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Adaptive MIMO Antenna Selection via Discrete
Stochastic Optimization

Inaki Berenguer, Xiaodong Wang, and Vikram Krishnamurthy, Fellow, IEEE

Abstract—Recently it has been shown that it is possible to im-
prove the performance of multiple-input multiple-output (MIMO)
systems by employing a larger number of antennas than actually
used and selecting the optimal subset based on the channel state
information. Existing antenna selection algorithms assume perfect
channel knowledge and optimize criteria such as Shannon capacity
or various bounds on error rate. This paper examines MIMO an-
tenna selection algorithms where the set of possible solutions is
large and only a noisy estimate of the channel is available. In the
same spirit as traditional adaptive filtering algorithms, we pro-
pose simulation based discrete stochastic optimization algorithms
to adaptively select a better antenna subset using criteria such as
maximum mutual information, bounds on error rate, etc. These
discrete stochastic approximation algorithms are ideally suited to
minimize the error rate since computing a closed form expression
for the error rate is intractable. We also consider scenarios of time-
varying channels for which the antenna selection algorithms can
track the time-varying optimal antenna configuration. We present
several numerical examples to show the fast convergence of these
algorithms under various performance criteria, and also demon-
strate their tracking capabilities.

Index Terms—Antenna selection, discrete stochastic approxima-
tion, MIMO, minimum error rate, tracking.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) systems can
offer significant capacity gains over traditional single-

input single-output (SISO) systems [9], [34]. However, multiple
antennas require multiple RF chains which consist of amplifiers,
analog to digital converters, mixers, etc., that are typically very
expensive. An approach for reducing the cost while maintaining
the high potential data rate of a MIMO system is to employ a
reduced number of RF chains at the receiver (or transmitter)
and attempt to optimally allocate each chain to one of a larger
number of receive (transmit) antennas which are usually cheaper
elements. In this way, only the best set of antennas is used,
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while the remaining antennas are not employed, thus reducing
the number of required RF chains.

Originally, antenna selection was proposed for systems
having a single transmit antenna and multiple antennas at
the receiver employed for standard diversity purposes at the
receiver [23], [35]. Recently, for multiple transmit and multiple
receive antennas several algorithms have been developed for
selecting the optimal antenna subset given a particular channel
realization. In [30], it is proposed to select the subset of transmit
or receive antennas based on the maximum mutual information
criterion and [29] gives and upper bound on the capacity of
a system with antenna selection. A suboptimal algorithm that
does not need to perform an exhaustive search over all possible
subsets is proposed in [10] and [15]. Antenna selection algo-
rithms that minimize the bit error rate (BER) of linear receivers
in spatial multiplexing systems are presented in [18]. In [14],
antenna selection algorithms are proposed to minimize the
symbol error rate when orthogonal space-time block coding is
used in MIMO systems. Selection algorithms that only assume
knowledge of the second order statistics of the MIMO channels
are also presented in [13] and [18]. Theoretical studies in
[6] and [16] show that the diversity order achieved through
antenna selection is the same as that of the system using the
whole set of antennas in spatial multiplexing and space-time
coding systems, respectively, which highly motivates the use
of antenna selection.

All the algorithms appeared in the literature assume perfect
channel knowledge to find the optimal antenna configura-
tion. Moreover, these algorithms can not naturally cope with
time-varying channels. This paper presents discrete stochastic
approximation algorithms for selecting the optimal antenna
subset based on advanced discrete stochastic optimization tech-
niques found in the recent operations research literature [3], [4],
[8]. These techniques optimize an objective function (e.g., max-
imum mutual information or minimum error rate) over a set of
feasible parameters (e.g., antenna subsets to be used) when the
objective function cannot be evaluated analytically but can only
be estimated. The methods are in the same spirit as traditional
adaptive filtering algorithms such as the least mean-square
(LMS) algorithm in which at each iteration, the algorithms
make computational simple updates to move toward a better
solution and the performance gets successively improved until
converging to the optimal solution. But in this case, the param-
eters to be optimized take discrete values (i.e., antenna indices
to be used). In a similar manner to the continuous parameter
case, the discrete adaptive algorithms asymptotically converge
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Fig. 1. Schematic representation of a MIMO system with antenna selection.

to the optimum solution. The algorithms also have an attracted
property, meaning that it can be proved that they spend more
time at the optimum value than at any other parameter value. In
the transient phase, the algorithms converge geometrically fast
toward the vicinity of the optimum point [4]. These techniques
have recently been applied to solve several other problems in
wireless communications [5], [24].

When the MIMO channel is time-varying, the optimal an-
tenna subset is no longer fixed. To cope with this situation we ex-
tend our proposed algorithms to be able to track the time-varying
optimal antenna configuration. The first of the proposed adap-
tive algorithms uses a fixed step size which acts as a forgetting
factor to be able to track the optimal antenna subset. The moti-
vation is the same as in the adaptive filtering applications with
a continuous parameter space, such as LMS, in nonstationary
environments where the computation is distributed over time
and slow varying dynamics can be tracked. The choice of the
step-size value has important effects in the tracking performance
by means of convergence rate and stability. However, its value
is difficult to select when the dynamics of the channel are un-
known. Hence, we may optimize the tracking performance by
superimposing an adaptive algorithm for the purpose of tuning
the step-size parameter. Thus, we propose a second adaptive
algorithm comprising two cross-coupled adaptive algorithms:
1) a discrete algorithm to adaptively select the best antenna
subset and 2) a continuous algorithm to adaptively optimize the
step size. Therefore, this second algorithm is attractive when the
details of the underlying physical model of the MIMO channel
and its variability are unknown.

The remainder of this paper is organized as follows. In
Section II, the MIMO system model with antenna selection is
presented. We also formulate the antenna selection problem
as a discrete stochastic optimization problem. In Section III,
two general discrete stochastic optimization algorithms are
presented and their convergence properties are summarized.
In Section IV, several antenna selection criteria are presented,
including maximum mutual information, minimum bound on
error rate, maximum signal-to-noise ratio, and minimum error
rate. The performance of the corresponding stochastic approx-
imation algorithms is demonstrated through several numerical
examples. In Section V, antenna selection in time-varying
channels is addressed. Section VI contains the conclusions.

II. SYSTEM DESCRIPTION

A. MIMO System With Antenna Selection

Consider a MIMO system as shown in Fig. 1 with transmit
and receive RF chains and suppose that there are
transmit and receive antennas. The channel is repre-
sented by an matrix whose element repre-
sents the complex gain of the channel between the th transmit
antenna and the th receive antenna. We assume a flat fading
channel remaining constant over several bursts. In this paper we
concentrate on antenna selection implemented only at the re-
ceiver and therefore . The subset of re-
ceive antennas to be employed is determined by the selection
algorithm operating at the receiver which selects the optimal
subset of all possible subsets of receive antennas.
More generally, antenna selection can also be implemented at
the transmitter with similar selection algorithms although the
channel information needs to be known at the transmitter side.
This is the case when there exists a full feedback channel so
the receiver can return channel state information to the trans-
mitter. In the case of limited feedback between the transmitter
and the receiver, the selection algorithm can be implemented at
the receiver and only information about the antenna indices to
be used is feedback to the transmitter. Another situation where
the selection algorithm is implemented at the transmitter oc-
curs, for example, when the system employs time-division du-
plex (TDD) transmission so that both the uplink and downlink
channels are reciprocal. In the case of antenna selection at both
sides of the transmission, the same selection algorithms can be
used although the amount of possible solutions, , in-
creases dramatically. We note that loading is generally imple-
mented when the transmitter has knowledge of the channel [31].
Therefore, if antenna selection is implemented at the transmitter,
different optimality criteria will be considered to select the best
antenna subset.

Denote as the channel submatrix corre-
sponding to the receive antenna subset , i.e., rows of corre-
sponding to the selected antennas. The corresponding received
signal is then

(1)
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where is the transmitted signal
vector, is the received signal
vector, is the received noise vector, and is the total
signal-to-noise ratio independent of the number of transmit an-
tennas. The entries of are i.i.d. circularly symmetric complex
Gaussian variables with unit variance, i.e., . It
is assumed that the transmitted symbols have unit power, i.e.,

.
For the problems that we are looking at in this paper, the re-

ceiver is required to estimate the channel. One way to perform
channel estimation at the receiver is to use a training preamble
[28]. Suppose each block of symbols comprises of
MIMO training symbols which are used to
probe the channel. In our numerical examples we use ,

or . The received signals corresponding to these
training symbols are

(2)

Denote ,
and . Then (2) can be written as

(3)

and the maximum likelihood estimate of the channel matrix
is given by

(4)

According to [28], the optimal training symbol sequence that
minimizes the channel estimation error should satisfy

(5)

In an uncorrelated MIMO channel, the channel estimates
computed using (4) with orthogonal training symbols are statis-
tically independent Gaussian variables with [28]

(6)

B. Problem Statement

We now formulate the antenna selection problem as a dis-
crete stochastic optimization problem. Denote each of the an-
tenna subsets as (e.g.,
selecting the first, second and sixth antennas is equivalent to

). Denote the set of all possible an-
tenna subsets as . Then, the receiver se-
lects one of the antenna subsets in to optimize a certain ob-
jective function according to some specific criterion,
e.g., maximum mutual information between the transmitter and
the receiver, maximum signal-to-noise ratio or minimum error
rate. Thus, the discrete optimization problem becomes

(7)

where we use to denote the global maximizer of the objective
function. In practice, however, the exact value of the channel

is not available. Instead, we typically have a noisy estimate
of the channel.

Suppose that at time the receiver obtains an estimate of the
channel, , and computes a noisy estimate of the objec-
tive function denoted as . Given a sequence of
i.i.d. random variables , if each
is an unbiased estimate of the objective function , then
(7) can be reformulated as the following discrete stochastic op-
timization problem:

(8)

Note that existing works on antenna selection assume perfect
channel knowledge and therefore treat deterministic combina-
torial optimization problems. On the other hand, we assume
that only noisy estimates of the channel are available and hence
the corresponding antenna selection problem becomes a dis-
crete stochastic optimization problem. In what follows, we first
discuss a general discrete stochastic approximation method to
solve the discrete stochastic optimization problem in (8) and
then we treat different forms of the objective function under
different criteria, e.g., maximum mutual information, minimum
error rate, etc.

III. DISCRETE STOCHASTIC APPROXIMATION ALGORITHMS

There are several methods that can be used to solve the
discrete stochastic optimization problem in (8). An inefficient
method to solve (8) is to compute estimates of the objective
function for each of the antenna subsets and compute an
empirical average which approximates the exact value of the
objective function. That is, for each compute

(9)

and then perform and exhaustive search to find
. Since for any fixed ,

is an i.i.d. sequence of random variables, by the strong law
of large numbers, almost surely as

. Using the finite number of antenna combinations in
implies that as

(10)
Although the method can in principle find the optimal solution,
it is highly inefficient from the antenna selection problem point
of view. For each antenna subset in , estimates of the ob-
jective function would need to be computed and hence it would
need to be estimated times in total. These computa-
tions are mostly wasted in the sense that only the estimate cor-
responding to the optimal set is eventually useful. Moreover,
when the channel is time-varying, this method cannot naturally
track the time-varying optimum solution.

More efficient methods to solve (8) have been proposed in the
operations research literature (see [4] for a survey). The ranking
and selection methods, and multiple comparison methods [20]
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can be used to solve the problem. However, when the number
of feasible solutions increases (usually antenna
subsets), the complexity becomes prohibitive. More recently, a
number of discrete stochastic approximation algorithms haven
been proposed to solve the problem in (8), including simulated
annealing type procedures [2], stochastic ruler [36], and nested
partition methods [32]. In this paper, we construct iterative al-
gorithms that resemble a stochastic approximation algorithm in
the sense that they generate a sequence of estimates of the so-
lution where each new estimate is obtained from the previous
one by taking a small step in a good direction toward the global
optimizer. In particular, we present two different discrete sto-
chastic approximation algorithms based on ideas in the recent
operations research literature. The most important property of
the proposed algorithms is their self-learning capability—most
of the computational effort is spent at the global or local opti-
mizer of the objective function. As we will show, an attractive
property of these methods is that they can be modified to track
the optimum antenna subset in time-varying scenarios.

A. Aggressive Discrete Stochastic Approximation Algorithm

We now present an aggressive stochastic approximation algo-
rithm based on [3]. We use the unit vectors as labels
for the possible antenna subsets, i.e., ,
where denotes the vector with a one in the th position
and zeros elsewhere. At each iteration, the algorithm updates
the probability vector
representing the state occupation probabilities with elements

and . Let be the antenna
subset chosen at the -th iteration. For notational simplicity, it
is convenient to map the sequence of antenna subsets to
the sequence of unit vectors where if

, .

Algorithm 1 Aggressive Discrete Stochastic

Approximation Algorithm

Initialization

n ( 0

select initial antenna subset !(0) 2 
 and

set �[0; !(0)] = 1

set �[0; !] = 0 for all ! 6= !(0)

for n = 0; 1; . . . do

Sampling and evaluation

given !(n) at time n, obtain �[n; !(n)]

choose another ~!(n) 2 
 n !(n) uniformly

obtain an independent observation �[n; ~!(n)]

Acceptance

if �[n; ~!(n)] > �[n; !(n)] then

set !(n+1) = ~!(n)

else

!(n+1) = !(n)

end if

Adaptive filter for updating state occupa-

tion probabilities

���[n + 1] = ���[n] + �[n + 1](DDD[n + 1] � ���[n])

with the decreasing step size �[n] = 1=n

Computing the maximum

if �[n + 1; !(n+1)] > �[n + 1; !̂(n)] then

!̂(n+1) = !(n+1)

else

set !̂(n+1) = !̂(n)

end if

end for

We assume that in a realistic communications scenario, each
iteration of the above algorithm operates on a block of symbols
comprising of training symbols [see description above
(2)]. These training symbols are used to obtain the channel
estimates and hence the noisy estimate of the cost

. In our numerical examples, we use , or
. At the end of each iteration, antenna subset will be

selected for the next iteration.
In the Sampling and Evaluation step in Algorithm

1, the candidate antenna subset is chosen uniformly from
. There are several variations for selecting a candidate

antenna subset . One possibility is to select a new antenna
subset by replacing only one antenna in . Define the
distance as the number of different antennas be-
tween the two antenna subsets and . Hence, we can
select such that . More gen-
erally we can select a new subset with arbitrary distance

, where . Note
that any variation for selecting a candidate needs to be taken into
account to prove global convergence.

To obtain the independent observations in the Sampling
and Evaluation step in Algorithm 1 we proceed as follows.
At time , we collect training symbols to estimate the channel
and compute . Now, collect other training symbols from
another antenna subset and compute . Therefore,
and are independent observations.

Remark: Heuristic variations of Sampling and Eval-
uation step with correlated observations. The above proce-
dure of using independent samples to evaluate the objective
function allows us to rigorously prove convergence and effi-
ciency of the algorithm. Here, we briefly discuss three heuristic
variations of the Sampling and Evaluation step that
use correlated observations of the objective function. In numer-
ical simulations, we observed that these variations also yield
excellent results—however, due to the statistically correlated
observations of the objective function, the proof of convergence
is intractable. The first possibility is to reuse same channel
observation multiple times (i.e., use the same channel estimate
to compute several observations of the objective function under
different antenna configurations). Another heuristic variation
is to incorporate the greedy antenna selection solutions (note
that this is another form of correlation) or reduce the dimension
of the possible transition states (i.e., possible solutions) in the
Markov chain. A third possibility is to devise hybrid solutions
based on a combination of Algorithm 1 and batch processing
(e.g., exhaustive search based on noisy channel estimates or
greedy selections).

The sequence generated by Algorithm 1 is a Markov
chain on the state space which is not expected to converge
and may visit each element in infinitely often. On the other
hand, under certain conditions the sequence converges
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almost surely to the global maximizer . Therefore, can
be viewed as an estimate at time of the optimal antenna subset

.
In the Adaptive filter for updating state

occupation probabilities step in Algorithm 1
denotes the empir-

ical state occupation probability at time of the Markov
chain . If we denote for each as a
counter of the number of times the Markov chain has vis-
ited antenna subset by time , we can observe that

. Therefore, the
algorithm chooses the antenna subset which has been visited
most often by the Markov chain so far.

Global Convergence of Algorithm 1: A sufficient condition
for Algorithm 1 to converge to the global maximizer of the ob-
jective function is as follows [3]. For , ,
and independent observations , ,

(11)

(12)

It is shown in [3] that if the conditions (11) and (12) are sat-
isfied, the sequence is an homogeneous irreducible and
aperiodic Markov chain with state space . Moreover, the se-
quence converges almost surely to in the sense that
the Markov chain spends more time in than any other
state. The transition kernel for the Markov chain is given
by a transition probability matrix whose elements are given
by

(13)

for all , , and

(14)

for all (assuming that the observations
are independent for all and ).

The two conditions in (11) and (12) basically state the condi-
tions that the Markov transition matrix defined in (13) and (14)
need to satisfy. Condition (11) states that for
and , i.e., it is more probable for the Markov chain to
move into a state corresponding to from a state that does not
correspond to than in the other direction. And condition (12)
states that for and , , i.e.,
once the Markov chain is in a state that does not correspond to

, it is more probable to move into a state that corresponds to
than into any other state.

Thus Algorithm 1 is a globally convergent algorithm that
spends more time at the global optimum than any other value.
This property of spending more time at the global optimum than
any other value is called the “attraction” property of the algo-
rithm in [4]. It means that the algorithm is efficient—see also
the classic paper [11] for details on how to compare the asymp-
totic efficiency of simulation based estimators.

An important issue regarding proving the convergence of Al-
gorithm 1 is to choose estimators that satisfy properties (11) and
(12). Next, we propose a conservative algorithm that converges
to the global optimizer of the objective function under less re-
strictive conditions.

B. Conservative Discrete Stochastic Approximation Algorithm

Now, we present a conservative discrete stochastic approxi-
mation algorithm based on ideas in [8] with less restrictive con-
ditions for global convergence.

Algorithm 2 Conservative Discrete Stochastic

Approximation Algorithm

Initialization

n ( 0

select initial antenna subset !(0) 2 


Initialize P-dimensional vectors hhh[0], lll[0]

and �kkk[0] to zero

for n = 0; 1; . . . do

Sampling, evaluation and update

choose another ~!(n) 2 
 n !(n) uniformly

obtain an independent observation �[n; ~!(n)]

and update:

lll[n+1; ~!(n)] = lll[n; ~!(n)]+�[n; ~!(n)] (Accumulated

cost)
�kkk[n + 1; �[n; ~!(n)]] = �kkk[n; �[n; ~!(n)]] +

1 (Occupation time)

hhh[n; �[n; ~!(n)]] = lll[n + 1; �[n; ~!(n)]]=�kkk[n +

1; �[n; ~!(n)]] (Average cost vector)

Acceptance

if hhh[n; ~!(n)] > hhh[n; !(n)] then

set !(n+1) = ~!(n)

else

!(n+1) = !(n)

end if

Update estimate of optimum subset

!̂(n+1) = !(n+1)

end for

As in the Adaptive filter step of Algorithm 1,
the Sampling, evaluation and update step
in Algorithm 2 can be rewritten as an adaptive algo-
rithm with a decreasing step size as: update the oc-
cupation time diagonal matrix as

and

(15)

where as in Algorithm 1, , if
and represents the th component of . The

-dimensional matrix in (15) is initialized to .
The conservative name refers to the convergence of the Markov
chain in Algorithm 2 since the sequence in Al-
gorithm 1 is not expected to converge—in Algorithm 1 only

converges. Note that in Algorithm 2, we only require
one estimate of the objective function per iteration and in gen-
eral, the complexity is similar to the one of Algorithm 1.
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Global Convergence of Algorithm 2: As proved in [8], a suf-
ficient condition for Algorithm 2 to converge to the global op-
timum is to use unbiased observations of the objective function.

IV. ANTENNA SELECTIONS UNDER DIFFERENT CRITERIA

In this section, we use the optimization algorithms to op-
timize four different objective functions . These are:
1) MIMO mutual information; 2) bounds on error rate; 3) SNR;
and 4) error rate. Simulation results are provided in each case
to demonstrate the performance of the corresponding stochastic
approximation algorithm.

A. Maximum MIMO Mutual Information

Assuming that the channel matrix is known at the re-
ceiver, but not at the transmitter, the mutual information between
the transmitter and receiver is given by [9] and [34]

bit/s/Hz (16)

One criterion for selecting the antennas is to maximize the
above mutual information, i.e., choosing the objective function

.
1) Aggressive Algorithm to Optimize the Mutual Informa-

tion: We now present an implementation of Algorithm 1 to find
the maximum of the mutual information in (16) using

(17)

Notes on Convergence: To prove the convergence to the
global optimum when we use (17) in Algorithm 1, we need to
verify that conditions (11) and (12) are satisfied. We propose
the following result that will help us to verify these conditions.

Proposition 1: The random variable in (17) can be accurately
approximated by the Gaussian distribution

(18)

where

(19)

with , are matrices with entries

(20)
where and ,

,

are the nonzero ordered eigenvalues of ,
, is an matrix with determi-

nant , is the gen-
eralized hypergeometric function defined in [17, Eq. (9.14.1)]
as , is the gamma function
[17, Eq. (8.31.1)], is the confluent hypergeometric
function [17, Eq. (9.210.1)] defined as

(21)

and is the Pochhammer symbol.
The second moment of the estimator is

(22)
where , are matrices with
entries as shown in (23), at the bottom of the page, and the vari-
ance in (18) can be computed as

(24)

Proof: The channel estimate in (17) with orthogonal
training symbols in (5) contains independent elements

. Therefore, the channel esti-
mate can be written as which
contains a constant term and a random complex Gaussian
matrix of zero mean. Then, the estimate of the
mutual information function can be written as

(25)

which is equivalent to the mutual information of a Rician flat
fading MIMO channel with a nonzero mean matrix . The
expressions of the mean and variance of the capacity of a noniid
Rician are derived in [22] which correspond to (19) and (24),
respectively.

In particular, under the maximum mutual information crite-
rion, we note that the estimator in (17) has a positive bias, i.e.,

in (16). This fact can be also understood with the re-
sults in [22] and the parallelism of the estimate of the mutual in-
formation computed with noisy channel estimates and capacity
results of the Rician channel. Moreover, it has been observed
that although the estimator is biased

(26)
To prove the convergence to the global optimum using (17) in

Algorithm 1, we still need to verify that conditions (11) and (12)
are satisfied. Consider three different antenna subsets

or (23)
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and . From (17) and (18), we have indepen-
dent random variables ,

and . Condition (11)
can be written as

(27)
and since samples of are independent and Gaussian dis-
tributed, (27) is equivalent to

(28)

From (26), we have which im-
plies . Therefore, (27) holds
since both terms have the same variance. Consider now condi-
tion (12). We can express it as

(29)

which can be rewritten as

(30)
that is equivalent to

(31)

The inequality in (31) has been observed to hold after extensive
simulations using the expressions of the mean and the variance
given in (19) and (24), respectively.

2) Conservative Algorithm to Optimize the Mutual Informa-
tion: We now present an implementation of the conservative
algorithm and prove that it converges to the global maximum of
the mutual information in (16). Since the logarithm is a mono-
tonically increasing function, the antenna subset maximizing

is identical to that maximizing .
In the Sampling, evaluation and update step of

Algorithm 2 choose

(32)

where the channel estimates and are ob-
tained from independent training blocks. We consider the case
in which and satisfy (6).

Theorem 1: With computed according to (32), the
sequence generated by Algorithm 2 converges to the an-
tenna subset corresponding to the global maximizer of the
MIMO mutual information in (16).

Proof: To prove global convergence, we only need to
show that of (32) is unbiased, which is proved in
Appendix A.

To reduce the training symbols needed to estimate the channel
in Algorithm 2, in practical systems we can use a single sample
of the channel and choose

(33)

Fig. 2. Single run of Algorithm 1: mutual information value of the chosen
antenna subset versus iteration number n.

Fig. 3. Average of the mutual information values of chosen antenna subsets
by Algorithm 1 and Algorithm 2 (over 3000 runs) versus iteration number n.

Although this sample is biased, numerical results can show that
Algorithm 2 still converges to the global optimum.

3) Simulation Results: We consider the performance of
Algorithm 1 which selects the antenna subset maximizing the
MIMO mutual information using (33) as an estimate of the
objective function. We consider , and
antennas. We use the ML channel estimate in (4) with
orthogonal training symbols to estimate the channel. We set

dB. The channel is randomly generated
and fixed during the whole simulation. The initial antenna
subset was randomly selected. Fig. 2 shows one run of the
algorithm. In the same figure we show the mutual information
of the best antenna subset and the worst antenna subset, as
well as the median mutual information among the
antenna configurations, found by exhaustive search. Next, in
Fig. 3 we consider 700 iterations per execution and we average
the mutual information of the antenna subset selected at all
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Fig. 4. Average of the mutual information values of chosen antenna subsets
versus iteration number with a hot start adaptive algorithm.

iterations over 1000 channel realizations. In the same figure
we also show the performance of Algorithm 2. It is seen that
in the transient phase, Algorithm 2 has slightly better conver-
gence behavior than Algorithm 1 although in the long term,
Algorithm 1 performs better. From both figures, it is seen that
the algorithms adaptively move to the best antenna subset.
We observe that although the algorithms take some time to
converge to the optimal antenna subset, they move very fast to
an antenna subset inducing high MIMO mutual information.

From a practical point of view, instead of initializing the al-
gorithm by choosing a random antenna subset, there are sev-
eral variations for selecting to avoid the initial transient
phase (i.e., hot start initialization). For instance, based on a
noisy channel estimate, select the antenna subset whose matrix

has maximum Frobenius norm (i.e., select the an-
tennas that receive maximum power). Consider a system with

, , , and SNR dB. Fig. 4
shows the average mutual information over 100 initial channel
realizations versus the iteration number with the hot start adap-
tive algorithm based on the maximum Frobenius norm initial
selection. It is seen that from the very first iteration the adaptive
algorithm is close to the optimal solution. In the same figure
we show the mutual information of the antenna subset selected
based on the maximum mutual information criterion found by
exhaustive search using noisy channel estimates.

B. Minimum Bounds on Error Rate

Consider the system in Fig. 1 where the transmitted data is
multiplexed into the transmit antennas. The input-output re-
lationship is expressed in (1) where in this case, the transmitted
symbols belong to a finite constellation of size . The re-
ceive antennas see the superposition of all transmitted signals.
The task of the receiver is to recover the transmitted data . The
ML detection rule is given by

(34)

At high signal-to-noise ratio, we can upper bound the proba-
bility of error of the ML detector using the union bound [18]
which is a function of the squared minimum distance of
the received constellation given by [19]

(35)

Therefore, minimizing the union bound on error probability
is equivalent to maximizing . In Algorithm 1, we use

. In Algorithm 2, we

propose the following theorem.
Theorem 2: With

(36)
the sequence generated by Algorithm 2 converges to the
global maximizer of (35).

Proof: Applying similar arguments to the proof of The-
orem 1 it follows that the estimate of the objective function in
(36) satisfies the requirements of global convergence specified
by Algorithm 2.

To reduce the number of required training symbols in the
implementation of Algorithm 2, we can use a biased estimator
of using only one estimate of the channel as in Algo-
rithm 1.

Note that the computation of is performed over
possibilities for each antenna subset

which can be prohibitive for large or . Let
be the smallest singular value of and let the min-
imum squared distance of the transmit constellation be

. Then, it is shown in [19] that

. Therefore, a selection criterion can
be simplified to select the antenna subset whose asso-
ciated channel matrix has the largest minimum singular
value. In our problem, based on an estimate of the channel at
time , we let .

Simulation Results: We consider the performance of Algo-
rithm 1 with , (45 different antenna subsets)
and with ML channel estimate and orthog-
onal training symbols to estimate the channel. The channel
is assumed to be fixed during the whole run of the algorithm
and we set dB. We compare three antenna configura-
tion: 1) best antenna set: antenna set with ; 2)
worst antenna set: antenna set with ; and 3) the
antenna set chosen by the algorithm at iteration , i.e., .
Antenna sets 1) and 2) are found by an exhaustive search as-
suming that the channel is perfectly known. We performed 90
iterations of the algorithm. Fig. 5 shows a single run of the al-
gorithm. Fig. 6 shows the average of 100 runs of the algorithm
over the same fixed channel . It is observed from the two fig-
ures that the algorithm converges and as in the maximum of the
mutual information case, it is seen that although it takes some
time to converge, it moves quite fast to an antenna subset whose
channel has a high . It is important to point out that Algo-
rithm 1 using the above cost functions converges to the antenna
subset which maximizes or . However, these criteria
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Fig. 5. Single run of Algorithm 1: minimum singular value of the antenna
subset selected versus iteration number n.

Fig. 6. Average (over 100 runs) of the minimum singular value of the channel
of the chosen antenna subsets versus iteration number n.

do not necessarily minimize the bit error probability since they
are based on bounds. Actually, we can show situations in which
both cases converge to different antenna subsets and none of
them correspond to the antenna subset minimizing the bit error
probability. The main reason for this is that the bound is tight
only for high signal-to-noise ratio. To observe this phenomenon
we consider a system with , , , and

dB. We average the BER of 30 different channels real-
izations and with each channel realization and each antenna
subset within the same channel we send 14 000 QPSK sym-
bols to compute the BER. Performing an exhaustive search (as-
suming perfect knowledge of the channel), we find the antenna
subsets under each criterion. We observe that with the cri-
terion, the antenna subset selected obtains a BER of 0.000 54,

with the criterion the BER is 0.000 49, with the cri-
terion the BER is 0.000 39, and the minimum BER of all antenna
subsets is 0.000 35.

C. Maximum SNR

Linear receivers for the system in (1) are simpler receivers in
which the received vector is linearly transformed to obtain

(37)

For linear receivers, the symbol error probability is influenced
by the post processing signal-to-noise ratio. For the minimum
mean-square error (MMSE) receiver, after applying the equal-
izer matrix
the signal-to-noise ratio for each of the transmitted data
streams can be expressed as [18]

SNR

for (38)

Correspondingly, in Algorithm 1 we set

(39)

For the zero-forcing (ZF) receiver, ,
where denotes the pseudo-inverse. For each of the trans-
mitted data streams, the signal-to-noise ratio after applying the
equalizer matrix can be expressed as [18]

SNR for

(40)
and correspondingly, in Algorithm 1 we use

(41)

Another case of interest is when the orthogonal space-time
block codes are employed. Using the coding and decoding al-
gorithms in [1], [33], the receiver signal-to-noise ratio of the
data stream is given by [14]

SNR trace (42)

where indicates the Frobenius norm. Therefore, in Algo-
rithm 1 we may use . With Algorithm 2,
we propose the following theorem to obtain an unbiased esti-
mate of the objective function.

Theorem 3: With

trace (43)

the sequence generated by Algorithm 2 converges to the
global maximizer of (42).
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Proof: Applying similar arguments to the proof of The-
orem 1 it follows that the estimate of the objective function in
(43) satisfies the requirements of global convergence specified
by Algorithm 2.

D. Minimum Error Rate

As shown in Section IV-B for the ML receiver, the antenna
subset chosen by the different criteria based on bounds do not
necessarily choose the antenna subset minimizing the bit error
rate (BER). In this section, we propose an antenna selection al-
gorithm that directly minimizes the symbol or bit error rate of
the system under any type of receivers.

In the proposed method, a noisy estimate of the simulated
error rate is used as the cost function in the stochastic approx-
imation algorithm instead of a noisy estimate of a bound. The
method proceeds as follows. Assume for example that the ML
decoding algorithm in (34) is used. At time , estimate the
channel with antenna subset . At the receiver, gen-
erate fake random symbol vectors
with and perform a simulation of the form

(44)

where the matrix contains i.i.d. samples.
Perform the ML detection on (44) to obtain

(45)

and estimate the bit error rate BER by comparing and
. In this way, at time , an estimate of the real BER has

been obtained. Note that the noise in the estimate of the BER is
due to the error in the estimate of the channel and to the limita-
tion in the number of fake symbols used in the simulations. The
number of fake symbol vectors required to obtain a good esti-
mate of the BER depends on the signal-to-noise ratio of the
channel. For low signal-to-noise ratio, only short fake sequences
are needed. The estimated BER will become more accurate as
we increase the number of the fake symbols although the
complexity of the algorithm will grow accordingly. Therefore,
in Algorithm 1 we use BER as an observation
of the cost function.

Note that the fake symbols are not actually sent through
the channel. They are merely generated at the receiver to esti-
mate the BER. It is important to point that this method uses an
estimate of the BER and a closed-form BER expression is not
needed, which makes it appealing for other receivers for which
even a tight bound is difficult to find. Among these receivers, we
may cite the ordered nulling and cancellation BLAST receivers
[12]. Obviously, the same method can be used in antenna selec-
tion for MIMO systems employing various space-time coding
schemes. Moreover, it is straightforward to modify the algo-
rithm to minimize the symbol error rate or frame error rate
as well.

The main disadvantage of this approach is that in the high
SNR regime, the BER can be very low and therefore, a large
amount of fake symbols need to be used if we want to obtain a

Fig. 7. Single run of Algorithm 1: BER of the of the chosen antenna subset
versus iteration number n employing an ML receiver.

good estimate of the BER. On the other hand, it has been ob-
served by simulations that the antenna subset having the min-
imum BER at a SNR value , corresponds to the antenna subset
having the minimum BER for a range of SNR values around
as long as there is not a large difference in the SNR. Therefore,
we can reduce the SNR of the simulation to find the best antenna
subset when the SNR is high. In this way, a smaller number of
fake symbols will be needed to obtain a good estimate of the
error rate and the complexity can be considerably reduced.

Simulation Results: To show the performance of this method
in Algorithm 1 we consider first an ML receiver. We use QPSK
symbols and we consider , (i.e., 15 different an-
tenna configurations) and . The channel is
randomly generated and fixed during the whole simulation. We
set dB and we use orthogonal training symbols to
estimate the channel. Before starting the algorithm, long simu-
lations are performed assuming perfect channel knowledge over
all antenna configurations to find the BER associated with each
antenna subset (including the worst and best antenna subset).
We run iterations of the algorithm with fake
symbols per iteration. Fig. 7 shows the BER of the antenna se-
lected by the algorithm comparing it with the median, the best
and the worst BER. It is seen that the algorithm converges to the
optimal antenna subset. Moreover, it is observed that antenna se-
lection at the receiver can improve the BER by more than two
orders of magnitude with respect to the median BER even for
such small values of the signal-to-noise ratio in the channel.

Now, we consider the performance of this method in a
system employing the ordered nulling and cancellation BLAST
receiver. We consider the MMSE criterion for the nulling
operation [12]. We use the same channel realization and system
parameters as in the ML case. Before starting the algorithm,
long simulations are performed assuming perfect channel
knowledge over all antenna configurations to find the BER
associated with each antenna subset. We use 400 fake symbols
per iteration. Fig. 8 shows the BER of the antenna selected
by the algorithm and we compare it with the median, the best
and the worst BER. As in the ML case, it is seen that the
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Fig. 8. Single run of Algorithm 1: BER of the of the chosen antenna subset
versus iteration number n in a system employing the ordered nulling (MMSE)
and cancellation BLAST receiver.

algorithm converges to the optimal antenna subset. Moreover,
it is observed that antenna selection at the receiver improves
the BER by more than two orders of magnitude with respect to
the median BER.

We now consider the average of 2000 runs of the algorithm
over a new channel realization employing the ordered nulling
and cancellation BLAST receiver. We set dB and we
use orthogonal training symbols to estimate the channel.
Before starting the algorithm, long simulations are performed
assuming perfect channel knowledge over all antenna config-
urations to find the exact BER associated with each antenna
subset. We consider four different implementations of the al-
gorithm depending on the length of the fake sequence and
the used in the simulations: 1) the simulation to estimate the
BER at every iteration of the algorithm is performed with the
exact of the channel and fake symbols; 2) to reduce
the complexity, the simulation is performed with the exact SNR
of the channel dB but with only fake symbols;
3) the SNR is reduced to dB and fake sym-
bols are employed; and 4) the SNR is reduced to dB and
only fake symbols are employed. In Fig. 9, the average
of the exact BER selected by the algorithm at each iteration is
plotted. In the same figure, we show the BER of the best an-
tenna subset and worst antenna subset, as well as the median
BER among the 15 antenna configurations, found by exhaustive
search. It is seen that the algorithm moves toward the optimal
antenna configuration in the four cases considered. Comparing
the performance of cases 1) and 2), we observe that 1) has a
better convergence behavior because by using longer fake se-
quences, the estimate of the BER is less noisy. Comparing the
performance of cases 1) and 4), we find that the behavior is very
close although in 4) we have reduced the complexity by more
than one order of magnitude. Comparing the performance of 2)
and 4), we observe that although 2) uses the real of the channel
to estimate the BER, the behavior is worse. This result is due to
the fact that at very low values of the exact BER (i.e., high SNR)
we cannot obtain a good estimate of the BER with only

Fig. 9. Average of 2000 runs of the algorithm: Exact BER of the chosen
antenna subset versus iteration number n in a system employing the ordered
nulling (MMSE) and cancellation BLAST receiver.

symbols. Moreover, we observe that case 3) has the best per-
formance since with symbols we can have a better
estimate of the BER when the SNR is 5 dB. However, although
not plotted in the figure, if the number of fake symbols be-
came larger, the performance of 1) would become better than the
one of 3). In summary, we can reduce the complexity without
incurring in a convergence penalty by reducing the SNR of the
simulations (assuming that the SNR difference is not large) and
using a shorter sequence of fake symbols .

V. ADAPTIVE ALGORITHMS FOR ANTENNA SELECTION IN

TIME-VARYING CHANNELS

In the previous section, we described discrete stochastic
approximation algorithms for antenna selection in static MIMO
channels. Now we consider nonstationary environments for
which the optimum antenna subset takes on a time-varying
form, , since the MIMO channel is time-varying.
Consequently, the MIMO antenna selection algorithms should
be able to track the best antenna subset if the variation of the
channel is slow for tracking to be feasible. In general, any
efficient adaptive solution in time-varying scenarios should
include some form of recursive selection. The adaptive discrete
stochastic approximation algorithms proposed in this section
are directly applicable to any of the objective functions dis-
cussed in Section IV.

A. Fixed Step-Size Discrete Stochastic Approximation
Algorithm

In the static channel environment discussed in the previous
section, in order for the method to converge, it was necessary
for the method to become progressively more and more con-
servative as the number of iterations grew. Consequently, a de-
creasing step size, , was used, in order to avoid
moving away from a promising point unless there was a strong
evidence that the move will result in an improvement. In the
time-varying case, we require a step size that permits moving
away from a state as the optimal antenna subset changes [24].
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Therefore, to track the optimal antenna subset, we replace the
Adaptive filter for updating state occupa-
tion probabilities step in Algorithm 1 by

(46)

where . A fixed step size in (46) introduces an ex-
ponential forgetting factor of the past occupation probabilities
and allows to track slowly time-varying optimal antenna subset

. The same arguments can be used to extend the applica-
tion of Algorithm 2 to time-varying channels by using a fixed
step size in (15).

For being a probability vector (i.e., the elements add 1
and are nonnegative) the step size must satisfy . Note
that implying that

. Expressing (46) as we
observe that the elements of are nonnegative, which
proves that is a probability vector.

Recall the inefficient brute force off-line approach in (9) and
(10) for static channels. We showed that an exhaustive search
over a large number of symbol blocks while optimal (as the
number of estimates goes to infinity), is numerically very
inefficient. Based on the off-line brute force approach, one ob-
vious candidate for a time-varying channel is to do a brute force
exhaustive search independently for every new symbol block.
Actually, the brute force off-line search can be viewed as an
extreme case of our recursive algorithm by setting a forgetting
factor such that all the previous estimates are forgotten. That
is, the exhaustive search without taking into account previous
calculations of the objective function is a special case of our
new algorithm with forgetting factor . That is, all the ob-
jective function calculations using non promising antenna sub-
sets would be completely wasted in the second symbol block.
Thus, when the number of antenna subsets is large, this solution
would be very inefficient, highly complex, and still, it would not
converge to the optimal solution. Therefore, the key difference
between the exhaustive search and the proposed recursive ap-
proach is that our proposed algorithm does not have a forgetting
factor that completely disregards previous estimates. We refer
to our recent paper [37] for a rigorous weak convergence anal-
ysis of our tracking algorithm.

It has been observed that time-varying channels modify the
optimal antenna subset over the time although most of the an-
tennas in the optimal antenna subset remain the same. Hence,
in time-varying channels, we can modify the Sampling and
Evaluation step in Algorithm 1 to select a candidate so-
lution uniformly from where is defined as
the set of antenna subsets such that the distance

, where we choose .
Simulation Results: We demonstrate the tracking perfor-

mance of this version of the algorithm under the maximum
mutual information criterion in time-varying channels. We use
(33) as an estimate of the objective function. We assume that
each channel gain between a transmit and receive antenna
remains constant over symbol block intervals (we assume
that each block interval corresponds to one iteration of the

Fig. 10. Mutual information values of the chosen antenna subsets versus
iteration number n (fixed step-size).

algorithm) and follows a first order AR dynamics over written
as

and (47)

where and are the fixed parameters of the model related
through and . The parameter

can be related to the maximum Doppler frequency as
, where is the zeroth-order Bessel function

of the first kind, and is the duration of one block interval. In
the simulations, we set , and the constant step
size . We consider , and .
We set dB and we use the ML channel estimate with

orthogonal training symbols to estimate the channel. It
has also been observed that in most cases

and therefore we set . The tracking performance of the
algorithm is shown in Fig. 10. The maximum, minimum and
median values of the mutual information as a function of time
are also shown. It is seen that the algorithm closely tracks the
best antenna subset.

B. Adaptive Step-Size Discrete Stochastic Approximation
Algorithm

In the previous version of the algorithm, the choice of the
fixed step size has high influence in the performance of the
algorithm. The faster the channel changes or the further away
of the current subset estimate of the optimal antenna subset, the
larger should be. On the other hand, the larger the effects of the
observation noise or the closer we are from the optimal antenna
subset, the smaller should be [27]. However, in practice, one
does not know the dynamics of the channel in advance.

In this section we present a method to adaptively adjust the
step size as the algorithm evolves. In this way, at each it-
eration , our stochastic approximation algorithm has two esti-
mation problems to contend with. The first is the estimation of

and the second is the estimation of . Since the is
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a continuous variable, we can use an adaptive algorithm similar
to the gradient descent algorithm [7]. This underlying adaptive
algorithm to adjust would use estimates of the derivative
of the mean square error with respect to the step size . These
ideas are based on [7] and [26] and have been further exploited
in [24] and [25].

Within this new framework, the estate occupation proba-
bility vector depends on . Denote the mean-square derivative

by , i.e.,

(48)

Define the error

(49)

and differentiate the square of the error with respect as

(50)

Next, differentiating in (46) with respect to yields

(51)

The proposed scheme aims to minimize the expectation of (49)
by scaling depending on the error in (49). The following
adaptive step-size discrete stochastic approximation algorithm
is adopted as a modification of Algorithm 1.

Algorithm 3 Adaptive Step-Size Discrete

Stochastic Approximation Algorithm

Initialization, Sampling, and Acceptance:

the same as Algorithm 1

Substitute the update of the state occupa-

tion probabilities by

eee[n] =DDD[n+ 1]� ���[n];

���[n+ 1] =���[n + 1] + �[n]eee[n];

�[n + 1] = �[n] + �eee
T [n]JJJ[n]

�

�

JJJ [n+ 1] = (1� �[n])JJJ[n] + eee[n]; JJJ[0] = 0: (52)

Compute the maximum: the same as Algorithm 1

In the algorithm, denotes the learning rate. As decreases,
the rate of adaptation decreases. If the learning rate , then
the algorithm reduces to the fixed step-size algorithm.
denotes the projection of onto the interval with

. For fast speed of tracking and good transient
behavior, one seeks as large as possible but not greater than
the instability value. We note that the sequence will not go
to zero unless optimal antenna subset remains constant.

We point out that Algorithm 3 is composed of three parts: 1) A
random search of a next candidate over ; 2) a continuous
adaptive LMS algorithm which updates the step size ; and 3)
a discrete adaptive algorithm that updates the state probability
vector , where the last two adaptive algorithms are cross-
coupled. Assuming that there is a unique local minimum of

Fig. 11. Mutual information values of the chosen antenna subsets versus
iteration number n (adaptive step-size).

, it can be proven that converges weakly to
[24].

An interesting feature of the algorithm is that it does not as-
sume anything about the dynamics of the problem. It self adapts
to track the dynamics of the channel and consequently, the best
antenna subset .

Simulations Results: To demonstrate the performance of this
version of the algorithm, we consider the same system parame-
ters as in Section V-A. The bounds for the step size are chosen
as and and the learning rate is set to

. We restrict the candidate solution to antenna subsets
with . Fig. 11 shows the performance of the algorithm.
The maximum, minimum and median values of the mutual in-
formation as a function of time are also shown for comparison. It
is seen that the adaptive step-size algorithm has a better tracking
performance than the constant step-size algorithm.

VI. CONCLUSIONS

We have developed MIMO antenna selection algorithms
based on various performance criteria in situations where only
noisy estimates of the channels are available. The proposed
techniques are based on the discrete stochastic approximation
algorithms found in the recent operations research literature,
which generate a sequence of antenna subsets where each new
subset is obtained from the previous one by taking a small step
in a good direction toward the global optimizer. One salient
feature of the proposed approach is that no closed-form expres-
sion for the objective function is needed and only an estimate
of it is sufficient. Therefore, the algorithm is able to choose
the antenna subset that minimize the bit, symbol or frame error
rate, under any MIMO techniques (e.g., BLAST, space-time
coding) and any receiver detection methods.

We have also developed antenna selection algorithms for
time-varying scenarios where the optimal antenna subset is
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slowly varying. By employing the constant or adaptive step-size
discrete stochastic approximation algorithms, the time-varying
optimal antenna configuration can be closely tracked. Finally,
we have provided extensive simulation results to demonstrate
the performance of these new MIMO antenna selection algo-
rithms under various selection criteria.

APPENDIX A
UNBIASED ESTIMATE OF

Obtain an estimate of

(53)

using

(54)

where the channel estimates and are ob-
tained from independent training blocks. We consider the case
in which and satisfy (6).

Theorem 4: With computed according to (54), the
estimate of the determinant in (53) is unbiased.

Proof: For convenience, define

(55)

and denote the elements of as .
Consider (55). Since and are statistically

independent samples, clearly is an unbiased estimator
of . Now consider . From [21, p. 8]

(56)

where the sum runs over all permutations of the items
and is 1 or 1. Omitting the sign, each

term in the summation is of the form

(57)

Thus, each term in the summation involves the product of ele-
ments of from different rows and columns.

Next, due to the independence assumption in (6), it follows
that for the matrix , the elements and are
independent for and , i.e., elements of
from distinct rows and columns are statistically independent.
Hence are statistically inde-
pendent with zero mean which implies that is an
unbiased sample of and satisfies

(58)

where is a zero mean random variable.
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