
Dependability and Accountability for Context-aware Middleware Systems

Andrew C. Rice
Computer Laboratory,

University Of Cambridge,
15 JJ Thomson Avenue,

Cambridge, UK. CB3 0HL
Andrew.Rice@cl.cam.ac.uk

Alastair R. Beresford
Computer Laboratory,

University Of Cambridge,
15 JJ Thomson Avenue,

Cambridge, UK. CB3 0HL
Alastair.Beresford@cl.cam.ac.uk

Abstract

In this paper we present a framework to provide depend-
ability through accountability. Our proposal exploits the
asymmetry present in the majority of sensor data process-
ing to cheaply validate events and processing which occurs
at various points in a distributed middleware system. We
exemplify our framework with reference to two real-world
distributed location middlewares. We adapt one of these to
evaluate our framework and present performance results.

1 Introduction

Pervasive computing envisions an era when many het-
erogenous devices work proactively together. Context-
aware computing aims to enable pervasive computing sys-
tems to meet these autonomous requirements by using de-
tailed sensor data concerning the state of the user and their
environment. Context-aware applications not only share
data from sensors, but also higher-level pieces of context
information derived from the raw sensor readings. For ex-
ample, containment data from a location system may be
shared by multiple applications; such data are derived from
position data of individual entities, which in turn may be es-
timated from sensors measuring a particular physical prop-
erty of the environment. One aim of many middleware ar-
chitectures in pervasive computing is to perform processing
steps which may be amenable to sharing between multiple
applications.

Many sensor systems are built from a distributed set of
machines, whilst end-user applications often run on another
set of distributed hosts. We expect wide-scale pervasive
computing systems to experience dynamic changes in both
the sensor systems available and the population of applica-
tions. Therefore, ensuring the correct operation of a perva-
sive computing system is difficult, yet user confidence in its

correctness is vital to the success of pervasive computing—
applications which cannot be trusted to operate reliably will
not be used. It is important to acknowledge that faults
within such a future pervasive system are inevitable. Tradi-
tional distributed system failures are, of course, likely, but
additional model inaccuracies and environmental assump-
tions occur in context-aware systems. Furthermore, since
pervasive computing devices and applications aim to blend
into the environment, it is neither possible, nor desirable, to
artifically control the environment in order to prevent fail-
ure.

Therefore, as the complexity and heterogeneity of perva-
sive middleware increases, it is no longer acceptable for an
application to simply indicate there is a generic error in the
middleware. Providing a detailed analysis of the reason for
failure is required by administrators in order to fix the sys-
tem, and for end-user applications in order to operate with
reduced functionality.

In this paper we explore how to build dependable perva-
sive computing applications which utilize a distributed mid-
dleware. (By dependable, we mean a system that either per-
forms within specification, or provides suitable feedback to
users when faults occur.) We use accountability as a mech-
anism for constructing a dependable system. Accountable
applications are capable of describing why a particular ac-
tion was (or was not) taken and therefore accountability
helps application writers to acknowledge possible failure
modes and to provide feedback both to users and system
administrators.

2 Motivation

Software-based techniques such as the recovery block
system use acceptance testing [5] to validate the results
of a software component. If the acceptance test fails for
a given block, an alternative block is used to produce the
result. Many computations within pervasive computing are
amenable to acceptance testing because checking the result



of a computation is often computationally much cheaper
than computing the correct answer. For example, the Bat
system (described in more detail in Section 3) performs
multiple iterations of a computationally expensive non-
linear regression to find a location from a redundant, noisy
data. However, verification of this result by checking that
the returned location is consistent with some majority of
the distance readings is cheap.

Similarly, vision-based tracking systems such as AR-
ToolKit [3] use image processing techniques to detect fidu-
cial tags and extract their pose and position. This process is
necessarily computationally expensive. However, once the
tag has been located, checking that it exists in the image in
the position specified is relatively cheap. (Our experience
at implementing this with our own vision system, Cantag,
is discussed further in Section 5.)

Many middlewares for pervasive computing provide a
callback mechanism. The SPIRIT middleware [1] supports
event-based programming whereby an application registers
for a callback when two particular geographic regions sur-
rounding physical objects interact (such as containment).
The continual monitoring for a containment event in a large
number of arbitrary 3-dimensional regions is a computa-
tionally expensive process as compared to the procedure for
checking that a located object lies within a particular region.
Similar functionality exists in the IdentityPresence widget
in the Context Toolkit [8].

Most pervasive middleware systems in use today stati-
cally distribute processing, or even centralise the majority
of computation on a single node. Yet, recent research in ac-
tive networks, grid computing, and ad-hoc sensor networks
has begun to develop more dynamically distributed archi-
tectures. We believe pervasive computing will inevitably
move towards a dynamically distributed model because: (i)
sensors are increasingly attached to mobile devices, lead-
ing to a dynamic sensor population; (ii) mobile devices are
increasingly used to enable human-computer interaction,
leading to a dynamic actuator population; (iii) mobile de-
vices will make use of static computing nodes where pos-
sible because they have greater resources; and (iv) the av-
erage user of a pervasive computing system will purchase a
range of devices at different points in time and expect them
to inter-operate seamlessly with minimal configuration.

Validation of results becomes even more critical when
dynamic distribution of data processing occurs. In sum-
mary, there exist many cases in processing sensor data from
context-aware systems where checking the output of the re-
sult is cheap when compared with the cost of calculating it.
Furthermore, it is possible to exploit this asymmetry to al-
low impoverished nodes in a distributed computing system
to offload and share computation, whilst maintaining confi-
dence in the results through inexpensive checks. The rest of
this paper builds on this concept and explores how accep-

tance testing through inexpensive validation can be used to
build accountable pervasive computing systems.

3 Two example middleware systems

We exemplify our concept using two location systems:
the Bat system and the Cantag system, which provide
markedly different modes of operation, and are briefly ex-
plained next.

The Bat system [9] tracks mobile Bats, which transmit an
ultrasonic pulse whenever their unique identifier is transmit-
ted over a radio channel. Position information is resolved by
measuring the time-of-flight of the ultrasound pulse from
the Bat; this timing information is collected by a matrix of
ceiling receivers. The Bat system uses a distributed hier-
archy of software components, synchronized by a shared,
global clock; see Figure 1. Every room within the cover-
age area contains a chain of ceiling receivers attached to
a matrix manager (MM). On each clock edge, every MM
samples the data from the chain of ceiling receivers and
reports any ultrasonic activity as a sequence of distances,
based on the time-of-flight measurements made by the ceil-
ing receivers. The MM data are then converted into 3D po-
sitions by software running on standard PC hardware—we
refer to these nodes as localizers. Simultaneously, nodes
called area managers (AMs) schedule the polling of the
mobile Bats and report which Bat has been scheduled for
each timeslot. A central node then correlates the location
information from the localizers and scheduling information
from the AMs and produces the location reading.

The Cantag [7] system is a monocular visual tag recogni-
tion and location system supporting many tags designs, in-
cluding those used in the TRIP [4] and Matrix [6] systems.
An example Cantag image processing pipeline is shown in
Figure 2. The edges shown in the figure denote data flow
paths through the system. This system may be run with ei-
ther a fixed video camera tracking mobile tags (outside-in
mode) or with a mobile video camera tracking fixed tags
(inside-out mode). We have also built a distributed version
of the Cantag system which can execute different stages of
processing on different physical hosts, and thus combine
common processing steps used by different context-aware
applications via a network.

Both the Bat system and Cantag middleware are dis-
tributed systems which produce identity, location, and pose
information for the tracked objects. The Bat system deploy-
ment covers an area of approximately 500 m

2 whereas the
coverage region of an instance of the Cantag system is far
smaller (of the order of 5 m

2). Furthermore, when oper-
ating in inside-out mode the Cantag system’s coverage area
varies unpredictably with the movement of the user carrying
the camera. A second significant difference between these
two systems is that of scheduling; the Bat system is a polled



Matrix ManagerMatrix Manager
MM1 MM2

Area Manager
AM1

d1,d2,d3,... d1,d2,d3,...

Localiser Localiser
L1 L2

x,y,z x,y,z

Correlation
C

BAT1:x,y,z

BAT1 Polled

Figure 1. The structure of the Bat system.
Solid boxes and lines indicate trusted soft-
ware components and data.

system: Bats present in the building register with the sched-
uler and are then polled in turn. From a validation point-of-
view this means that we can be sure that the system hasn’t
been able to track any Bat which is not registered with the
system. However, the Cantag system does not know in ad-
vance which tags it is looking for in the scene—any valid
tag could be displayed to the system and recognised.

4 An analysis of validation techniques

Application-level consistency checks can be used to
demonstrate that data produced from middleware compo-
nents are correct. However, to perform any meaningful val-
idation, we require a set of trusted system sensor nodes.
Only information produced by trusted nodes are assumed to
be correct and dependable, and therefore data from all other
software components are considered potentially erroneous.
In order to maximise accountability, we wish to minimize
the number of trusted nodes. Thus, trusted nodes will usu-
ally include only the low-level components of a sensor sys-
tem. If we are concerned about the presence of malicious
hosts or software modules, data from trusted nodes needs to
be authenticated using an appropriate certificate system.

In the Cantag system, we might deem the software com-
ponent that acquires the camera images to be a trusted com-
ponent. The remainder of the image processing pipeline
(which may be executed on several machines) is then un-
trusted; see Figure 2. The result of the Cantag processing
pipeline is a transformation from object co-ordinates to 3D
camera co-ordinates. Validation of the existence of a tag, as
found by the processing pipeline, does not necessarily re-
quire recursive validation of each step within the pipeline—
instead an application may check the position and pose of

Transform Quadtangle

Sample & Decode

Image Capture Adaptive Threshold

Contour Follower

Distortion Correction

Fit Quadtangle

Figure 2. The Cantag processing pipeline for
square tags. Arrows indicate data-flow; solid
lines indicate trusted components and data.

the located tags against the original image. For the Bat sys-
tem we define the set of trusted nodes to include the MMs
and AMs; see Figure 1. An application may then validate
the output of the system by checking the location produced
against the trusted distance readings from the MM and ver-
ify that the Bat reported was actually polled by the AM.

In the remainder of this paper, we define positive vali-
dation as a mechanism for validating positive (i.e. entity x

is at location y) results from a system. Positive validation
provides behaviour similar to fail silent hardware: when-
ever data are produced we can check their validity. How-
ever, it is not possible to check that data are not being lost
or diverted within the middleware. Some applications are
arguably satisfactory with positive validation: for example,
in a door entry system we care much more about false posi-
tives than false negatives. However positive validation does
not address our desire for accountability—the middleware
cannot explain why some events (e.g. not opening the door
for a valid user) did not occur.

Positive validation does not suffice for stateful system
components deployed in the middleware either. For ex-
ample, consider the scenario where an application deploys
a room monitor in the Bat system to provide a callback
whenever specific Bat enters a particular room. To provide
evidence of correct behaviour this monitor must not only
demonstrate that the specific Bat is in the chosen room (at
some time t) but also that when previously sighted (at time
s) the Bat was not in the chosen room—the difficulty here is
in establishing that the Bat was not sighted in the period be-
tween time s and time t. The situation is worse for unpolled
systems: when using the Bat system it is possible to col-
lect a list of all the Bats that have been polled for a number
of consecutive time-slots and be certain that no other Bats
could have been sighted. However, the Cantag system could



find many tags in a single image and so it is much more dif-
ficult to demonstrate the complete list of all sightings.

We define negative validation to mean the verification
of the lack of a particular set of sensor readings. There-
fore negative validation requires a system to provide evi-
dence concerning the lack of a particular sighting or set of
sightings. We have seen (in Section 2) many examples in
which positive validation is cheaper to perform than the ini-
tial computation to calculate the result. We call such algo-
rithms positive asymmetric routines. It is important to note
that not all algorithms are cheaper to check than to calculate
from scratch; we denote algorithms in this set as symmetric.
For example, checking the output of the Threshold node in
the Cantag system requires re-binarization of the source im-
age followed by a comparison against the original output.
We note as a curiosity that we have yet to encounter any
negative asymmetric validation functions.

Many symmetric validation algorithms can be converted
into asymmetric validation routines if we accept a proba-
bilistic approach to conformance testing. Looking again at
the Threshold node in the Cantag system as an example, we
can evaluate the result of executing the binarization on only
the pixels of particular interest (e.g. the sample points used
to decode a tag) or simply randomly select a small subset of
pixels to check for coherence with the data provided.

5 Computational costs of validation

We investigated the costs and benefits of validation for
an example pipeline in the Cantag system. In this configu-
ration we envisage a trusted node which records the scene
and applies the binarization and contour follower steps be-
fore offloading the computation into the middleware. This
allows applications tracking differently shaped tags to share
data already computed at this point. We note that our initial
attempts to apply validation to Cantag turned up a number
of software bugs in our implementation, demonstrating an
additional value of validation as a testing tool!

Our experiences highlight large runtime variations in
the computational cost of validation. The time taken to
validate an image is highly dependent upon the elements
within it. For example, the validation of camera distortion
correction must be performed for each contour within the
scene. This means that our implementation, which per-
forms the pipeline stage over the whole image before val-
idating it, would perform differently to an implementation
which validates each element of the image at a time—these
approaches trade-off pressure on the machine’s instruction-
cache against pressure on the data-cache. We also notice
that there are particular stages for which a sufficient valida-
tion test is application specific rather than system specific.
Consider the transformation stage of the pipeline where a
3D transformation from camera to object co-ordinates is de-

rived from the fitted quadrangle: applications requiring only
the binary data stored on the tag (e.g. barcode readers) need
only check that the resulting transform preserves the code-
plane of the tag. However, applications performing visual
overlay must also check that the transformation defines a
valid 3D space which is anchored to the matched shape.

To give some insight into the relative costs of positive
and negative validation, we executed the Cantag pipeline
on a video sequence showing three tags entering and leav-
ing the field of view. A number of entities (data structures
representing potential candidate tags), are passed between
adjacent pipeline stages. Figure 3 shows the number of enti-
ties requiring positive and negative validation at each stage.
For many stages the additional work required for negative
validation is minimal due to the relatively small number of
failures. However, for the final stage (decode) the majority
of image elements are rejected and require negative valida-
tion. This suggests that we may tune the performance of
the system by attempting to ensure that rejection of invalid
entities occurs in stages with minimal validation costs. The
final stage in Figure 3 shows the effect of a heuristic that
removes all contours smaller than a certain size—for many
frames a significant improvement. This approach applies in
general to other systems. Another example, drawn from the
Bat System, would be monitoring whether a particular Bat
is inside a container, which is itself located inside a particu-
lar room—large numbers of sightings can be cheaply elimi-
nated at an early stage because all sighting information from
the Bat system is associated with the room that the sensor is
in.

6 Conclusion

We have presented a method for accountability which
makes it possible for the applications to validate system be-
haviour. This provides a number of important benefits: (1)
users may check the results produced by mobile agents in
an untrusted network; (2) applications have explicit checks
for system performance, enabling programmers to provide
better adaption when the system fails; and (3) system ad-
ministrators may use the failure or successful validation of
invalid events to localize problems in complex distributed
systems.

Some system elements (consisting of true asymmetric
functions) are highly amenable to validation whereas other
elements require significant computational effort. Applica-
tions must decide which parts and proportion of its data re-
quire validation in order to make the best tradeoff between
dependability and efficiency. In some cases, heuristics early
in the processing pipeline can be used to reduce the compu-
tation cost.

The amount of evidence required to validate any conclu-
sion necessarily increases at each node in the system and



Stage Positive Validation Negative Validation
entities-per-frame average entities-per-frame average

Distortion Correction 33 0

Fit Quadtangle 28 4

Transform Quadtangle 28 0

Sample 24 4

Decode 2 22

Decode+Heuristic 2 8

Figure 3. The number of entities in each frame of the video sequence is shown graphically. The mean
number of entities (a weak description of data with this distribution) is also shown alongside.

so it is inappropriate to transmit evidence with every event.
For example, a mobile device making use of data from the
Cantag system might request the location of a particular tag
whenever it is contained within a particular region. Without
accountability the amount of data transmitted to the node is
a small number of bytes each time the event occurs. The ev-
idence which accompanies this is a rather more substantial:
in order to validate data from the Cantag system the origi-
nal image must be sent to the mobile which is thousands of
bytes of data.

Therefore, nodes in the system must store evidence for
posterior validation by applications upon request. We note
that evidence may be stored anywhere on the network rather
than at the node performing the action.

We have found that validation data can provide a use-
ful tool for debugging a distributed system. Applications
might even choose to do no data validation at run-time but
instead provide an interface for the end user to request an
explanation for a particular action. It has been demonstrated
that presenting uncertainty information can improve end-
user performance [2]. In future work we hope to investigate
whether the system can present validation data to users in
order to improve their estimate of system behaviour, espe-
cially in highly dynamic networks.

Acknowledgements

The authors would like to thank Alan Mycroft, Andy
Hopper, Paula Buttery and Rip Sohan for their insightful
comments. This work has been funded by EPSRC.

References

[1] N. Adly, P. Steggles, and A. Harter. SPIRIT: a resource
database for mobile users. In Proceedings of ACM CHI’97
Workshop on Ubiquitous Computing, Atlanta, Georgia, 1997.

[2] S. Antifakos, A. Schwaninger, and B. Schiele. Evaluating
the effects of displaying uncertainty in context-aware applica-
tions. In UbiComp2004: Ubiquitous Computing, pages 54–
69, 2004.

[3] M. Billinghurst and H. Kato. Collaborative mixed reality. In
Proceedings of the First International Symposium on Mixed
Reality, pages 261–284, 1999.

[4] D. L. de Ipiña, P. R. S. Mendona̧, and A. Hopper. TRIP: a
low-cost vision-based location system for ubiquitous comput-
ing. Personal and Ubiquitous Computing, 6(3):206–219, May
2002.

[5] B. Randell. System structure for software fault tolerance. In
Proceedings of the international conference on Reliable soft-
ware, pages 437–449, 1975.

[6] J. Rekimoto. Matrix: A realtime object identification and
registration method for augmented reality. In Proceedings of
Asia Pacific Computer Human Interaction, pages 63–68, July
1998.

[7] A. C. Rice, A. R. Beresford, and R. K. Harle. Cantag:
an open source software toolkit for designing and deploying
marker-based vision systems. In Fourth Annual IEEE Inter-
national Conference on Pervasive Computer and Communi-
cations (PerCom), 2006.

[8] D. Salber, A. K. Dey, and G. D. Abowd. The Context Toolkit:
Aiding the development of context-enabled applications. In
Conference on Human Factors in Computing Systems, pages
434–441, 1999.

[9] A. Ward, A. Jones, and A. Hopper. A new location tech-
nique for the active office. IEEE Personal Communications,
4(5):42–47, Oct. 1997.


