successive messages require outgoing apertures mapped onto different receive

buffers. With the prototype line cards, this requires a system call, and modifica-

tions to the application’s page tables, and is therefore an expensive operation.

As a temporary solution, a cache of outgoing apertures is maintained, with

least-recently-used for eviction. This amortises the cost of redirecting outgoing

apertures, at the expense of needing many apertures. Such a cache will only work

well if outgoing apertures are reused. This is likely to happen for two reasons.

Firstly, receiving applications typically keep a pool of receive buffers which are

reused, so cache entries will be reused. Secondly, it is common to preallocate and

pin large blocks of receive buffers. When this is done, each outgoing aperture in

the cache may cover a number of receive buffers, and this improves the hit rate.

An alternative is to push the payload of messages through the transfer queue.
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If PIO is only used for messages that are small, the cost of an extra copy at the

receiver is negligible. This was not implemented because the outgoing aperture

cache is a less intrusive modification, and both solutions are “hacks” that would

not be needed if outgoing apertures could be redirected cheaply.

Each endpoint can be configured to use PIO or RDMA, or to switch between

the two dynamically depending on the message size. It is clearly correct for an

RDMA transfer to follow a PIO transfer, but care must be taken to preserve order

when PIO follows RDMA. The payload of the message can be transferred out-of-

order, but as discussed above, the transfer queue write pointer must be updated

in-order. When switching to PIO mode, CLAN VIA checks whether outstanding

RDMA transfers on this endpoint have completed.3 If not, the transfer queue write

pointer must be updated by an immediate RDMA request rather than by PIO.

It was observed in section 3.5.4 that PIO transfers occur during the timeslice

of the process, and cut ahead of competing RDMA transfers, and can thus be used

to guarantee immediate access to the network. This property is naturally inher-

ited by CLAN VIA when using PIO for the message payload. An application

might choose to configure its VIs to use PIO only in order to achieve a desired

level of service. This is a considerably simpler solution than placing a sophisti-

cated scheduler in the VIA line card, and does not require extensions to the VIPL

programming interface.

5.3.4 Synchronisation

Synchronisation on the send side is trivial, and merely involves determining whether

any RDMA transfers associated with a descriptor have completed. This infor-

mation is provided by the CLAN RDMA interface. The non-blocking VipSend-

Done() checks that all RDMA transfers have finished with rdma test(), and VipSend-

Wait() uses rdma wait(). If the payload was transferred by PIO, then the data trans-

fer was completed synchronously during VipPostSend(), so no checks are needed.

As described so far, this implementation will work with any shared memory

interface. Receive-side synchronisation is, however, a more difficult problem.

The completion of an incoming message is indicated by the arrival of a message

3This test is very cheap: see section 4.4.
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in the transfer queue. For the non-blocking VipRecvDone(), this can be detected

by inspecting the transfer queue. To support blocking receives (VipRecvWait()) a

tripwire is associated with the transfer queue’s lazy write pointer.

Completion queues

The VIA completion queue is implemented using the CLAN event queue. In order

to bind a VI’s receive queue to a completion queue, a tripwire is attached to the

write pointer of the VI’s transfer queue, and configured to deliver events to the

event queue. A handle that identifies the VI is used as the cookie for the event

queue. Out-of-band messages for the endpoint are also directed to generate events

so that failures and connection closure can be detected.

In order to bind a VI’s send queue to a completion queue, RDMA completion

events need to be directed to the event queue. An RDMA request queue is shared

by all VI’s bound to the same completion queue. This maximises the performance

of the RDMA queue by making it more likely that the queue is non-empty when

a request is enqueued (see section 4.4), and minimises use of resources.

Unlike the VIA completion queue, the CLAN event queue does not necessar-

ily deliver an event for each message sent or received, as duplicate events are sup-

pressed. Thus when a tripwire event is dequeued, the VI is checked to determine

how many descriptors have completed, and any extra completion notifications are

placed in a staging queue within the completion queue. The completion queue

also maintains a FIFO-ordered list of the send descriptors that have outstanding

RDMA requests in progress. When an RDMA event is received, descriptors that

have completed are removed from the list, and additional completion notifications

are placed in the staging queue. The scan of the list stops as soon as a descriptor

that has not completed is encountered, so the cost per descriptor is constant.

VipCQDone() first checks for any completion events in the staging queue. If

there are any, the first is returned. Otherwise, the CLAN event queue is polled

(evq get()) and completion notifications are gathered as described above. VipC-

QWait() is similar, but uses evq wait() to block when the CLAN event queue is

empty.
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5.3.5 Reliability and packet loss

A principal effect of CLAN’s send-directed property is that data is never dropped

at the receiving line card. Further, the network guarantees that packets will never

be delivered out-of-order, and will very rarely be corrupted or dropped. If the

sender has a valid RDMA cookie, the data is (almost) guaranteed to be delivered.

However, the authors of VIA were anticipating a receive-directed implementation,

and the error behaviour specified reflects this. CLAN VIA therefore has to emulate

the error behaviour of a receive-directed implementation.

If the cookie queue is found to be empty when a send descriptor is posted,

then the receive buffers have been overrun, and VIA specifies that the data should

be dropped. Note that this condition is detected on the send side, and without any

data being transmitted across the network. The network is not loaded with data

that cannot be delivered.

If the connection is configured for unreliable delivery, then the send descriptor

is simply completed without transferring any data. For reliable delivery connec-

tions, the send descriptor is completed without error, but an error message is sent

to the other side (which will eventually close the connection). Subsequent send re-

quests can be ignored, since the data will not be used—again avoiding unnecessary

loading of the network. For reliable reception connections, both the sending and

receiving VIs are notified of the error, and no further descriptors are processed.

When using a connection with reliable reception the standard specifies that

a send descriptor is “Completed with a successful status only when the data has

been delivered into the target memory location.” On most networks an acknowl-

edgement from the receiver is needed before the descriptors can be completed.

CLAN VIA, however, can complete descriptors as soon as the outgoing RDMA

transfers have completed, since delivery is then inevitable.4 The implementation

of reliable delivery and reliable reception differ only in how errors are reported.

This is an elegant simplification.

4Delivery is only prevented if the target application or machine crashes. However, there is no
way to know whether this happened before or after the data was delivered.
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5.3.6 Flow control

The majority of applications used on local area networks require reliable commu-

nications protocols. For most of these applications “reliable delivery” will be the

reliability level of choice, as it delivers messages exactly once, in order. However,

it is still necessary to avoid receive buffer overrun, since this leads to packet loss

and termination of the connection. Applications have to build flow control on top

of VIA, as described in section 5.1.1.

CLAN VIA places the receiver state in the sender’s address space, and this

provides an opportunity for more efficient flow control. There are four possible

behaviours when posting a descriptor if the receive buffers are overrun:

Compliant mode

Data is dropped and the connection may be closed (depending on reliability

level). This is the behaviour proscribed by the VIA standard.

Non-blocking mode

VipPostSend() returns immediately with an error code, and nothing is done.

Blocking mode

VipPostSend() blocks until receive descriptors are posted.

Asynchronous mode

VipPostSend() returns immediately, and the data is transmitted when the

receive buffers are posted.

These extensions to the standard VIA behaviour are relatively simple to im-

plement because CLAN VIA receives a notification on the send side when the

receiver posts a descriptor. The Non-blocking Mode is a trivial extension; indeed

it was easier to implement than the standard VIA behaviour. Blocking Mode is

also simple: a tripwire on the cookie queue write pointer is used to block until

receive buffers are posted.

The Asynchronous Mode has not yet been implemented, but a possible ap-

proach would be to set a tripwire on the cookie queue to wake a background

thread that would schedule the data transfer. A potentially more efficient imple-

mentation would be to place a message in the transfer queue giving the location of
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the send buffer(s). The receiver could then use an RDMA read operation to pull

the data over when a receive descriptor is posted. However, RDMA read is not

currently supported in the CLAN network.

It is elegant that these extensions need only minimal changes to the program-

ming interface. A new subroutine, VipPostSendEx() has been added that takes

one extra parameter that specifies the desired behaviour. Asynchronous Mode

is a completely transparent change: it simply appears to the sender as though the

receiver is always always able to post enough receive descriptors to avoid overrun.

Providing flow control within VIA simplifies the upper layers, and more im-

portantly provides better flow control. This flow control within CLAN VIA will

always be timely, in contrast with credit-based flow control over VIA, which may

be held up by large messages and incurs an extra layer of overhead. The timeli-

ness is made possible by the use of PIO for cookie queue messages, which cuts

in ahead of queued RDMA requests. Support for flow control in CLAN VIA was

implemented entirely on the send side, and required no changes to the communi-

cations protocol.

Emulex VIA provides an extension, fast signals, for low latency delivery of

out-of-band data, and this can be used for flow control. However, it is not in-

tegrated with the data transfer model, so applications cannot perform a homo-

geneous wait for messages and flow control events. This severely restricts the

usefulness of this primitive in practice.

5.3.7 Protection

As discussed in section 3.3.6, receive-side protection in the prototype CLAN line

cards is incomplete. Having given a remote process access to an aperture, it is not

possible to revoke access. This means that a faulty or malicious node that goes

in below the level of VIA can overwrite an application’s receive buffers after the

receive descriptor has completed, which might cause the application to misbehave.

With support in the line card, it is anticipated that proper protection could be

implemented for CLAN VIA. Such protection would necessarily incur a small

additional software overhead when posting and completing receive descriptors.

However, protection of receive buffers is only needed for certain classes of ap-
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plication: those that might misbehave if the contents of a receive buffer changes

unexpectedly. In particular, applications that do not use a zero-copy interface to

the network transport do not need protection, because data is copied from receive

buffers to application buffers before being inspected.

5.3.8 RDMA operations

In addition to the send/receive model, VIA specifies RDMA read and write op-

erations, in which the initiating process identifies both the source and destination

buffers for a transfer. These operations have not been implemented in CLAN VIA,

but it is worth considering how they could be.

RDMA write corresponds closely to the CLAN RDMA request interface, but

with one important difference: in CLAN, a remote buffer is identified by an

RDMA cookie and offset, whereas in VIA it is identified by a memory handle

and virtual address. In order to support the VIA interface, it is necessary to pro-

vide a mapping between the two schemes. This could be done by packing an

RDMA cookie and base virtual address into the memory handle type. This pro-

vides enough information to get from a memory handle and virtual address to an

RDMA cookie and offset.

CLAN does not currently support RDMA read operations in hardware. How-

ever, RDMA read could be emulated in the application or device driver. An

RDMA read request would be sent in a CLAN out-of-band message. The ap-

plication or device driver that received a request would then use an RDMA write

operation to make the transfer. Completion could be detected using a tripwire at

the receiver. However, this mechanism would require an interrupt per request, and

would therefore have high overhead compared with a hardware supported imple-

mentation.

5.4 Performance

In this section the performance of CLAN VIA is compared with that of an existing

commercial implementation: the Emulex cLAN 1000. The Emulex line card is a

64 bit, 33 MHz PCI card, with a single chip implementation and 1.25 Gbit/s link
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Payload size CLAN CLAN Emulex
(octets) DMA PIO cLAN 1000

0 9.7 (10.0) 7.5 (7.8) 12.7 (13.3)
4 13.1 (13.4) 10.0 (10.4) 14.6 (15.2)
40 14.3 (14.7) 10.6 (11.1) 18.7 (18.9)

400 33.4 (34.9) 33.0 (33.7) 26.2 (26.7)

Table 5.1: Round-trip time for CLAN and Emulex VIA (µs). The numbers
in parentheses give the 95th percentile.

speed. An Emulex switch could not be obtained for these tests, so the Emulex line

cards were connected back-to-back. The experiments were performed using the

Pentium III systems described in the appendix. Identical benchmark software and

test conditions were used on each of the systems.

Since the focus of this dissertation is distributed applications—which for the

most part require reliable communications—the reliability level used in these tests

was reliable delivery. Credit-based flow control was used to prevent receive buffer

overrun. For clarity, separate results are given for CLAN VIA in PIO and RDMA

modes, rather than switching between the two dynamically.

Latency

The latency for small messages was measured by timing each of a large number

of round-trips. This value includes the time taken to post a send descriptor, pro-

cess that descriptor, transfer the data, synchronise with completion on the receive

side and perform the same operations for the return trip. The results are given in

table 5.1.

The small message latency for CLAN VIA (PIO) is the lowest by some mar-

gin, despite the fact that the CLAN line cards are connected by a switch, whereas

the Emulex line cards are connected back-to-back. Without a switch, the CLAN

VIA (PIO) round-trip takes just 6.7 µs. For larger message sizes latency is domi-

nated by the bandwidth, which is discussed below. For comparison, M-VIA report

latency over Gigabit Ethernet of 38 µs [M-VIA perf, 2002], and Buonadonna et al.
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[1998] report 46 µs for Berkeley VIA over Myrinet.5

Bandwidth

Bandwidth was measured by streaming messages of various sizes from one ap-

plication to another. The payload was touched at both the sender and receiver.

The total amount of buffer space available at the sender and receiver was fixed at

256 kilobytes. The number of buffers available therefore decreased with increas-

ing message size. The results are given in figure 5.7.

For messages up to 180 octets, CLAN VIA (PIO) has the highest throughput.

CLAN VIA (DMA) performs poorly for small messages due to the high overhead

of the prototype line card’s RDMA engine.6 The author was unable to determine

why the throughput of Emulex VIA was limited to 750 Mbit/s—the CPU was

certainly not close to saturation on either the send or receive side. It is possible

that the 64-bit Emulex line card is not well optimised for operation in a 32-bit PCI

5Details of the test platforms were not given.
6See section 3.3.
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slot.

Overhead

It is reasonable to expect that CLAN VIA, being a software emulation, would

incur higher overhead on the host processor than the native Emulex implementa-

tion. This is certainly true on the send side: Figure 5.8 gives the transmit overhead,

which is largely due to the cost of the VipPostSend() operation. This experiment

used the single-copy message-based interface described in section 3.5.2 for fig-

ure 3.5. The overhead for CLAN VIA with PIO is initially about the same as

for Emulex VIA, but grows with the message size. The overhead of CLAN with

RDMA is high due to the one-shot RDMA engine on the prototype CLAN line

card.

Table 5.2 gives the overhead of posting a receive descriptor, and of polling the

send and receive queues. Emulex VIA is multi-thread safe, whereas CLAN VIA

is not, and so the last column adds in the cost of a mutex lock and unlock so that

a fair comparison can be made. VipPostRecv() has relatively high cost for CLAN,
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Operation Success? Emulex CLAN CLAN + lock

VipPostRecv SUCCESS 408 538 710
VipRecvDone SUCCESS 330 303 475
VipRecvDone NOT DONE 202 46 218
VipSendDone SUCCESS 537 169 341
VipSendDone NOT DONE 209 78 250

Table 5.2: Overhead of VIA data transfer operations

due to the high overhead incurred posting descriptors to the cookie queue. This

would be considerably improved on a platform with better PIO performance (see

section 3.5.3). For the polling operations, CLAN VIA has only slightly higher

overhead than Emulex VIA in the thread-safe case. However, it was argued in

section 4.7 that it is a poor design decision to provide thread safety in a low-level

interface such as VIA.

Message rate

An experiment was designed to measure the performance and properties of the

VIA completion queue. A server application accepts connections from clients,

and simply acknowledges each incoming message. It uses a completion queue

to identify connections that have requests outstanding, and polls the completion

queue for a few microseconds before blocking if no events are available. Because

of the highly restrictive topology available on the test systems, a single application

simulates many clients by making a number of connections to the server.7 The

client uses polling for synchronisation, and issues requests on each connection in

round-robin order.

The results are shown in figure 5.9, together with the results for a solution

to the same problem implemented over the raw CLAN interface. CLAN VIA is

limited to a maximum rate of 114,000 requests per second, while Emulex VIA

achieves 200,000 requests per second. The difference is largely due to the pro-

totype CLAN event queue, which incurs an interrupt per event. A hardware-

7The validity of using a single client application was verified by comparing this configuration
with up to five separate clients using CLAN VIA. The results for the single client were very similar,
but slightly conservative.
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supported event queue, or an implementation of the polled event queue (see sec-

tion 4.6.2) would improve performance substantially. A slight decrease in request

rate is seen for CLAN VIA above about 250 connections. This is due to an inter-

action between the scheduler and the timing of interrupts.

The raw CLAN server uses the CLAN event queue to identify connections

that have outstanding requests. In addition, it keeps a cache of active connections.

These connections, and the event queue, are polled for up to a few microseconds

before the server blocks on the queue. This reduces overhead due to managing

tripwires, and due to interrupts, allowing the server to handle up to 2.5 million

requests per second. Such an optimisation is not possible with the VIA interface,

because VIs are permanently bound to their completion queue.

A final experiment was used to check that the cost of using the VIA comple-

tion queue and CLAN event queue did not depend on the number of connections

handled. The same server application was used as above. The client application

established a number of connections, but requests were only issued on one; the

rest being idle. As expected, the number of requests that were handled per second
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did not depend on the number of connections made. The request rates achieved

were 53,300 for CLAN VIA, 51,600 for Emulex VIA, and 204,000 for raw CLAN.

5.5 Discussion

It is surprising that CLAN VIA has lower latency than, and comparable bandwidth

to an ASIC implementation designed specifically for VIA. Profiling shows that

posting send and receive buffers has low overhead for Emulex VIA: about 0.6 µs.

This suggests that performance is limited by the line card; most likely by the

embedded processor. If this is correct, then performance would be improved with

a more powerful embedded processor, but this would of course be more expensive.

In the CLAN implementation protocol processing is handled by the host pro-

cessor. Despite this, the data transfer operations have only slightly higher over-

head than Emulex VIA.8 The superior latency and bandwidth achieved by CLAN

PIO for small messages shows that this does not necessarily lead to lower per-

formance. It was shown in section 3.5.3 that the PIO performance on these Intel

systems is very far from optimal, and therefore CLAN VIA can be expected to

benefit substantially from an improved I/O subsystem.

This send-directed implementation of a receive-directed interface works well

because receive descriptors can be passed to the sender with very low latency.

Such low latency can only be achieved with PIO, which intrinsically has lower

latency than RDMA (section 3.5), and cuts ahead of queued RDMA transfers.

The flow control extensions described in section 5.3.6 could be added to tradi-

tional receive-directed implementations, and the VI/TCP Internet-Draft [DiCecco

et al., 2000] proposes that posting of sends before receives be supported as an

option. Such extensions would require support in the line card and changes to the

software/hardware interface. That CLAN VIA requires changes only in host soft-

ware is powerful evidence for the flexibility and generality of the CLAN network

model.

CLAN VIA consists of a user-level software library, requiring no special sup-

port in the network or system software. It coexists with other protocols used on the

8Except VipPostSend(), which has high overhead with CLAN, as discussed on page 107.
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network, and in the same process. This is in contrast with native implementations

that have proprietary physical layers, and with Myrinet implementations which

require the whole network to be programmed to support the same protocol. In ad-

dition, the CLAN hardware is simple in comparison with native implementations

of VIA, and has lower per-endpoint resource requirements.

5.5.1 Critisisms of VIA

Although there have been a number of publications detailing implementations and

early deployments of VIA, to the author’s knowledge there has been little criti-

sism. One exception is Buonadonna [1999], who found that the combination of

features in VIA leads to complexity in implementations, which damages perfor-

mance. He also found that small message performance is poor due to the relatively

large descriptors used, and that considerable per-endpoint resource is required on

the line card.

The following details a number of issues that were encountered while imple-

menting CLAN VIA, and while using VIA in benchmarks and applications. Some

place seemingly unnecessary restrictions on the implementation, whereas others

make VIA inflexible or inconvenient in use.

1. Passing flow control credits in the immediate data field of a descriptor may

suffer high latency if held up by bulk data. In order to prevent deadlock, it is

usually necessary to keep one credit in reserve, thus wasting receive buffer

space. A majority of applications need flow control, but implementing it

in this way is non-trivial, requires tuning, and performs poorly. The VIA

standard would benefit from transparent flow control at the message level

(section 5.3.6) or at least explicit support for low latency application-level

flow control.

2. VIA provides no means for associating application-level state with end-

points. The VI handle type is opaque, which makes it difficult for the

application to maintain its own mapping between VIs and state. This is

particularly onerous when using a completion queue. Possible solutions

include:
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(a) Permitting applications to attach state to VIs.

(b) Adding an application-specified cookie to completion notifications.

(c) Using a concrete type for endpoint handles (for example, a small inte-

ger).

3. Completion queues are susceptible to overflow. The only way to avoid over-

flow is to ensure that the total number of posted descriptors does not exceed

the capacity of the completion queue. This is yet another overhead that the

application has to manage. Overflow could be prevented by only permit-

ting a single outstanding notification for each endpoint for each of send and

receive.

4. Completion queue and VI synchronisation are not integrated with other

forms of I/O. This means a single threaded application cannot efficiently

handle VIA and traditional I/O at the same time. Few applications are con-

cerned only with network I/O.

5. Connection management is not integrated with completion queues. A server

must either have a thread dedicated to accepting new connections, or poll

VipConnectWait() periodically.

6. Guaranteeing multi-thread safety in the VIA API serves only to increase

overhead for real applications. It is common for applications to ensure mu-

tual exclusion on a per-endpoint basis in order to protect application-level

state, so it is not necessary for the low-level interfaces to be multi-thread

safe.

7. The use of application virtual addresses to identify buffers in remote nodes

for RDMA operations potentially complicates implementations. For native

implementations, the line card has to maintain translations between virtual

and physical addresses for registered memory regions. This is difficult, be-

cause virtual addresses may be sparse. The CLAN approach of using an

offset from the start of a memory region is simpler and potentially more

efficient.

112



8. A flag in the VIA descriptor indicates whether or not the immediate data

field contains valid data. Making a decision as to whether or not to transfer

the immediate data field is likely to be more expensive than just transferring

the field in all cases. Thus the flag has no use for implementors. The flag

might be useful for some applications, but in this case why associate the flag

with the immediate data field? It would be more flexible to have a general

purpose flag available for application use.

9. The association between a VI’s send or receive queue and a completion

queue is fixed at the time a VI is created. This is inflexible and precludes

certain behaviours. For example, it is not possible to migrate endpoints from

one completion queue to another for the purpose of load balancing between

threads.

10. The VIA model for establishing connections allows the client side to block

if no server is listening on the specified address. This has the disadvantage

that the client will never receive a positive indication that no application is

currently providing that service. Instead the client must use a timeout.

11. Another disadvantage of the model for connection establishment is that it

must be handled either in the line card, or in a daemon process on each node.

Existing implementations use the latter approach, and this significantly in-

creases the cost of establishing new connections compared with the BSD

socket model.

12. VIA provides no way for an application to obtain a unique address that can

be used to rendezvous with new connections. This facility is needed when

two applications wish to communicate, but neither is providing a system

service than can be identified by a well-known address. In the BSD socket

model, the application may ask that the operating system assign an unused

port number.

The VI Developer’s Forum has recently published a number of proposed ex-

tensions to the VIPL programming interface [VIDF, 2001]. These extensions ad-

dress the problems of associating application-level state with endpoints (item 2),
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and of performing a heterogeneous wait on VIA and non-VIA I/O endpoints

(item 4).

A number of these issues were found to be real problems in practice during

the implementation of a VIA transport for a CORBA ORB. This is described in

the next chapter.
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Chapter 6

CORBA

The Common Object Request Broker Architecture is a middleware platform that

has been standardised by the Object Management Group [OMG, 1999]. It sim-

plifies distributed computing by presenting applications with a high level abstrac-

tion of the network: object-oriented procedure call. This level of abstraction per-

mits flexibility in terms of implementation, but also introduces complexity and

overhead. It is widely held dogma that the overhead is necessarily high, making

CORBA unsuitable for high performance applications.

In this chapter it is argued that CORBA’s high level of abstraction provides

a number of opportunities for optimisation, and that an efficient implementation

adds only a little overhead to the transport layer. With the superior performance of

user-accessible network interfaces, high performance distributed computing can

be provided to applications while allowing them to be truly insulated from the

peculiarities of the network.

6.1 The CORBA model

In the CORBA model, resources are represented by objects with a well defined

interface. A reference to an object can be exported to other applications, which can

then invoke methods defined in the object’s interface. The interface is defined in a

platform-neutral interface definition language IDL, for which there are mappings

to all of the major programming languages.
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Figure 6.1: The relationship between proxy and object implementation.
When invoked by the client process, the proxy sends a request to the re-
mote ORB, which invokes the corresponding method on the object imple-
mentation. The object implementation is provided by the server applica-
tion.

The CORBA standard specifies a programming language–independent object

model, a network protocol for communicating between brokers using TCP/IP, pro-

gramming interfaces for a variety of languages and a number of higher-level ser-

vices. Although the standard specifies the model, interfaces, and semantics in

detail, it leaves considerable flexibility in terms of implementation. For example,

the management of resources such as threads and network connections is left to

the ORB architect. In addition to supporting reliable communication and manag-

ing resources, ORBs provide a number of services to applications. These include

management of objects’ life cycles, location, naming, binding and flow control.

A CORBA object reference identifies a particular object. It must therefore

contain enough information to be able to contact the ORB that manages the object,

and identify the object. Identification is accomplished by using an opaque object

identifier. A reference also contains one or more Inter-ORB Protocol profiles (IOP

profiles), each of which describe a way to contact an object implementation. A

standard type of IOP profile is used to provide an address for contacting an object

via the Internet Inter-ORB Protocol (IIOP) which uses TCP/IP. Additional IOP

profiles can be defined for other types of network or alternative protocols.

In an application, a reference is represented by a proxy. Its relationship with

the object implementation is illustrated in figure 6.1. The proxy is a programming

language object that exports the same interface as the CORBA object. For strongly

typed languages such as C++, the source code for the proxy is generated from
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IDL by a compiler. When the application invokes a method on the proxy, the

proxy invokes the local ORB to contact the ORB containing the CORBA object

identified by the reference. A message is sent to the remote ORB requesting that

the named method be invoked on the specified object, along with the parameters

for the method. The remote ORB locates the object’s implementation, invokes the

method, and returns any results to the local ORB.

References are opaque at the application level, so the addition of IOP profiles

to support novel protocols or networks is transparent. It is the responsibility of

the ORB to choose the best alternative for contacting the object implementation

(although it may provide a way for the application to specify the policy). If an

ORB does not recognise an IOP profile it receives, it ignores it.

On the server side, the ORB listens for incoming requests and dispatches them

to the appropriate objects. The IDL compiler generates a skeleton that provides

a bridge between the ORB and the interface-specific object implementation. In

C++, the implementation skeleton is a base class from which the application-level

object implementation is derived. The proxy and skeleton perform the presenta-

tion layer formatting (known as marshalling) for the parameters and return values

of requests.

6.2 OmniORB

OmniORB is a CORBA implementation developed at AT&T Laboratories-Cam-

bridge, and distributed under a free software license [OmniORB, 2000]. It has

bindings for the C++ and Python programming languages, and has been certified

compliant with version 2.1 of the CORBA specification. It was originally de-

signed to be embedded in experimental network-attached peripherals, so efficient

support for diverse network interfaces has always been a goal.

Another goal is high performance. This, combined with the author’s experi-

ence in implementing parts of the ORB, made it a natural choice for this project.

Independent studies [CORBA Comparison, 1998] have shown that OmniORB

performs well when compared with other CORBA ORBs. Lo [1997] describes

how this is achieved.
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Single protocol strategy

All CORBA ORBs are required to support the standard Internet inter-ORB proto-

col, and may also support other protocols. IIOP is defined in terms of GIOP (the

general inter-ORB protocol), which specifies message formats and the encoding

of data. OmniORB only supports protocols built on GIOP. The view was taken

that the additional complexity required to support alternative protocols outweighs

the benefits.

Buffer management

The buffers that GIOP messages are read from and written to are allocated and

managed by the transport layer. A buffer management scheme can be chosen that

best suits the communication primitives available. This also allows network in-

terfaces that have special requirements for buffers to make those buffers directly

available to the marshalling layer via a zero-copy interface, avoiding unneces-

sary copies. For example, a user-accessible network may require that buffers be

pinned.

Marshalling optimisations

OmniORB uses an IDL compiler to generate specialised code to marshal and un-

marshal types defined in the IDL. Inlining is used aggressively for simple types,

to minimise overhead. GIOP ensures that all primitive data types are aligned on

their natural boundaries, and OmniORB takes advantage of this to marshal con-

secutive data structures in a single marshalling call where possible. This reduces

marshalling overhead, especially for array and sequence types. OmniORB also

employs other optimisations described by Gokhale and Schmidt [1998].

Minimal multiplexing

OmniORB avoids thread switches on the call path. On the client side, the thread

that invokes the object reference contacts the remote ORB and blocks waiting for

a reply. On the server side, a thread is dedicated to each connection, and when a
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Figure 6.2: An OmniORB server with the IIOP and CLAN transports

request arrives it makes an up-call into the object implementation, and sends the

reply if necessary.

The transport layer presents an abstract interface that has been shown to be

flexible and efficient, with implementations for TCP/IP, ATM [Pope and Lo, 1998],

SCI [Pope et al., 1998], HTTP1 and Myrinet [Denis et al., 2001]. The architecture

of an OmniORB server with two transports is given in figure 6.2.

6.2.1 The transport interface

To put the following work in context, this section briefly describes the relevant

parts of the OmniORB transport interface [Lo and Pope, 1998].

Connections between ORBs are represented by the strand type, which presents

an abstraction of a reliable bidirectional stream of octets. Each implementation of

strand manages its own communications buffers, and ensures that they remain

properly aligned with respect to the start of each message. Strand provides a zero-

copy interface for data transfer as follows:

buffer t receive(int min octets, int giveback)

On the receive side, the marshalling layer calls receive() to obtain a buffer

1The HTTP transport allows CORBA requests to be tunneled through a firewall.
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containing received data. It blocks if no data is immediately available. To

simplify the marshalling layer, a minimum amount of contiguous data may

be requested. buffer t is a type representing the returned buffer. The give-

back parameter specifies how much of the previous buffer was not con-

sumed, and that data is returned at the start of the new buffer.

buffer t direct recv(void* to, int size, int giveback)

This is an optimisation for receiving large chunks of data: received data

may be placed directly into the buffer provided by the marshalling layer,

potentially avoiding a copy if the transport supports it. A buffer containing

more received data (if any) is returned to the marshalling layer, in order to

avoid a separate call to receive() for the data that follows.

buffer t reserve(int min octets, int giveback)

This is the send-side equivalent of receive(). It returns a buffer into which

the marshalling layer should form a message. If the marshalling layer fills

the buffer, it calls reserve() again to obtain more space, and to implicitly

return the buffer to the transport so that the data may be transmitted onto

the network. A minimum amount of buffer space may be requested.

buffer t direct send(const void* from, int size, int giveback)

This may be called when sending a large chunk of data, and gives the trans-

port layer an opportunity to avoid a copy if data can be sent directly from

application-level buffers.

There are a number of other entry points to deal with the start and end of

messages, handle error conditions, and close connections. In addition to an im-

plementation of strand, each transport provides means to encode and decode IOP

profiles, rendezvous with incoming connection requests, and make new outgoing

connections.

6.2.2 Generic optimisations

Prior to writing new transports for the ORB, the transport interface was profiled

in detail to determine whether any generic improvements could be made. The
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transport interface is designed to allow marshalling to proceed efficiently using

inline subroutines, and only invoke the transport layer when more received data

(or buffer space on the transmit side) is needed. However it was found that the

marshalling layer was making many more indirect subroutine calls into the trans-

port layer than necessary, and that the interface forced the marshalling layer to do

unnecessary work to maintain alignment.

The transport interface and TCP/IP implementation were re-writen to simplify

handling of alignment, and the number of indirect subroutine calls made per re-

quest was reduced substantially. The ability to support multiple transports at run-

time was also added. In addition, a number of minor optimisations were applied

to reduce overhead, without changing functionality:

• Inlining was applied to a number of interfaces within the ORB (but only

where this did not increase the size of binary code generated).

• The locking model for connection resources was changed, since locking is

not needed in all contexts.

• An expensive synchronisation call was removed from the common path on

the client side by introducing a control variable to indicate when synchroni-

sation is needed.

• Reference counts are used throughout the ORB. A reference count type us-

ing atomic integers was implemented to avoid locking a mutex in some

cases.

• A number of micro-improvements were made, such as replacing integer

division with bitwise operations where possible.

The cumulative effect of these changes was to reduce the round-trip time for

a null request over Fast Ethernet from 147 µs to 127 µs, an improvement of 13%.

For the high performance transports described below, this translates to a much

larger relative improvement.
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6.3 A CLAN transport

The CLAN strand is based on the distributed message queue (DMQ) described in

section 5.3.1. In CLAN VIA, distributed message queues were used to pass fixed

size control messages, with application-level payload sent separately. In this case,

however, the DMQ is used to implement a stream of octets, with GIOP messages

as the payload. Because the messages have variable length, the read and write

pointers represent positions in terms of octets, rather than whole messages.

6.3.1 The receive side

On the receive side, CLAN strands give the unmarshalling layer direct access to

the distributed message queue’s receive buffer. When insufficient data is available,

a tripwire is set on the DMQ’s lazy write pointer and the thread blocks. When

calling the receive() method, the unmarshalling code may specify a minimum

length for the buffer. However, if the DMQ’s receive pointer is close to the end

of the ring buffer, the corresponding received data may not be contiguous. The

solution employed is to copy the remaining data at the end of the ring buffer to

a small reserved area just before the start of the ring buffer. This is illustrated in

figure 6.3. All the remaining data is then available as a contiguous buffer. Only a

few bytes need to be copied, so the additional overhead is small.

An alternative solution—the virtual ring buffer—uses a virtual memory man-

agement trick. The ring buffer is mapped into the virtual address space of the

application twice, at contiguous addresses. This arrangement is illustrated in fig-
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ure 6.4. Any region of the the buffer that is contiguous in ring-buffer-space is also

contiguous in the virtual address space of the application. This technique has a

number of disadvantages though:

1. It can only be used on architectures that do not exhibit aliasing in the cache.

2. The additional virtual address space consumed reduces the hit rate of the

TLB.

3. The ring buffer must be aligned on a page boundary, and its size must be a

multiple of the page size.

The third problem is particularly onerous for a CLAN distributed message

queue, since it means that the read and write pointers must be placed in a separate

pinned buffer. Although less elegant, copying a few bytes to the start of the buffer

is probably a superior solution. The virtual ring buffer is more appropriate when

the upper layer requires a contiguous view of whole messages.

6.3.2 The transmit side

The strand allocates a transmit buffer in pinned memory so that it can be used as

an RDMA source buffer. Double buffering is used in order to overlap marshalling

and data transfer: half of the buffer is passed to the marshalling layer to fill, while

the other half is transmitted by DMA. The reserve() method initiates the transfer

of data from the buffer that has just been filled, and returns the other. It may have
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to block if a DMA transfer is in progress. The direct send() method simply copies

the supplied data into the transmit buffer, flushing it to the network as necessary.

Transfers from the transmit buffer to the receive buffer are made using DMA,

or PIO for segments that are small. Note that a transfer may be split into two when

the DMQ’s write pointer is close to the end of the ring buffer. Thus PIO is used

even when messages are large. As for CLAN VIA (section 5.3.3), proper ordering

between transfer of the payload and update of the DMQ’s write pointer must be

ensured. The strand keeps note of whether any DMA transfers are in progress,

checking if necessary with rdma test(). If there are, the write pointer is updated

using an immediate DMA request. Otherwise the write pointer is updated by PIO.

Zero-copy strands

A second version of the strand interface was implemented using zero-copy mar-

shalling. The receive side is as described in section 6.3.1. On the transmit side,

the marshalling layer is given a pointer into the outgoing aperture that maps onto

the DMQ’s receive buffer. This is illustrated in figure 6.5. GIOP messages are

marshalled directly into the receive buffer. The implementation of reserve() sim-

ply updates the DMQ’s write pointer and returns a pointer to the next region of

free space; waiting if necessary. If the DMQ’s write pointer is too close to the

end of the ring buffer to provide a sufficiently large contiguous buffer, a small

auxiliary buffer in local memory is used instead.
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6.3.3 Buffer size and spinning

It is well known that for a system with end-to-end flow control, the amount of

buffer space required at the receiver is proportional to the product of the round-

trip delay and bandwidth. However, the latency for this calculation depends not

only on the raw latency of the network, but also on how long it takes the receiver

to acknowledge received data, and how long it takes the sender to repond to ac-

knowledgements. In other words, it depends on how tightly coupled the sender

and receiver are. If either is not scheduled when a message arrives, the delay can

be large.

The implication is that in order to stream data at high bandwidth, the receive

buffer must be large; or the receiver and sender must be tightly coupled. The most

appropriate choice will depend on the application and environment, and so should

be configurable. To keep a sender and receiver tightly coupled, CLAN strands

can be configured to spin when waiting for incoming data or acknowledgements.2

When a timeout expires, the strand reverts to blocking in order to limit the over-

head due to spinning. The spin-then-block strategy has been shown to provide

good performance in a wide variety of circumstances [Damianakis et al., 1997,

Thekkath and Levy, 1993].

Another time when it may be appropriate to spin is when an incoming mes-

sage is expected soon; for example, on the client side, when waiting for the reply

to a request that is expected to have low latency. How long this will be is applica-

tion specific, and will differ for the client and server ends of the connection. The

CLAN transport can therefore be configured with separate timeouts for transmit

and receive, and for the client and server side. The GIOP layer sets a flag in the

strand to indicate whether it is on the client or server side, so it can choose the ap-

propriate timeout. Spinning on the server side is discussed further in section 6.5.1.

An issue closely related to buffer size is the time at which the DMQ’s lazy

read and write pointers should be updated. When streaming large amounts of

data, it is desirable for marshalling at the sender and unmarshalling at the receiver

to proceed in parallel [Clark and Tennenhouse, 1990]. To achieve this, the sender

2In this context “acknowledgements” means updates to the DMQ’s lazy read pointer, which
free up space in the receive buffer.
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must not fill the receive buffer before updating the write pointer, since it might

then be stalled while it waits for free space. Similarly, the receiver should not

consume all the data in the buffer before updating the lazy read pointer. The

best parallelism is achieved by sending and acknowledging many small chunks of

data, but this is inefficient—especially with the poor performance of the prototype

CLAN RDMA engine.

The decision as to how often the lazy read and write pointers should be up-

dated is controlled by a pair of tunable parameters: the transmit and receive

chunk size. By experimentation, it was found that setting these at half the buffer

size gave good results. With a more efficient RDMA implementation, smaller

chunk sizes might be appropriate, and would potentially deliver lower latency.

These parameters limit the size of the buffer that the strand makes available to the

(un)marshalling layer. This forces the marshalling layer to invoke the transport

layer at the right time, so it can transmit marshalled data or acknowledge received

data.

Note that it is the send and receive chunk size, together with the raw latency

and bandwidth of the network, that determine the appropriate spin timeout for

streaming bulk data.

6.3.4 Alignment

The GIOP protocol ensures that primitive datatypes are aligned on their natural

boundaries with respect to the start of messages. This property is critical to the

zero-copy strand, where an unaligned store could cause a cross-network read.

However, messages themselves are not aligned with respect to one another. This

causes problems for the IIOP transport (as described below), but is much worse

for the CLAN transport, where consecutive messages are necessarily placed in the

same buffer.

The solution employed was to modify the protocol slightly for the CLAN

transport. Padding is added at the end of messages to ensure that all messages

are properly aligned.

The lack of alignment between messages can also be a problem for imple-

mentations of the IIOP transport. Because TCP/IP has no knowledge of GIOP
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framing, a GIOP message boundary may be crossed by a call to the recv system

call if more than one GIOP message has arrived at the socket. When this hap-

pens the second message may have to be moved in the buffer to realign it, adding

overhead.

This is mitigated by the fact that for ordinary CORBA requests it is rare for

multiple messages to arrive at a socket. However, it does happen when using

one-way requests (which do not have a reply), and when concurrent requests are

multiplexed onto a single connection. The effect on bandwidth is shown in fig-

ure 6.6. When the payload size is such that consecutive messages are not aligned,

the bandwidth is reduced because of the overhead incurred by realigning data.

This problem can be solved for a single copy TCP by reading the message header

and body separately. However, when using unmodified GIOP with a zero-copy

interface (such as that used by Arsenic [Pratt and Fraser, 2001]) it is not possible

to avoid having to realign data.
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6.3.5 Connection management

It was shown in section 4.8 that the cost of allocating CLAN network resources

is high. Because OmniORB opens connections on demand, this has the effect of

significantly increasing the latency of the first request made to a remote address

space. To reduce this overhead and latency, OmniORB was modified to cache

a small number of strands. For the IIOP transport this only saves a few mem-

ory allocations, but for the CLAN and VIA transports the saving is considerable,

because the user-accessible network resources can be reused.

6.4 A VIA transport

An OmniORB transport for the VIA interface was also implemented. It serves

both to illustrate the issues that arise when using VIA in a practical application,

and to provide a comparison with the CLAN transport.

6.4.1 Data transfer and buffering

The VIA strand uses the send/receive model for communication. The octet stream

required for GIOP is implemented with a stream of VIA messages, with the reli-

able delivery option to ensure messages are not lost. Flow control is credit-based,

with credits passed in the immediate data field of the VIA descriptors. As for the

CLAN strand, a configurable spin-then-block strategy is used for synchronisation.

Each strand maintains a pool of send and receive buffers. On the send side,

the reserve() method posts the descriptor for the buffer that has just been filled,

and obtains a free buffer which is returned to the marshalling layer. The receive()

method waits for a message with payload to arrive (i.e. not just flow control cred-

its), and returns the buffer to the unmarshalling layer. It also re-posts the previous

receive buffer, and may send a flow control message.

Each GIOP message starts in a separate VIA message. This ensures that the

start of each message is aligned with respect to the receive buffers, as required

by the unmarshalling layer. The transmit side maintains alignment within GIOP

messages by ensuring that the size of each VIA message (other than the last) is a
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multiple of the message alignment. This requires that any trailing unaligned bytes

at the end of a buffer be copied to the start of the next. Each VIA receive buffer

is therefore preceded by a small reserved area; a few bytes of data may be copied

here from the end of the previous message when the contiguous buffer requested

by the unmarshalling layer crosses a VIA message boundary.

6.4.2 Flow control

When posting a receive descriptor, the strand has to decide whether it should

send a credit message to the other side, or accumulate the credit and send it in

a later message. If a GIOP message is to be transmitted soon, it makes sense to

accumulate credit and send it with the payload. Unfortunately, the strand has no

way to know whether this is the case.

To address this, the VIA strand will accumulate a configurable number of

credits on the receive side before sending a credit message. This reduces the

number of messages that only contain credit. In the default configuration, four

receive buffers are used, and the receiver will buffer one credit. When messages

each fit in a single buffer and the traffic pattern is request-response, no credit-only

messages are needed. This is a common scenario in CORBA applications.

It was noted in section 5.1.1 that an endpoint must not use its last credit, un-

less it can send credit with that message, or else the connection might become

deadlocked. In OmniORB, a strand is used by a single thread for the duration

of a request, so the traffic pattern is either request-response (for normal requests)

or unidirectional (for one-way requests). Concurrent bidirectional traffic cannot

happen. When the GIOP message size approaches or exceeds the total amount of

receive buffer space, the strand is therefore unlikely to have accumulated credit to

send when it reaches its last credit. Thus the receiver is stalled, even though it has

one credit left. The receive window is effectively reduced by one buffer.

6.4.3 Comparison with CLAN

The VIA interface is at a higher level than CLAN, and VIA’s ordered stream

of datagrams is conceptually closer to the strand interface than CLAN’s asyn-

chronous shared memory. The implementation of the VIA strand follows in an
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obvious way from the VIA interface. However, when compared with CLAN, the

VIA strand has a number of disadvantages, as follows:

Flow control overhead

Flow control adds significant overhead when credit-only messages have to be sent.

This is common when the GIOP messages are larger than a single receive buffer.

Send and receive coupling

The send and receive paths are coupled in the VIA strand. A thread that is sending

a message may also need to synchronise with incoming messages in order to get

flow control credits. A receiving thread may also need to send messages in order

to send credits.

This is not a serious problem in this version of OmniORB, since a thread has

exclusive access to a strand for the duration of a request. However, this is not the

case in the most recent version of OmniORB (version 4), in which multiple con-

current requests may be multiplexed onto a single connection. To make the strand

work properly with independent send and receive processes would require addi-

tional locking and synchronisation, which is likely to add substantial complexity

and overhead.

One possible solution is to open a separate VIA connection for each direction

of data flow. This would remove the coupling, but would potentially halve the

number of concurrent clients supported by the system, since VIA connections are

a limited resource on native implementations.

Efficiency of buffer use

The buffer space in the receiver is used less efficiently in the VIA strand. As

described above, the last credit is unlikely to be usable, as doing so may lead to

deadlock. When four buffers are used, this reduces the effective buffer space by

25%. In addition, small messages consume an entire buffer. With a ring buffer

such as the CLAN DMQ, messages only consume as much buffer space as they

need.
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With the default settings, CLAN and VIA strands are configured with 32 KBytes

of receive buffer space. In the VIA strand this is divided into four receive buffers.

When sending messages that are 100 octets long, the receive window for CLAN

is 327 messages. For VIA it is just 3 messages.

Using a larger number of smaller buffers for VIA would increase the receive

window, but would also increase overhead when sending larger messages. The

default of four buffers was chosen because it was found that using more buffers

did not improve performance, even for small messages. This is likely to be due to

the message rate being limited by the Emulex VIA line card.

Thread safety

The VIA standard specifies that implementations may optionally provide thread

safety, and Emulex VIA is one example that does. However, it is not needed

for OmniORB’s VIA transport, since the ORB gives just one thread at a time

exclusive access to a strand. If the ORB multiplexed multiple requests over a

single strand, it would be useful to allow two threads to access a strand at once:

one to send and the other to receive. However, in that case locking would still be

required within the strand itself, due to the send/receive coupling that is enforced

by the implementation of flow control. Thus the locking within VIA is redundant

and serves only to increase overhead.

This provides evidence to support the principle (given in section 4.7) that low

level interfaces should not be concerned with providing thread safety. Rather,

they should ensure that thread safety can be done efficiently in the upper layers,

as necessary.

The problems of high flow control overhead, send/receive coupling and the

inability to effectively make use of the last flow control credit, are all due to VIA’s

lack of explicit support for flow control. They are all solved by the flow control

extensions implemented in CLAN VIA. Removing flow control considerations

from the strand would simplify its implementation and improve performance.
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6.5 Server-side thread model

OmniORB uses a thread-per-connection model on the server side. In this model,

a new thread is spawned for each incoming connection, and dispatches all re-

quests that arrive on that connection. This avoids thread switches during request

invocations—one factor that contributes to OmniORB’s good performance—but

has the following undesirable properties:

• A thread switch necessarily occurs between requests on different connec-

tions.

• On many architectures threads are a relatively heavy-weight resource, and

limited in number. This may limit the maximum number of connections.

• On some systems the thread scheduler performs poorly when there are many

runnable threads.

• A single connection may be serviced repeatedly until its thread is desched-

uled, at the expense of all other connections. This can cause high variance

in the service time for individual clients.

The impact of these deficiencies becomes ever more noticeable as the perfor-

mance of the transport increases. A new model that addresses the above problems

was therefore sought.

The event-driven model has been shown to be efficient for other applications,

but is particularly difficult to integrate into a CORBA ORB. The ORB is archi-

tected so that the marshalling layer calls down into the transport layer when more

data or buffer space is needed. Turning this relationship inside out would lead to a

complex state machine, because the marshalling code is hierachical and recursive.

In addition, a state machine implementation would have high overhead compared

with the existing sequential marshalling code, which has been carefully inlined

for performance. Exotic programming constructs such as continuations [Haynes

et al., 1986] offer a potentially elegant and efficient solution to this problem, but

are not available in existing systems programming languages.

An alternative is for the transport layer to only handle complete GIOP mes-

sages. A single thread could then manage I/O for many connections efficiently,
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but it would potentially require unreasonably large buffers at the transport layer.

For some transports (such as CLAN) it is not possible to dynamically increase the

amount of receive buffer space without introducing an extra copy, which would

incur unacceptable overhead.

6.5.1 The dispatcher thread model

The dispatcher thread model was designed to overcome the deficiencies of thread-

per-connection. Given the discussion above, it seems desirable to retain the exist-

ing relationship between the marshalling and transport layers. Thus once a thread

is dispatched to handle a request on a connection, it must be assumed that it may

block—either on network I/O or in the object’s implementation (of which the

ORB has no knowledge or control).

In order to prevent a thread potentially being blocked in each connection, the

ORB must avoid dispatching a thread on a connection until a message arrives.

This is achieved by the dispatcher, which keeps track of idle connections, and uses

a suitable mechanism to determine when data arrives. For CLAN connections, the

CLAN event queue is used, and for the IIOP transport, the select system call is

used. In order to increase code-reuse it is tempting to wrap the event notification

mechanism in a common interface, but this adds overhead and precludes optimi-

sations tailored to each mechanism. A separate implementation of the dispatcher

is therefore provided for each transport. A description of the CLAN dispatcher

follows.

The operation of the dispatcher is shown in figure 6.7. A pool of threads

are available to perform work, and may be idle, blocked on the work queue or

dispatching a request. When an idle thread becomes runnable, it inspects the

CLAN event queue (labelled work queue in the diagram) to find an event and the

associated strand. If a message has arrived at the strand, the same thread handles

the incoming request by calling into the GIOP dispatch routine. A lock flag on

each strand is used to prevent more than one thread from attempting to dispatch

on the same strand. To avoid a race condition, another flag is used to indicate

whether an out-of-band message event has been received for a strand that was

locked, since this indicates that the connection has been closed.
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Figure 6.7: The dispatcher thread model

It is a goal of the dispatcher to minimise thread switches, and it is therefore

desirable to only wake idle threads when there is work for them to do. The usual

solution in thread-pool implementations is for idle threads to block on the event

queue (or other I/O event mechanism). This causes at least one thread to be woken

for each event that is delivered, even though not all of these threads may be needed

to handle the events. To prevent this behaviour, the dispatcher only allows one

thread at a time to block on the event queue; all other idle threads block on a

condition variable, and are woken explicitly as they are needed.3

When a thread discovers that a strand has an incoming message, it makes a

call into the GIOP layer to handle the request. The ORB cannot know in ad-

vance whether that thread will block, and must therefore ensure that at least one

of the idle threads (if there are any) is either blocked on the event queue, or is

in a runnable state. To achieve this, the dispatcher keeps count of the number of

idle threads, and the number of runnable threads that are not currently handling a

request. A thread that is about to dispatch first wakes an idle thread—but only if

there are no runnable threads.

3Use of a mutex for this purpose was considered, but was found to suffer from the lock-swap
problem described in section 6.5.4.
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Spinning and caching

The CLAN dispatcher may be configured so that a thread spins for a few mi-

croseconds before blocking on the event queue. Spinning works well if the num-

ber of connections is large, since the inter-arrival time for events is likely to be

small. Since only one thread is permitted to block on the event queue, only one

thread will spin. Therefore the time spent spinning does not depend on the num-

ber of connections or the number of threads. In comparison, spinning is rarely

appropriate on the server side when using the thread-per-connection model, as the

inter-arrival time will usually be at least a round-trip, and more likely longer.

In order to reduce overhead incurred by the use of tripwires, the dispatcher

keeps a list of strands that are active, and these are polled. When a thread returns

from dispatching a request, it first polls the event queue, placing any active strands

on the “active” list. The strand that was just used for a request is then placed on

the active list—after those from the event queue. If the thread is the only runnable

idle thread, it then switches to polling mode.

In polling mode, the thread polls the event queue and the strands in the active

list. When it finds a strand with received data, it dispatches that strand. If the

dispatcher’s spin timeout expires, the receive tripwire is enabled on each strand

and they are removed from the active list. The thread then blocks on the event

queue. In addition to the dispatcher’s spin timeout, there is a smaller timeout for

each strand. Together these timeouts ensure that the overhead due to spinning

does not increase beyond a fixed amount per request invocation.

6.5.2 TCP and VIA dispatchers

TCP

The TCP dispatcher is similar to the CLAN version. It uses the select system

call to determine which connections are active. Select was chosen because it is

considerably easier to use than event-based mechanisms, does not require end-

points to be registered in advance, and has been shown to be almost as efficient as

POSIX realtime signals provided as much work as possible is done for each call

[Chandra and Mosberger, 2001]. To minimise the number of calls to select the
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results are therefore placed in a work queue, and another call is only made when

the queue is empty. Connections are removed from the select-set while being dis-

patched. However, performance will nonetheless degrade with large numbers of

idle connections.

The TCP dispatcher does not cache recently active threads, since a system call

is needed to switch between blocking and non-blocking modes. It is simpler, and

more efficient, to include the connection in the next call to select.

VIA

An implementation of the dispatcher model for VIA presents considerable diffi-

culties. The VIA mechanism for managing large numbers of connections is the

completion queue; but VIA does not allow blocking operations on connections

that are bound to a completion queue. Once bound, a connection cannot be un-

bound from a completion queue. It is therefore not possible to use a completion

queue to identify active connections, and then serve the request independently of

the completion queue.

To get around this, the strand would have to interact with the dispatcher when-

ever it needed to block waiting for received data. This would add considerable

complexity, and would increase the number of thread switches incurred, losing a

key benefit of the dispatcher model. It seems likely that a completely different

model would be more appropriate. For these reasons, an implementation of a VIA

dispatcher was not attempted.

6.5.3 Properties of the dispatcher model

The dispatcher thread model has the following desirable properties:

• In applications where the object implementation does not cause the dis-

patching thread to block, a single thread may serve many requests on many

connections without any thread switches.

Note that a thread is unlikely to block on network I/O when messages are

small enough to fit in the strand’s receive buffer. For larger messages, an
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appropriate choice of spin timeout will prevent the thread from blocking in

most cases.

• If a thread does block when dispatching a request, then another thread will

take over to serve any connections that have work to do (unless the thread

pool is exhausted). On multi-processor systems sufficient threads will be

woken to occupy the available processors if enough work is available.

• The dispatcher minimises overhead by avoiding thread switches, and by

avoiding waking threads that may not be able to make progress. However, it

is not possible to eliminate spurious wake-ups entirely, since the dispatcher

cannot know whether network I/O will block, or what the application-level

object implementation will do.

• Requests are serviced in order of arrival, or in round-robin order when con-

nections are cached in the active list. Compared with thread-per-connection,

the variance in service time is considerably reduced and fairness is im-

proved.

Note however that the thread scheduler is beyond the control of the ORB. If

a thread that is managing a connection is descheduled, that connection will

not receive any service until the thread is rescheduled. This is no worse than

the thread-per-connection model.

6.5.4 POSIX threads

Two features of the POSIX thread specification, and the implementation used,

were found to be important in the design of the dispatcher. They are discussed

here.

Mutexes

The dispatcher model was designed to allow a single thread to dispatch many re-

quests on many connections, without switching between threads unless the thread

blocks. However, an artifact of the Linux implementation of the POSIX Threads

mutex primitive can cause a thread switch to be forced between each request.
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The problem is that when a mutex is unlocked, and another thread is waiting

for the mutex, the mutex is automatically donated to the waiting thread. If after

unlocking the mutex the thread tries to lock it again, it will necessarily block until

the other thread has unlocked the mutex. If the threads are in a loop, locking and

unlocking the mutex on each iteration, it is likely that they will swap the mutex

each time.

This behaviour has been seen in the dispatcher. A mutex is used to protect

access to the work queue and other state, and is locked and unlocked once each

time a thread retrieves another strand to dispatch. If access to that mutex is ever

contended, the dispatcher threads involved swap ownership of the mutex each

time they return from dispatching a request. This continues until all but one are

descheduled when not holding the mutex.

This behaviour of the Linux mutex is not specified by the POSIX standard. It

was done this way because the author of the package received complaints about

his previous version: that mutex locking behaviour was not fair, because threads

did not take turns when locking a mutex. These complaints are not valid. If turn-

taking is the desired behaviour it should be coded for explicitly. Forcing threads

to take turns when locking a mutex causes unnecessary thread switches and hence

increases overhead.

Condition variables

Another feature of the Linux threads implementation was found to be very useful.

The standard specifies that the pthread cond signal() function wakes at least one

of the threads waiting on a condition variable. The Linux implementation guar-

antees that exactly one thread will be woken. This more specific semantic allows

the dispatcher to keep an accurate count of the number of runnable threads. It can

therefore make better decisions as to when to wake threads. In order to be portable

to other systems, the dispatcher supports both behaviours, selectable at compile

time.
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Technology Latency (µs) 95th %’ile

Gigabit Ethernet 149 178
Fast Ethernet 127 128
Intra-machine 55.2 55.5
Emulex VIA 28.3 28.8
CLAN (zero-copy) 17.2 17.4
CLAN (single-copy) 16.1 16.4
Results from Denis et al. [2002]
Fast Ethernet (P II 450 MHz) 160
Myrinet-1 (P II 450 MHz) 55
Myrinet-2000 (P III 1 GHz) 20

Table 6.1: CORBA round-trip latency for null requests. The results from
[Denis et al., 2002] were also obtained with OmniORB.

6.6 Performance

This section evaluates the performance of OmniORB with the various modifica-

tions described in this chapter. For the VIA transport, the Emulex cLAN 1000 was

used. The experiments were performed using the Pentium III 650 MHz systems,

flowers and cisk, detailed in the appendix.

Latency

The latency for small requests was measured by repeatedly invoking a null method:

one taking no arguments and doing no work. The CORBA interface, specified in

IDL, was as follows:

interface PingVoid {

void ping_void();

};

The results are given in table 6.1. The Gigabit Ethernet line cards use interrupt

hold-off to reduce overhead, but it has the effect of increasing latency for this

experiment. The latencies for the user-level transports are almost an order of

magnitude lower than for TCP/IP over Ethernet, and considerably better than for
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intra-machine requests.4 OmniORB is 43% faster with the CLAN single-copy

strand than with VIA. The difference in latency between CLAN and VIA under

OmniORB (12.2 µs) is larger than the difference in latency at the raw network

interface (7.9 µs). This suggests that the VIA strand implementation adds more

overhead than the CLAN strand.

Contrary to expectations, the latency (and therefore overhead) of the CLAN

zero-copy strand is higher than for the single-copy version. This is because the

single-copy strand copies the message into PCI space in a single contiguous chunk,

storing a word at a time. With the zero-copy strand, the marshalling layer gen-

erates a mix of word-sized and sub-word stores, which are less efficient on this

platform.

Table 6.1 also gives results for OmniORB over the PadicoTM framework,

taken from Denis et al. [2002]. These are the fastest results to date for a CORBA

implementation. The results are not directly comparable, since the test platforms

differ. However, the CLAN transport achieves lower latency than a Myrinet-2000

transport despite being tested on a system with a slower processor.

Bandwidth

Bandwidth was measured by streaming a large number of one-way requests to the

server. The following IDL interface was used:

interface PingSeqOctet {

oneway void recv_seqoctet(in sequence<octet> v);

};

As for all experiments in this dissertation, the payload was touched at the

application level on both the send and receive side. A total of 100 megabytes of

payload were transfered to obtain each data point. The single-copy strand was

used for CLAN, which was configured to switch from PIO to DMA for transfers

larger than 512 octets. The results are given in figure 6.8.

For small messages, CLAN outperforms Emulex VIA. CLAN is 60% faster

for 4 byte payloads, 25% faster for 64 byte payloads, and 10% faster for 128 byte

4Intra-machine requests use the TCP loopback interface.
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Figure 6.8: Bandwidth for CORBA with CLAN and VIA transports

payloads. However, the limited PIO bandwidth on this system, and the poor per-

formance of CLAN DMA limit the bandwidth for medium sized messages. The

dips in bandwidth at large message sizes for both CLAN and VIA are caused by

interaction with the receive buffer size. The dips are particularly large for CLAN,

because of the high cost of starting an extra RDMA request.

Overhead

Figure 6.9 compares the bandwidth achieved by the CLAN and VIA transports

when the receiver is loaded so that it becomes the bottleneck. This effectively

provides an indication of the relative overhead incurred on the receive side of

each transport. The work done by the receiver was to checksum the payload thirty

times.

This data can be used to calculate the difference in the per-request overhead

for the two transports. When the bandwidth is indeed limited by receive overhead,

the following hold:
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Figure 6.9: CORBA bandwidth when the receiver is loaded

time =
messagesize

bandwidth

time = overhead + messagesize ∗ k

Where time is measured for one request; overhead is the constant per-request

overhead; bandwidth is the observed bandwidth at a particular message size; and

k is a constant that represents the cost of the checksum calculation and per-octet

overheads incurred by the ORB. k is the same for CLAN and VIA,5 but is un-

known. Eliminating time, and rearranging for k gives:

k =
1

bandwidth
−

overhead

messagesize

We instantiate this for each of the transports, and eliminate k. BWCLAN and

5For both transports data is delivered into the unmarshalling buffer without the intervention of
the CPU. All other per-octet operations are shared.
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Figure 6.10: CORBA receive overhead for CLAN and VIA transports.
This graph is derived from figure 6.9, and gives a measure of the addi-
tional per-request overhead incurred by the VIA transport, when com-
pared with CLAN.

BWV IA are the bandwidth measured for CLAN and VIA respectively. OCLAN

and OV IA are the per-request overheads. Finally, rearranging gives the difference

in overhead:

1

BWCLAN

−
OCLAN

size
=

1

BWV IA

−
OV IA

size

OV IA − OCLAN =
size

BWV IA

−
size

BWCLAN

The results of this calculation are shown in figure 6.10. The difference in

per-request overheads should be independent of the payload size, so the curve is

expected to be flat—where it is not indicates where the results were not limited

by receive overhead. The results appear to be receive-limited for payloads of

between 16 octets and a little below 4096 octets. From the graph, the difference in
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per-request receive overhead for the CLAN and VIA transports is about 3 µs. This

difference is likely to be largely due to the relatively high cost of flow control over

VIA, and the redundant locking provided by Emulex VIA.

Connection management

To measure the effect of caching strands between connections, the round-trip la-

tency of the first invocation made by a client application was measured. The work

done by the ORB on the first invocation includes creating a strand in the client

and server; establishing the connection; invoking the server to check the type and

location of the target object; and finally invoking the request.

As a baseline for comparison, the time taken for a first invocation over TCP/IP

with Fast Ethernet was 762 µs (95%<821 µs). For CLAN, the result was 1,807 µs

(95%<1,839 µs). Even taking into account the high cost of allocating CLAN end-

point resources (section 4.8), this result is surprisingly high. Reusing a cached

strand in both the client and server reduced the first-request latency to 641 µs

(95%<650 µs). For the thread-per-connection model, reusing a cached thread re-

duced the latency by a further 15 µs.

Caching and reuse of strands was also implemented for the VIA transport.

However, the connection setup time for Emulex VIA is inexplicably high, at

328 ms, and this makes all other effects negligible. The reason for this high con-

nection setup latency is unknown. Emulex VIA uses a daemon process to assist

with the rendezvous between client and server, but this alone cannot account for

all of the time taken to setup a connection.

Message rate

The performance of the implementations of the dispatcher thread model was mea-

sured by using a number of clients to apply load to a server. The same server

and client applications were used as for the latency test above. It is not possible

to simulate many clients with a single application, as was done for VIA, because

CORBA requests are synchronous. Therefore only a limited number of clients

could be tested. The server ran on flowers. For CLAN, clients were placed on

cisk, cropton and rigwelter. The latter are dual-processors, and two clients were
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Figure 6.11: CORBA request rate vs. offered load for OmniORB with
Fast Ethernet and CLAN transports

placed on each. For Fast Ethernet, a number of other machines in the laboratory

were used to supply additional load.

The results are given in figure 6.11. When using Fast Ethernet, the server was

saturated with eight clients at 21,500 requests per second. This is only slightly bet-

ter than the maximum request rate that is achieved with the thread-per-connection

model. The main advantages of the dispatcher model are improved scalability and

fairness. Gigabit Ethernet would be expected to perform a little better, as this test

would benefit from interrupt hold-off as the number of clients grows.

With the CLAN transport, the ORB achieves 145,000 requests per second with

five clients, and it appears to be almost saturated. Since these are null requests, this

result provides a measure of the total overhead due to the ORB on the server side.

For OmniORB with the CLAN transport, the overhead is just 6.9 µs per request.

In practice this will be an underestimate, since it does not take into account the

effect the ORB has on cache behaviour.
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6.7 Related work

A number of groups have analysed the performance of communications middle-

ware, and adapted implementations for high performance networks. Gokhale and

Schmidt [1996] found that existing ORBs incur high overhead due to inefficien-

cies in presentation layer formatting and demultiplexing strategy. In [1997, 1998]

they describe a number of optimisations, many of which are already used in Om-

niORB.

Bilas and Felten [1997] implemented SunRPC over the first generation SHRIMP

network, with round-trip latency of 33 µs. They also designed a new non-compatible

RPC that took full advantage of the features of the network interface to achieve

latency of just 9.5 µs. However, the ShrimpRPC facility has a considerably less

rich feature set than CORBA.

CrispORB [Yuji et al., 1999] is a CORBA ORB designed for system area

networks, and supports TCP/IP and VIA transports. The round-trip latency was

measured as 400 µs for the VIA transport, compared with 550 µs for TCP. The rel-

atively high latency for the VIA transport is in part due to their use of an emulated

VIA implementation.

Forin et al. [1999] implemented a VIA transport for Microsoft’s DCOM mid-

dleware. Using Emulex VIA line cards and 333 MHz Pentium II systems they

achieved a 72 µs round-trip latency, whilst preserving the full set of DCOM fea-

tures. Madukkarumukumana et al. [1998] improved on this with custom mar-

shalling, achieving round-trip latency of 50 µs; but at the expense of some func-

tionality.6

Pope et al. [1998] describe a transport for OmniORB over SCI, using locked

shared memory, with latency of 156 µs on Pentium Pro 200 MHz systems. The

fastest results prior to this work were obtained by Denis et al. [2002], also using

OmniORB. They achieved a round-trip latency of 20 µs using the Myrinet-2000

network and Pentium III 1 GHz systems.

6This result is extrapolated from figure 9 in Madukkarumukumana et al. [1998].
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6.8 Summary

This chapter has presented two improvements for high performance communi-

cation middleware. Firstly, the design and implementation of a transport for the

CLAN network that delivers the lowest latency yet reported for a CORBA ORB.

This was achieved without sacrificing any of the features or changing the seman-

tics of the ORB.

The second is a thread dispatch model that improves on existing thread-pool

models by reducing the number of thread-switches. Compared with the thread-

per-connection model it improves scalability in terms of the number of connec-

tions an ORB can handle; it increases the maximum request rate when serving

multiple clients; and it reduces variance in the response time. Having a separate

dispatcher for each transport allows an efficient implementation that can take ad-

vantage of special features of the network interface. The CLAN dispatcher in

particular adds very little overhead to each request.

The difficulties encountered while implementing VIA support illustrate a num-

ber of the deficiencies in the standard that were detailed in section 5.5.1. Flow

control was identified as a major cause of overhead, and would incur even higher

overhead in an ORB that supported bidirectional traffic on connections. The in-

flexible binding between connections and the VIA completion queue precludes a

reasonable implementation of the dispatcher thread model.

Although not a panacea, CORBA is a useful tool that considerably simplifies

distributed programming. It hides details of the network and hosts, including con-

nection management and byte-order, addressing and presentation formatting, and

it provides a high-level procedural interface. The use of a user-accessible network

as a transport is totally transparent, and can be integrated into existing applications

simply by replacing dynamically-linked system libraries. This chapter has shown

that CORBA can be implemented efficiently, and it is therefore a suitable tool for

high performance distributed applications.
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Chapter 7

Conclusions

This dissertation has addressed aspects of software support for distributed com-

puting using the CLAN and VIA network interfaces. This chapter summarizes the

main results and contributions, and outlines areas for further work.

The CLAN network interface has been shown to be sufficient to support effi-

cient implementations of VIA and CORBA, and has been shown qualitatively to

be more flexible and scalable than other technologies. An efficient implementation

of CORBA over CLAN has been shown to have very low overhead, and to support

user-accessible networks transparently in existing distributed applications.

7.1 Contribution

Chapter 3 presented a detailed description of the CLAN network model and the

prototype implementation developed at AT&T Laboratories–Cambridge. The low-

level performance of the prototype network was characterised, and the PIO and

DMA mechanisms for data transfer were compared. It was found that for small

messages, PIO on the transmit side offers superior latency, bandwidth and over-

head. Depending on the system, PIO on CLAN achieves almost full link band-

width with 1024 octet messages, and half link bandwidth with messages just 72 octets

long. In addition, use of PIO was shown to simplify buffer management and there-

fore reduce overhead in upper layers.

Chapter 4 described the CLAN hardware abstraction layer, which defines the
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low-level programming interface for CLAN. It was argued that it is better to keep

features such as thread-safety out of low-level network interfaces, since they add

overhead and are often duplicated in upper layers. This required that the interface

be designed carefully. In particular it was argued that the functions of blocking and

manipulating state should be separated. A novel interface between the application

and operating system kernel was described, which uses lock-free data structures in

shared memory to reduce overhead. This mechanism was used to implement out-

of-band message queues, tripwire notifications, RDMA request queues and event

notification queues in the C-HAL. An improved event notification mechanism, the

polled event queue architecture, was proposed. It was argued that this mechanism

would have a simple implemention compared with user-accessible queues used in

other networks, and would incur only slightly higher overhead.

Chapter 5 described a novel implementation of the Virtual Interface Archi-

tecture’s API and semantics over the CLAN network. This is significant because

it demonstrated that CLAN’s send-directed shared memory model can be used

to implement a receive-directed message-based interface. The performance of

CLAN VIA and a hardware implementation were compared, and found to be simi-

lar: the hardware implementation has slightly lower overhead for most operations,

but CLAN VIA has lower latency. CLAN VIA was shown to have advantages over

the traditional implementation, including the flexibility of a software embodiment;

the use of PIO for low latency and to meet QoS requirements; and the ability to

drop messages that overrun the receiver before they are transmitted on the net-

work. It was observed that applications requiring reliable communication must

implement flow control themselves, but that this cannot be done efficiently on top

of VIA. Extensions to CLAN VIA that support flow control transparently below

the level of the VIA interface were described.

Chapter 6 addressed the goal of delivering high performance to distributed ap-

plications. An implementation of the CORBA middleware standard was adapted

to use the CLAN and VIA network interfaces. Modifications to the ORB, and

the implementations of the CLAN and VIA transports were described in detail.

The performance results presented showed that the CLAN transport exhibits very

low latency and overhead for small messages, with latency seven times lower than

Ethernet and 43% lower than VIA. The receive-side overhead for the VIA trans-
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port was found to be substantially higher than for CLAN, in part due to the cost

of application-level flow control.

Finally, a new thread dispatch model was described and was shown to have

advantages over existing thread-pool models. In particular, it was shown that no

thread switches are incurred on the call path, and that a single thread can dispatch

many requests. With the CLAN transport, the ORB was able to handle a request

rate six times higher than with a traditional Ethernet.

7.2 Further Work

With the closure of AT&T Laboratories–Cambridge, work on the CLAN project is

continuing only at the Laboratory for Communications Engineering, which does

not have the resources to continue development of the hardware. Current work

is focusing on support for standard Internet protocols, and a scalable bridge ar-

chitecture for communicating with the outside world, and for terminating large

numbers of TCP connections.

So far, the CLAN project has demonstrated the performance potential of the

CLAN network for a range of applications. The existing prototype implementa-

tion has a number of artifacts that have been shown to limit performance. Im-

provements in the implementation, and other topics, are therefore suggested as

areas for futher study.

RDMA support

Improved support for RDMA is needed, as the current implementation incurs high

overhead and performs poorly. The best performance would be obtained with

user-accessible RDMA request queues implemented in the line card. However,

it is worth investigating whether a single hardware RDMA request queue can be

used efficiently using techniques similar to those described in chapter 4.

Event notification

An implementation of the polled event queue architecture proposed in section 4.6.2

should substantially reduce overhead, compared with the existing interrupt-driven
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mechanism. However, it is likely to be less efficient than user-accessible event

queues implemented in the line card. The relative costs of the two models, in

terms of performance and complexity, should be explored with a prototype imple-

mentation.

Connection management

The cost of allocating CLAN resources and setting up connections was found to

be higher than expected, and there is considerable scope for improvement. A num-

ber of techniques could be applied to reduce overhead and latency. In particular, it

should be possible to redirect outgoing apertures, and with suitable hardware sup-

port this could be done at user-level. For applications that create many short-lived

connections, reducing the cost of sending and receiving out-of-band messages

would also help.

Tripwires

The tripwire is a generic mechanism for synchronising with memory events, and

is therefore potentially applicable outside of the domain of networking. One idea

is to integrate tripwires into a computer’s memory controller. Tripwires could

then be used to synchronise with arbitrary memory events, including I/O device

events and inter-process shared memory events. This might be most useful on

multi-processor systems, especially NUMA systems, on which the cost of inter-

node synchronisation is currently high. However, it is not clear that it is feasible,

or cost effective, to match tripwires at memory speeds.

Infiniband

Chapter 5 showed that the CLAN model is able to emulate the VIA interface, and

it has been argued that implementations of CLAN are simpler and more scalable

than VIA. The Infiniband architecture defined a network interface that is similar

to VIA, but it is a very large and complex specification: existing implementations

require correspondingly large amounts of silicon with embedded processors, and

are expensive. It is therefore worth investigating whether CLAN technology could
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be adapted to meet the goals of Infiniband. If so, then CLAN might potentially

offer a simpler, cheaper, and more scalable solution.
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Appendix: Experimental testbed

The experimental testbed consisted of five workstations connected by a CLAN

switch. The Linux 2.4.6 kernel was used for the Intel-based systems, and Linux

2.2.14 for the Alpha system. The workstations used were as follows:

hosts: flowers, cisk

CPU: Pentium III, 650 MHz

cache: 256 KB

memory: 256 MB SDRAM

host bridge: Intel 440 BX

line cards: CLAN Mk3

3Com 3c985 (Gigabit Ethernet)

Emulex cLAN 1000 VIA

hosts: cropton, rigwelter

CPU: Dual Pentium III, 1 GHz

cache: 256 KB

memory: 512 MB SDRAM

host bridge: ServerWorks CNB20LE

line cards: CLAN Mk3
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host: lowenbrau

CPU: Dual Alpha EV67, 750 MHz

cache: 8 MB

memory: 1 GB SDRAM

line cards: CLAN Mk3

The Gigabit Ethernet and Emulex VIA line cards were in a back-to-back con-

figuration, since switches for these technologies were not available for these ex-

periments. The effect of this is that they show better latency than they would

in a switched topology. The bandwidth of Gigabit Ethernet was also improved

compared with a switched configuration.

The Pentium III 650 MHz systems were chosen for most of the experiments,

because they are the least powerful, and hence best illustrate the effect of overhead

on performance.
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