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ABSTRACT
Despite the advances in battery technologies, mobile phones still
suffer from severe energy limitations. Modern handsets are rich
devices that can support multitasking thanks to their high process-
ing power and provide a wide range of resources such as sensors
and network interfaces with different energy demands. There have
been multiple attempts to characterise those energy demands; both
to save or to allocate energy to the applications on the handset.
However, there is still little understanding on how the interdepen-
dencies between resources (interdependencies caused by the appli-
cations and users’ behaviour) affect the battery life. In this pa-
per, we demonstrate the necessity of considering all those dynam-
ics in order to characterise the energy demands of the system ac-
curately. These results indicate that simple algorithmic and rule-
based scheduling techniques [7] are not the most appropriate way
of managing the resources since their usage can be affected by con-
textual factors, making necessary to find customised solutions that
consider each user’s behaviour and handset features.

Categories and Subject Descriptors
C.4 [Performance of systems] Measurement techniques

General Terms
Measurement, human factors

Keywords
Smartphone usage, user behaviour, resources demand

1. INTRODUCTION
Simultaneous use of the diverse hardware systems embedded in a

modern smart phone would limit many handsets to just a few hours
of operation. In practice a phone will attempt to mitigate this prob-
lem and extend its lifetime by making selective use of the avail-
able resources. This is most often implemented through the use
of standby power states, automatic control of the screen backlight,
and actively switching particular subsystems (such as networking
technologies) on or off as demand dictates. These techniques are
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demand driven and so it is quite possible for a power-hungry ap-
plication to drastically shorten the operating time of the handset.
Power-aware operating systems such as Cinder [16] attempt to al-
leviate this problem by enforcing energy allocations made to par-
ticular processes. However, the complex and rapidly evolving way
in which we interact with our handsets makes this allocation a dif-
ficult and dynamic problem.

The Google Nexus handset is a pertinant example. This de-
vice contains a 1GHz ARM CPU with additional hardware sup-
port for various network technologies (e.g. GSM, UMTS, HSDPA,
HSUPA, Wifi and Bluetooth), embedded GPS and A/V acceller-
ation. Not only does this comprise a complex platform but there
are often many different opportunities for achieving some particu-
lar goal each of which provides a different tradeoff in power con-
sumption and performance. This makes previous energy models
and resources managers designed for laptops [20] and data cen-
ters [4] inapplicable. Applications such as Google Latitude [11]
create further complexity by generating correlated demand across
many disparate subsystems of the phone.

In order to better understand the resource management chal-
lenges posed by these devices we ran a preliminary study collect-
ing data on handset usage from a small set of volunteers. In this
paper, we use our study to argue that system workload, resource
utilisation and energy demands are diverse and dynamic both in
time and space, are highly affected by contextual information, and
vary significantly for individual users’ patterns of usage. The ram-
ifications of this are that the largely static, uncorrelated allocation
systems used in systems such as ECOSystem [20] and Cinder [16]
are likely to be very difficult to use in practice. We highlight strict
usage routines evidenced by some users as they interact with their
handsets at specific places and times. For these users it is possible
that this kind of contextual information will prove a useful input to
any energy allocation algorithm.

Our particular interest is in the construction of a Social Operating
System which not only uses the hardware within a device to effi-
ciently achieve some goal but which also shares this functionality
between devices. This study is our first work towards discovering
the plausibility of such a system which will depend on the man-
ner in which smart phone handsets are used, the demands of their
applications and the energy costs thereof.

2. DATASET DESCRIPTION
The data collected in our experiment consists of time series val-

ues collected by tracking the mobile usage of 18 Android OS users
for a period of 2 weeks in February 2010. Most of the participants
used their personal handsets; however, three Android phones were
given to volunteers. No constraints or limitations were imposed
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Dataset Description

OS Info

Total CPU Load
OS and Process CPU Load

Process Running
Free/Cached Memory

Battery

B. Level
B. Temperature

B. Current
B. Voltage

Charging Status

Network

Airplane Mode
Network Type

Data Network State
Data Network Activity

Roaming
Calling State
WiFi State

Bluetooth State
Network Traffic

CID/LAC

Others
GPS Status

Screen Activity
USB Connection

Table 1: Information collected for Android handsets

Power State Telephony Power (W) Power with daemon running (W)
Standby Airplane 0.0199 0.0714

Screen On Airplane 0.3416 0.3857
Standby Cell 0.0322 0.1157

Screen On Cell 0.3739 0.4099

Table 2: Measured energy consumption for an HTC G1 with
and without Resources Tracker running in the background
with different screen and telephony modes

on the subjects and they were encouraged to interact normally with
their phones. In total, we collected a total of 275 days of active mo-
bile usage and a further 70 days of inactivity for which the phones
were switched off, mainly at night whilst charging.

The information was collected using Resources Tracker, a back-
ground process running on each handset which sampled the status
of more than 20 variables highlighted in Table 1 every 10 seconds.
We used an alarm callback to suspend the process between samples
in order to minimise the impact on battery life and system perfor-
mance. Most of the information was obtained by using the Android
public APIs[1] and the information available in the /proc/ filesys-
tem. The information was stored locally so no network usage was
required and the location information was obtained using Cell ID
information, a passive method that does not require turning on any
energy intense sensor such as GPS.

As it is shown in Table 2, the additional power consumption
caused by the background process is not inconsequential and a
number of users reported that they noticed a shortened battery life-
time. In future we hope to investigate whether it is possible to
reduce the overhead of logging without impairing data fidelity by
varying the sampling rate perhaps based on state change events
from the handset.

3. USAGE PATTERNS
Due to the multivariable nature of the problem, we were first

interested in discovering dependencies between different handset
resources in order to reduce the analysis complexity. This section
explains how we used two well known multivariable analysis tech-

Figure 1: Plot of the average percent variability explained by
each principal component considering all the Android users.

niques [17] Principal Component Analysis (PCA) and Factor Anal-
ysis (FA) for this purpose.

PCA is a mathematical tool commonly used to transform a num-
ber of possibly correlated variables into a smaller number of un-
correlated variables called principal components. The first princi-
pal component accounts for as much the variability of the data as
possible, and each subsequent component accounts for as much of
the remaining variability in turn. FA is a complementary statistical
method used to describe variability among observed variables in
terms of fewer unobserved variables called factors. The observed
variables are modeled as a linear combination of all the factors, plus
error terms. FA estimates how much of the variability is caused by
common factors whereas PCA estimates which factors can account
for as much of the variability as possible.

After running PCA for each user, it is clear that it is not easy
to reduce the number of variables and the complexity in the sys-
tem. Figure 1 shows the percentage of the variance that each one
of the first ten principal components can explain on average for all
the users. It is necessary to consider up to 10 variables to explain
almost 75% of the system variability. Furthermore, those 10 prin-
cipal components also differ between users. Figure 2 shows the
coefficients obtained from PCA and FA for 2 particular users. The
principal and second component are represented in this biplot by
the horizontal and vertical axis respectively while each of the vari-
ables coefficient is represented in this plot by a vector which its
direction and length indicate how this variable contributes to each
one of the two principal components. The significant factors are
markedly different for each.

Although there are no systematically useful simplifying factors
across our dataset we can use these results to distinguish between
participants with different patterns of usage. We can identify, for
exampe, which users did not take advantage of particular resources
and services. Some users never took advantage of power-saving
features like airplane mode and others never were roaming. PCA
can detect this diversity of usage between users. Moreover, the
PCA analysis revealed that GPS and voice calls do not account
for much of the variance in the dataset. As a result, they are not
responsible for as much of the total energy consumption in the sys-
tem as use of the 3G, WiFi and the screen backlight due to their
low usage. Moreover, FA also reveals that some sets of variables
are highly correlated to each other (e.g. battery capacity, charg-
ing mode and battery voltage) independently of the users, thus it is
possible to slightly reduce the number of variables to study. Nev-
ertheless, the results obtained by these techniques lead us to argue
that one should view usage from a user-centered perspective, rather
than attempting to cluster the general behaviour of the users as in
previous studies [14], [3].
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Figure 2: Biplot showing the principal and second principal component coefficients (Top) and the Factor Analysis coefficients (Down)
for two Android users: U1 and U17. Those techniques clearly reveals the notable differences between the users interaction with their
handsets

4. THE IMPORTANCE OF CONTEXT
It is well known from previous studies that user mobility

can be highly predictable both in cellular networks [18] and in
WLANs [19]. Users generally remain subscribed to a small set
of base stations and the majority of any interaction with their re-
sources or applications takes place there. This makes it possible
to detect locations where the energy demands are higher. Figure
3 shows the percentage of time that the users were subscribed to
their 3 most common basestations during the experiment1 and the
percentage of time that the OS did not report any base station in-
formation2. During the whole experimental period, an average user
spent more than 50% of their time subscribed to their top 3 cells and
conversely for 25% of the time no cell information was reported.

Energy demand and resource availability depended enormously
on each participant’s pattern of usage both in terms of which appli-
cations they ran and when and where they were doing so. This in-
teraction can be very variable and dynamic both in time and space.
For instance, some users demonstrated heavy 3G data usage whilst
others spent a lot of time calling. Nevertheless, an average user
from our study sent between 5 to 10 MB of data per day, called 5
to 10 minutes a day and had between 30 to 90 minutes the screen
active per day.

Spatial context affects how users interact with their handsets. For
instance, as an extreme case, a roaming user will reduce or elim-
1This graph only includes the time that the phones were active.
2CID, MAC, MMC and MNC parameters. Note that not report-
ing cell information can be caused by errors when polling the OS
and also by the periods of time without signal. Nevertheless, in
case not having access to the cellular network, confirms that energy
consumption is highly influenced by environmental factors like ge-
omorphology and demography

Figure 3: Experiment subjects’ cells subscription during the
length of the experiment. Note that No Signal does not strictly
imply that the handset is not under network coverage: the OS
could have failed at the time of providing this information.

inate their 3G traffic for financial reasons. Figure 4 shows three
scatterplots of the average percentage of daily usage of the 3G in-
terface, telephony and the screen while the users are subscribed to
their three most popular cells. We can infer that users U1, U5,
U8, U9, U14 and U18 have a strong routine due to their low vari-
ance and are quite likely to interact in those locations, presenting
a highly predictable usage. On the other hand, further research
is necessary to understand the remaining users to identify whether
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Figure 4: User classification by their percentage of the usage/interaction with the 3G interface, phone and screen while subscribed
at the most popular cells. That information can be used to identify the places where the energy consumption will be higher.

Figure 5: Average usage and availability of different mobile resources for users U1 to U10 per hour of day. As with Figure 4, that
information can be used to identify peaks of usage on those resources and the time when the energy resources can be recovered.

they are interacting with their handsets whilst commuting, in de-
fined non-popular places or simply in random locations.

Most resources in the handset can be recovered and re-allocated
once used by a process. However, that is not the case for energy
which is only recovered by charging the handset. Figure 5 plots the
average usage and availability of different mobile resources such
as battery, telephony, network, screen and CPU for users U1 to
U10 per hour of day. The results shown in Figure 5 reveal that
the battery usage and charging opportunities are well defined for
some individuals. This makes it easy to estimate when energy will
be consumed, how much energy will be available and when it will
be recovered. For instance, U3, regularly has minimum battery
capacity late in the evening just before, with high-probability, she
starts charging the handset. However, other users do not present
such a defined pattern (subjects U2 and U5) and yet others present
a much burstier pattern for other resources. We highlight this in
Figure 6 that plots the correlograms or autocorrelation plots of the
battery capacity and the CPU load for 3 users for a 7 days lag.

A correlogram is a plot of the sample autocorrelations versus the
time lags that helps to identify randomness and periodicities in a
dataset. The correlogram clearly reveals that U3 presents a clear
charging periodicity of 24 hours approximately while U8 does not
have such a marked routine. However, those results highly depend
on the resource analysed since, as we can also observe, the CPU
load is not periodic at all indicating that CPU load might be more
difficult to predict than battery capacity.

5. ALLOCATING RESOURCES
Current mobile operating systems are multitasking and more

than 250 different application processes and 68 system processes
were reported amongst our Android users. This makes for an enor-
mous set of of possible combinations of running applications. In
this environment energy-allocating operating systems need to make
efficient and autonomous allocation decisions whilst minimizing
reliance on user input and inaccurate information as battery dis-
charging rate. The use of off-line information as in Cinder [16] and
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Figure 6: Correlogram for the CPU load and the battery ca-
pacity for users U1, U3 and U8 during a period of 7 days. The
battery capacity correlogram shows a clear pattern and a peri-
odicity on the energy consumption and recharging cycle every
24 hours approximately while the CPU load is highly random.

ECOSystem[20] is unlikely to succeed. Instead it would be inter-
esting to see what can be learnt from application runtime behaviour.

Table 3 shows the resources fingerprint of the most intense
applications in terms of CPU load, screen usage, GPS and
network usage. As we can see, some applications are ex-
tremely intense on the usage of their resources. For example,
Google Goggles is an image based search tool with process name
com.google.android.apps.unveil. We can see it requires consider-
able processing power and network bandwidth. However, these
statistics cannot be generalised for all the users since CPU intense
applications are not necessarily intense in other dimensions such
as network traffic and depend on the users’ interaction with this
application. This kind of statistics must be monitored at runtime
by the OS in each handset to optimise the battery capacity of the
device and if an application is not meant to be running, it must be
killed. These decisions are difficult because there are many desir-
able application background processes such as email(i.e reducing
checking) applications or streaming services like Lastfm or Spo-
tify;. Nevertheless, the results provided in the previous sections
clearly demonstrate that contextual information helps to identify
the peaks of usage both in space and time, being possible to iden-
tify strong patterns of usage in some users. This information can be
used by schedulers to efficiently allocate energy to the applications
by forecasting the future demands.

6. RELATED WORK
Most of the studies conducted to understand the use and energy

demands of mobile handsets can be divided in two groups. The
first type focus on measuring and modelling the impact of wireless
network interfaces on the battery life [15],[13] and providing tech-
niques to extend the battery life of the handsets [2]. Prior work
has also studied the impact of different energy saving techniques
in 3G networks using analytical models [12],[6]. The second type
of study addresses how users interact with batteries both in laptops
and mobile handsets from a context-aware perspective [3]. Simi-
larly, the authors of [14], propose a context-aware battery manager
that predicts when the next charging opportunity will be and warns

CPU Load (%)
Process Name Avg Max

com.skype.android.lite 86.9 95
com.glu.android.bonsai 73.4 82

com.markspace.missingsync 65.5 94
Active while Screen ON

Process Name % of time
com.htc.soundrecorder 99.8
dk.logisoft.aircontrol 99.7

au.com.phil.mine 99.7
GPS ON probability while running

Process Name % of time
com.cooliris.media 7.14
com.aws.android 6.01

com.google.android.apps.finance:remote 1.28
Downstream traffic (kbps)

Process Name Avg Peak
cmupdaterapp.ui 172.2 767.2

com.google.android.voicesearch 144.3 249.6
com.google.android.apps.unveil 39.1 184.1

Upstream traffic (kbps)
Process Name Avg Peak

com.google.android.apps.unveil 51.1 101.7
com.htc.album 27.2 214.1

comupdaterapp.ui 15.9 24.5

Table 3: Top 3 Applications by average resource usage

the user when it detects that the phone battery will be exhausted
before this can happen. However, the complex interdependencies
between resources limit the applicability of these studies to modern
handsets. Location sensing is an example of the potential for using
different sensors to provide the same type of information. In [21],
the authors suggest a middleware system that aims to optimise the
energy consumption by using measurements from inertial sensors
to minimize the use of the GPS sensor.

There are many bibliographic references regarding resource allo-
cation and energy-aware operating systems. Early work in operat-
ing systems such as Beos [5] could handle multimedia applications
that were not very computation or I/O intense but had other char-
acteristics in other dimensions. However, Beos was scheduling for
a single goal: increasing the throughput between resources such as
screen, disk and network interfaces. Flinn et al. also introduced
Odyssey [8], an energy-aware OS and a fine-grained energy usage
profiler by application as in the same way that CPU profilers such
as prof map CPU cycles to specific processes [9].

Cinder [16] is an energy-aware OS for mobile phones focusing
on allocating energy resources to applications. Cinder makes it
possible to subdivide the energy share of an application among its
constituent subtasks and allows users to set up their own policies.
However, it is not clear how the energy required by each applica-
tion or the energy demands of the multiple resources is derived in
the first instance. Cinder takes inspiration from ECOSystem [20]
and Quanto [10]. Ecosystem is an OS that supports energy as a
first-class operating system resource and combines user preferences
with resources monitoring to extend battery life by limiting the av-
erage battery discharge rate, sharing energy proportionally among
different tasks whilst Quanto is an energy profiler for embedded
network devices, mainly focused on sensors.
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7. CONCLUSIONS
Energy is commonly reported as the primary target for optimisa-

tion in mobile handsets. Many researchers make energy a central
element of the operating system, and their studies model the en-
ergy demands of the different hardware features. However, these
studies rarely consider the dynamics and interdependencies among
resources caused by applications and users’ behaviour.

In this paper, we demonstrate the need to consider all these dy-
namics to characterise the energy demands of the system accu-
rately. Energy allocation must be customised to each user and
handset, and cannot be based on off-line information model. We
find preliminary results indicating that users interactions with the
mobile handsets vary enormously, but that it is possible to identify
where and when some resources may be in high demand. To con-
clude, full contextual information helps make more efficient energy
use.

These results demonstrate that algorithmic resource control is
not efficient because of the number of diverse factors that deter-
mine the resources demand. We are now working on better pre-
diction of resource demand, and applications’ behaviour, trying to
investigate more the different relationships between the resources
and their nature. This is a necessary step before researching on non
computational-intense techniques to predict the energy consump-
tion and context-aware resources management. One approach may
be to use machine learning techniques, to build a task killer and re-
source manager that allocates energy to applications based on their
fingerprint, using periods of time where the handset has plenty of
energy and computational power to perform those tasks.

Resources might be replicated and requested simultaneously in a
specific place and time. Forecasting techniques are also a first step
in order to understand how to allocate resources between users in
an opportunistic fashion as our current work on ErdOS, a energy-
aware social operating system, aims to do. Thanks to ErdOS, hand-
sets will be able to share their local resources (e.g. network inter-
faces, sensors, CPU and storage) with nearby devices using low-
power connectivities in order to increase the handsets usability and
minimise the energy consumption. As a consequence, handsets
need to act proactively to advertise which resources they can of-
fer to their vicinity and also to forecast their future demands. The
applications of a Social Operating System are multiple: handsets
can collaborate to share a computation, they can co-ordinate for a
particular purpose like multipoint recording of an event or sensing
the environment, or even simpler, a single handset can be used as a
server (e.g. location service) to other devices in the same locale.
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