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Abstract

Fiducial tags can be recognized successfully and de-
coded by computer vision systems in order to produce
location information. We term a system dependable
if its observable results are predictable and repeatable.
The dependability of such a vision system is fundamen-
tally dependent on the scheme used to encode data on
the tag. We show that the rotational symmetry com-
mon to many tag designs requires particular consider-
ation in order to understand the performance of the cod-
ing schemes when errors occur. We develop an abstract
representation of tags carrying symbolic data which al-
lows existing information coding techniques to achieve
robust codes. An error-correcting coding scheme is pre-
sented for carrying arbitrary symbolic data in a depend-
able vision system.

1 Introduction
High precision location information is an excellent
source of context for many ubiquitous applications.
Unfortunately, the sensing systems required to source
such information are expensive to build, deploy and
maintain—GPS is an example of this. Location sys-
tems that can derive information from commodity com-
ponents such as WaveLAN or Bluetooth understandably
fall short of the level of precision provided by more spe-
cialized, expensive systems.

Vision systems are an exception. They can be con-
structed from commodity components and yet have the
potential to provide highly accurate information (c.f.
photogrammetry). Modern cameras and CCD arrays
can provide good quality images[1], whilst distortion

caused by lensing systems[2] can be corrected to accu-
racies better than 0.01 pixels[3]. Fiducial tags are often
used as markers to simplify the image recognition pro-
cess. They present particular features to allow the appli-
cation of faster processing algorithms and more robust
recognition than for unconstrained vision systems.

Recently, researchers have begun to acknowledge the
importance of reliability for ubiquitous computing[4].
The new users of context-aware systems will not have
technical backgrounds or in-depth understanding of
sensing systems and yet must be convinced to trust these
systems to assist in their tasks. The system must display
predictable behaviour upon which users will base their
mental models of the system. A system is considered
dependable its observable results are predictable and re-
peatable.

In order to ensure that a location system is as depend-
able as possible we must ensure that every algorithm and
process used within the system is robust and that the er-
rors inherent within the system are understood. Identity
is as a primary source of context useful to ubiquitous
computing[5]. The robustness of identity information
for vision systems relates to the mechanism used for en-
coding information identifier on the fiducial tag.

Squares and circles are common choices of fiducial
shape for vision systems. Each of these shapes displays
rotational symmetry that reduces the expected differ-
ence between each unique payload. We present a clas-
sification of coding systems for black and white fiducial
tags and suggest a suitable design separation between
tags and coding schemes so each can be considered in
isolation. In particular, the importance of cyclic codes
is demonstrated when considering the rotational sym-
metry of planar tags. Finally, we present new, robust
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Figure 1: A sample template from the ARToolKit distri-
bution (left) and from the maximum distance set (right).

coding schemes for encoding symbolic data as the tag
payload.

2 Template-Based Codes
A template code encodes an identifier as a pattern that is
decoded by searching a database of possible patterns for
the closest match. ARToolKit[6] uses a set of manually-
chosen patterns encoded onto a square tag. The imaged
tag is compared, after perspective correction, using an
auto-correlation co-efficient with a database of all is-
sued patterns. The four-fold rotational symmetry of the
tag is accommodated by comparing the template in all
four corresponding rotations. The designers encourage
users to select tag designs with strong asymmetric fea-
tures. The purported advantage of this method is that
the tag designs can be selected to have semantic mean-
ing for the users of the system as any image can be used.
However, the ad hoc selection for tag templates means
that the system cannot guarantee good separation of the
targets.

Owen et al. present a scheme for selecting a set of
greyscale (asymmetric) templates with maximum auto-
correlation distance[7]. This process creates approxi-
mately 200 maximally separated tags, but the tags no
longer have semantic meaning for a human reader. Fig-
ure 1 shows an example template from ARToolKit and
one using the maximum separation scheme.

Template schemes present a number of problems for a
dependable vision system. Firstly, an analysis of the set
of templates must be performed to verify that the auto-
correlation between any pair of patterns is small and so
incremental deployment is difficult. Secondly, perspec-
tive projection combined with the limited resolution of
CCD cameras will introduce distortion into the imaged
template affecting the correlation co-efficient; current
schemes for template selection do not take this into ac-
count. Thirdly, noise produced by the image acquisition
phase (e.g. dark current) will introduce additional dis-
tortion to the templates. Finally, wide-scale deployment

of a vision system will require a large address space
that cannot be provided with this mechanism. For ex-
ample, in our lab of approximately 40 people we have
206 tagged items—already exceeding the limit of the
maximum distance method.

3 Symbolic Codes
A more promising approach for coding data on tags is a
symbolic method. The tag is divided up into data cells,
each of which is capable of storing a symbol. This ap-
proach presents a number of potential advantages over
template-based codes: we expect to be able to achieve
a substantially larger address space and error detecting
or error correcting codes give the ability to detect or re-
cover from image noise. If human interpretation of the
tags is required a tag design could easily include human
readable text or icons in addition to the machine read-
able coding.

Readers of symbolic tags should expect both single bit
and burst errors. A bit error could occur due to the image
being sampled at incorrect points or due to noise from
the CCD array. Partial occlusions of the tags or complex
lighting conditions will cause burst errors and an entire
sequence of symbols will be misread. We assume that
these errors are equally likely to occur across the whole
tag.

The current generation of symbolic tags does not take
full advantage of the error handling potential of sym-
bolic codes due to the rotational symmetry of the tags.
For example, TRIP[8] uses circular tags with two rings
of data split into sectors. Each sector stores one of four
possible symbols (each ring within the sector stores a bi-
nary value). The symbol corresponding to a completely
black sector is reserved for a synchronization sector.
The remaining tag consists of two checksum sectors and
the payload encoded as a base 3 number (because the
fourth symbol is reserved for synchronization). Despite
the (weak) error detection properties of the checksum
the code is limited by the unprotected synchronization
sector. As a result this scheme can only ever guaran-
tee to detect one bit of error; two bits of error suffice to
fool the system into starting decoding from the wrong
sector. Whether or not this invalid reading will pass the
checksum depends on the data that was encoded.

The Matrix Tag system[9] uses square tags to carry ar-
bitrary payloads with CRCs appended on the ends. This
approach lacks robustness because the tag has four-fold
rotational symmetry. Thus, rotated tags read as permu-
tations of the original code. We have no analytical way
to determine whether or not these permutations will con-
tain a valid CRC.
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Zhong et al. present a square tag which carries 5 bits of
data protected by a block sum code check or 6 bits of
data protected by a Hamming code[10]. The four corner
bits are used for orientation to ensure that the correct
code can be read from the tag. Unfortunately, the block
code does not protect these orientation bits and so two
bits of error in the image can result in the system reading
a rotated tag from the wrong orientation and thus return-
ing an invalid code. The Hamming distance of this code
should thus be considered to be only two bits until it can
be proven that no two codes are rotationally self-similar.

Cho and Neumann encode data on their multi-ring cir-
cular tags using solid rings chosen from n colours[11].
Assuming these colours can be reliably identified by
the system, the method has the potential to be robust
because the code can be read radially at any posi-
tion. However, the amount of data that can be stored
on the tag is small due to the large amount of redun-
dancy. Also, an additional error correcting code would
be needed if error correction capability was required.

4 Rotational Invariance
The rotational symmetry of tags means that permuta-
tions of the codes can be read. Some current code de-
signs attempt to resolve this problem by introducing an-
chor points in to the code (such as TRIP’s synchroniza-
tion sectors or Zhong’s orientation bits) but fail to pro-
tect these data when protecting the payload. Other sys-
tems have relied on the error detection capabilities of the
coding scheme to additionally detect rotations of the tag
data. The chance of collisions due to this approach can-
not be analyzed with existing information coding theory.

Cyclic codes present a solution to the rotational symme-
try problem. One property of a cyclic code is that any
rotation of a valid codeword is also a valid codeword.
If we arrange data coded with a cyclic code in such a
way that rotations of the tag correspond to rotations of
the sampled data (rather than general permutations) then
we can be assured that the error detecting or error cor-
recting capabilities of the code will be unaffected. This
separates the code from tag design details and enables
a mathematical analysis of code capability. To see that
this is true consider the following scenario. Suppose the
minimum distance of the original code is d and given
a valid codeword we introduce an error in less than d
places. If the resulting word is equal to the rotation of
some codeword then it itself must be a codeword (all ro-
tations of codewords are codewords!). This contradicts
the fact that the original code had minimum distance d.

We shall use the term rotational invariance for reading
a code from a tag such that all symmetric rotations of

Figure 2: A circular tag read can be read in a rotationally
invariant manner (left) or a non-invariant manner (right).

Figure 3: A square tag can be read in a rotationally in-
variant manner (each reading could start in any of the
four corners). Tags with an odd number of cells must
sacrifice the central cell.

the tag correspond to rotations of the code. It is straight-
forward to arrange to read a circular tag in a rotationally
invariant manner (Figure 2). Arranging to read a square
tag in this manner is less geometrically intuitive. For ex-
ample, the immediately-appealing raster approach pro-
duces a different permutation of the code depending on
the starting corner. A scheme that reads the tag as four
triangular sections achieves rotational invariance (Fig-
ure 3) but if the code grid contains an odd number of
data cells then the central cell cannot be used.

If we apply a cyclic code to a tag in a rotationally invari-
ant manner we know that the error detecting or error cor-
recting properties of the code will not be affected by the
rotational symmetry of the tag. However, this presents
an additional problem because the system will be un-
able to select the correct code from the set of possibili-
ties read from the tag. Each possibility will appear as a
valid codeword (after applying any applicable error cor-
rection routine). One approach is to select the particular
rotation which has a smaller value than every other pos-
sibility. This means that for each value coded onto a tag
there will be a number of additional codewords which
also decode to the same value. We call codes exhibiting
this property symbolic identifier codes—the code can-
not store arbitrary data (without using a non-systematic
code).
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We can characterize a tag’s data-carrying capability in
terms of two variables: Symbol Size is the number of
bits allocated to storing each symbol. If the tag is ro-
tated by one place and the code re-sampled, the new
value should be identical to the previous value after a
rotation through symbol size bits; Payload Size is num-
ber of symbols the tag can store.

A circular tag with m rings and n sectors thus has a
symbol size of m bits and a payload size n. A 2p × 2p
square tag laid out using the rotational invariant scheme
in Figure 3 has symbol size of p2 bits and payload size
4 whereas a (2p + 1) × (2p + 1) tag has a symbol size
of p(p + 1) bits and payload size of 4 symbols.

We can also parameterize coding schemes in a similar
way. The number of symbols corresponds to the size
of the field used to define the polynomials in the cyclic
code. For example, the various generator polynomials
for a CRC are defined over the field with two elements
(symbol size is 1-bit). Reed Solomon codes (a subset
of BCH codes), which are used for error correction on
CDs and DVDs (among other things), can be defined for
fields of size 256 (symbol size is 8 bits). Of course, if
the tag provides a symbol set of size 8 then codes re-
quiring a symbol size less than 8 can be accommodated
by packing additional symbols into each sector (with a
corresponding increase in the payload size).

The payload size must equal the block length of the
cyclic code. This precludes the use of CRCs: the gener-
ator polynomial for CRC-CCITT (a 16 bit CRC) has a
block length 32767 bits. Typically, a CRC is used with
much smaller messages than this—the unused bits are
assumed to be zero and not transmitted. For a symmetric
tag we do not have this luxury because we must transmit
the zeros as well in order for all rotations of the code
to be valid codewords. A circular tag carrying CRC-
CCITT data would need 151 rings and 217 sectors!

5 Robust Data Coding Schemes
We have identified the concept of rotational invariance,
that allows robust application of cyclic codes to sym-
metric tags. This exposes the ambiguity introduced
into the coding system and hence reduces the codes to
carrying only identifiers which can then be used for a
database lookup, rather than symbolic data. Further-
more, we have shown that existing techniques that use
synchronization sectors or orientation bits to anchor the
code are not capable of coping with more than 1 bit of
error. It is possible to design synchronization sectors
that can withstand more than one bit of error at the ex-
pense of a reduced payload. We now present some addi-
tional coding schemes that allow tags to carry arbitrary

data robustly.

5.1 Simple Parity Code
A bit string with parity at the end fulfills our criteria for
a rotationally invariant code: every rotation of the coded
data should also have valid parity. To generate a code we
take a tag with payload size p and symbol size s and en-
code s(p−1) bits and an additional parity symbol. This
is an example of a code that can only encode an identi-
fier because the decoded message must be rotated round
until the minimal value is found. However, it achieves
the same minimum hamming distance as the TRIP code
and the Hamming code scheme by Zhong et al. and can
store considerably more data.

5.2 Independent Chunk Code
Given a tag with a large symbol size, each symbol is con-
sidered as a separate codeword which is protected by an
error detecting or error correcting code. The first bit of
each symbol is used to anchor the code: the first bit of
the first symbol is set and the first bit of every other sym-
bol is unset. For example, a square tag of size 8× 8 has
a symbol size of 16 and a payload size of 4 symbols. We
can encode a 44-bit payload in four 11-bit chunks. Each
symbol on the tag contains one chunk, one orientation
bit, and a 4-bit CRC (Figure 4). This code is at least
as strong as the 4-bit CRC used for each symbol, if the
designer required stronger error detection or error cor-
rection then a different code can be used for each sym-
bol. In the cases where errors occur evenly over the tag
rather than concentrated in one sector this code should
be rather stronger than a single CRC-4. The orientation
bits are included in the CRC-4 for additional reliability.
The drawbacks of using this code is that 4 bits of every
symbol are used to get the same Hamming distance as
traditional use of a single 4-bit CRC. Additionally a fur-
ther bit is required per symbol to orient the code. The
advantage of this encoding method is that the code need
not have rotational invariance and so a truncated CRC is
permissible.

5.3 Structured Cyclic Code
Our third scheme is a more conventional cyclic code
with additional structure that encodes the amount of ro-
tation that the code has undergone. The full details are
presented in Appendix A. A generator polynomial f is
chosen that will produce a code with the desired error
detecting or error correcting capabilities. The target tag
has a symbol size s and a payload size n. An auxiliary
generator polynomial h, dependent on f , is then found
and a primitive polynomial ω is found from h. These pa-
rameters are fixed for a particular instance of this coding
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Figure 4: The Independent Chunk Code operates on a
tag with large symbols, each of which contains an ori-
entation bit and some error protection.

scheme and so the computational costs of finding them
is not a run-time issue.

We encode a message m of n − deg(f) − deg(h) sym-
bols and an arbitrary number α, 0 ≤ α < (2s deg(h) −
1)/n by careful choice of a check polynomial c based
on ω,α,m,h and f . The data (α, m) are encoded as
Xrm+ c i.e. the message m is left-shifted by r symbols
and the check polynomial c is written into the low bits.
This will be a valid codeword for the generator polyno-
mial f and so traditional error correction routines from
the literature[12] can be applied. The additional struc-
ture imposed on our check polynomial c further pro-
vides a means of recovering the amount of rotation the
code has undergone (in addition to α).

6 Evaluation
We used a test system to evaluate the performance of our
new cyclic coding schemes. A circular tag with 5 rings
and 31 sectors was used to carry a payload encoded with
each of the new schemes.

• TRIP Adaption of the original coding technique
used in the TRIP system: 1 synchronization sec-
tor followed by 2 checksum sectors and 28 payload
sectors encoded base 31.

• SPC Simple Parity Code: 154 payload cells (not
sectors) followed by 1 parity cell encoded base 2.

• ICC Independent Chunk Code: 31 independent
chunks (one per symbol) containing 1 orientation
bit, 1 parity bit and 3 bits of payload;

• SCC-1 Structured Cyclic Code with f chosen as in
a Reed-Solomon code giving 3 symbols of separa-
tion between codewords.

• SCC-2 Structured Cyclic Code with f chosen as in
a Reed-Solomon code giving 11 symbols of sepa-
ration between codewords.

Name Message Length (bits) Hamming Distance
TRIP 139 2 symbols
SPC 154 2 bits
ICC 93 2 bits per symbol
SCC-1 141 3 symbols
SCC-2 101 11 symbols

Figure 5: The data carrying capabilities of the evaluated
coding schemes. 155 data cells are available on the tag.

The data carrying capabilities of each of these codes are
given in Figure 5.

An OpenGL test harness was used to render tags fully
facing the camera at a distance 2 times the tag width
and 1000 trials per code with each coding scheme were
run. Gaussian noise (mean 0 and standard deviation 53)
was injected into the images and the target tags decoded.
We define three possible results from each test run.

• Successful Read The payload on the tag is de-
coded and the returned code matches the value en-
coded (a true positive).

• Failed Read The payload on the tag fails to decode
and so the system fails to recognize a tag.

• False Read The payload on the tag is decoded
but the returned code does not match the encoded
value, i.e. the error detection built into the code is
defeated (a false positive).

Figure 6 shows the percentage of frames for each code
that contained successful readings, failed readings and
false readings. Normalized values for these percentages
are obtained by multiplying by the proportion of the uti-
lized address space. The results confirm that allocat-
ing more bits to error control strengthens the code. The
SCC-2 shows a particularly high successful read rate
due to its large error-correcting capability. This redun-
dancy also gives it a false read rate small enough that
it failed to manifest itself in our 1000 samples. The er-
ror correction ability of the SCC-1 code increases the
successful read rate above that of the non-correcting
codes at the expense of increasing the false read rate.
The TRIP, SPC, and ICC codes have the same minimum
hamming distance. However, the noise was evenly dis-
tributed across the whole image and so the ICC code’s
parity bits acted mostly independently giving it good
false read rate. The TRIP code distributes the code
particularly unevenly over the tag, this manifests itself
in the code’s more variable behaviour than the ICC
code—it shows an increased successful read rate and
an increased false read rate even though there is no at-
tempted error correction. For interactive systems, de-
signers might choose to minimize the false read rate at
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the expense of a higher failed read rate because users
can be expected to retry a tag if it fails to read.

For a circular tag we wish to sample data points at the
centre of each sector. To achieve this we need to ap-
ply an offset to the angle of each sector. However, the
symmetry of a circular tag means that this offset is un-
known. One scheme for achieving a reliable reading is
to attempt to read the code n times from the tag at in-
tervals of 1/n sectors. The system can then select the
correct reading by looking for duplicate readings. From
a viewpoint of coding robustness this acts similarly to
a repetition code: the same bit error must be present in
two or more of the readings in order for it to be consid-
ered as a valid code. In practice this reduces the false er-
ror rate almost to zero for each of the coding techniques.
Of course, if the errors in the decoding are systematic—
perhaps due to an occlusion or lighting conditions—this
will not be as successful. Also, use of this method re-
duces the success rate of the code as well, especially for
the error correcting codes.

A further experiment using the TRIP, SPC, and ICC tests
was performed using a square tag of size 12× 12 rather
than a circular tag. The SCC codes cannot be applied to
square tags due to the constraints imposed on the mes-
sage size. The ICC code for a square (Figure 7) is rather
more efficient than for a circular tag due to the increased
symbol size. We expect the square tag to perform less
well as compared to the circular tag because its payload
area is smaller. Figure 8 shows the various decoding
rates which bear out the same trends as for the circular
tag. This provides some justification for our argument
that code selection can be done in isolation from the ac-
tual tag design. The ICC(square) code presents a better
normalized successful read rate than the TRIP(square)
code which is contrary to the results for circular tags.
This is because the ICC code is much more efficient for
tags with large symbol sizes and so its success rate is
boosted to acknowledge this. However, the increased
symbol size means that there will be fewer parity bits
embedded in the code—this is reflected by the increased
false read rate for ICC(square) over ICC(circle).

7 Asymmetric Tags
Another approach is to introduce an asymmetric feature
into the tag design thus permitting use of conventional
coding systems. For example, Foxlin[13] presents a sys-
tem that uses an off-centre eyelet for this purpose. This
addition to the tag design should be as unintrusive as
possible as it will reduce the size of the data carrying
area of the tag. However, we must also ensure that the
noise in the image does not cause us to mis-read the ori-
entation of the tag.

Orientation Bit

Parity Bit

Figure 7: A square tag carrying data with the ICC cod-
ing scheme. The tag (faded to grey) has been sampled at
the points shown. One symbol, including its orientation
bit and parity bit, has been highlighted.

In order to maximise the data carrying capability of the
tag we require that the new feature and the data carry-
ing code are equally resistant to image noise—correct
choice of the tag orientation is useless if the code can-
not be subsequently decoded. It is difficult to quantify
the strength of the introduced asymmetric feature and so
designers must err on the side of safety.

QR Codes are a popular 2-dimensional barcode that use
a particular pattern on three corners to orient the tag.
Four different levels of error correction are available of
which level ‘M’ corresponds most closely to the level af-
forded by the SCC-2 code presented above. QR Codes
are available in a number of sizes, the largest of which
has a data area with dimensions 177× 177. This size of
tag can store 186481 bits which corresponds to a utiliza-
tion of 59.5% whereas the SCC-2 code has a utilization
of 64%. The primary reason for this is that the area
occupied by the asymmetric features added to the QR
Code is disproportionately large compared with the er-
ror correction capability of the error correcting code.

Use of symmetric tags and rotationally invariant codes
is advantagous in this respect because the minimum
amount of payload space is wasted in order to encode
rotation information. Also, rotationally invariant tags
result in the least possible complication of the computer
vision aspect of the decoding. The system need only
read the data from the tag rather than search for addi-
tional features before decoding the information.

8 Conclusion
A dependable location system requires robust, pre-
dictable behaviour for every element of its operation.
The choice of coding scheme used to store data on a

1See http://www.denso-wave.com/qrcode/vertable4-e.html
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Name Successful Read Failed Read False Read
% Normalized % Normalized % Normalized

TRIP 24.0 21.5 74.0 66.4 2.00 1.79
SPC 31.0 30.8 46.0 45.7 23.0 22.9
ICC 27.1 16.3 72.6 43.6 0.300 0.18
SCC-1 55.7 50.7 6.20 5.64 38.1 34.7
SCC-2 94.0 61.3 6.00 3.91 < 1

10 0

Figure 6: The success, failed, and false reading rates for a circular tag with 5 rings and 31 sectors.

Name Successful Read Failed Read False Read
% Normalized % Normalized % Normalized

TRIP(square) 12.6 9.5475 83.4 63.12917 4 3.027778
SPC(square) 27.4 27.4083 44 43.69444 28.6 28.40139
ICC(square) 24 22.6667 70.5 66.58333 5.5 5.194444

Figure 8: The successful, failed, and false reading rates for the evaluated coding schemes on a square tag of size
12× 12.

fiducial tag is an important aspect often overlooked.
Template-based systems pose a particular risk because
it is difficult to analyse the effects of image noise or
perspective projection on the pattern. Current symbolic
coding schemes have not fully appreciated the rotational
ambiguity caused by symmetric tags and thus do not
have quantifiable characteristics. Sentient Computing
must be dependable in order to fulfill its potential. This
requires rigorously understood coding schemes and this
work provides useful, successful, and efficient exam-
ples.

Tag abstraction coupled with the principle of rotational
invariance allows tags to utilize existing information
coding techniques and makes the result amenable to rig-
orous mathematical analysis. This decomposition high-
lights a particular class of symbolic codes capable only
of encoding identifiers due to the rotational ambiguity
of the tags. For systems requiring arbitrary symbolic
data we have presented a number of dependable coding
schemes.

When selecting a suitable code for a tag design we may
choose to optimize based on the message size, error han-
dling capabilities, implementation difficulty or compu-
tational cost. The Structured Cyclic Coding scheme pre-
sented herein proves to be a good choice: it makes effi-
cient use of the available payload space to carry a large
message whilst still providing a large degree of error
correction. It allows one to encode arbitrary data and
requires the minimal amount of computer vision possi-
ble. Future work will be to document the extension this
technique to apply to square tags as well as circles.

Another approach for dealing with rotational symmetry

was to introduce asymmetric features to the tag to break
the ambiguity. However, designing the additional fea-
tures required less efficient that the approach suggested
here due to the (unmeasurable) trade-off between fea-
ture size and tag capacity.

A Robust Data Coding Scheme for
Symmetric Tags

We operate in a Galois Field of size 2s because this
lends itself to an efficient implementation. Take a gen-
erator polynomial f for some cyclic code that has the
desired error control properties. As in a normal cyclic
code of length n we have Xn + 1 = fg for some g and
all valid codewords are multiples of f . We then find h
which is an irreducible factor of g, and such that X has
order n modulo h. Since h is irreducible, there exists
a primitive polynomial ω whereby every non-zero value
modulo h can be expressed as ωk mod h for some k.
The order of ω is l = 2s deg(h) − 1. Since X has order n
modulo h, it is possible to choose ω such that ω

l

n ≡ X
mod h.

Let r = deg(f) + deg(h). We can now encode a
number α < l

n
and a polynomial m where deg(m) <

n − r as follows. Define the check polynomial c where
deg(c) < r by the conditions c ≡ ωα + Xrm mod h
and c ≡ Xrm mod f (this can be done using the Chi-
nese Remainder Theorem—see page 29 of [12]). We
encode (α, m) as c + Xrm. This is a valid codeword
since c + Xrm ≡ Xrm + Xrm ≡ 0 mod f .

The received codeword y, read from the tag, should be
a valid codeword for the generator polynomial f . If not,
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existing techniques for error correction[12] can now be
applied to find the nearest valid codeword. If a code-
word represented by the polynomial y is rotated one
place round then the polynomial corresponding to the
new codeword is given by Xy mod 1 + Xn. Proof: if
y is given by a0 + a1X + . . . + an−1X

n−1 then Xy =
a0X+a1X

2+. . .+an−1X
n and the rotated codeword is

represented by an−1+a0X +a1X
2+ . . .+an−2X

n−1.
We see that the difference of these last two expressions
is an−1(1 + Xn), a multiple of 1 + Xn.

Thus, if the (possibly corrected) codeword y read from
the tag has been rotated by t places from the intended
codeword then we will have y = X t(Xrm + c)
mod (Xn + 1).

We now show how to find t (and α). This can then be
used to recover Xrm + c and hence the stored value.
Since h divides Xn + 1 we see that:

y ≡ Xt(c + Xrm) mod h

≡ Xt(ωα + Xrm + Xrm) mod h

≡ Xtωα mod h ≡ ωα+t
l

n mod h

Thus, if we find the unique z such that 0 ≤ z < l and
y ≡ ωz mod h then:

α = z mod
l

n
, t = b

z

l/n
c (1)

Our original message m is the most significant n−r co-
efficients of y after rotating it right by t places (dividing
by Xt).

The task of finding z (solving a discrete logarithm)
is potentially computationally expensive. However, in
practice h is typically small enough to allow this to be
solved using a lookup table. In particular, for Reed-
Solomon codes deg(h) = 1 and so l is very small. Even
in less favourable circumstances l tends to have a large
number of small factors and so even for large values of
l (which bounds z), the discrete log can be found effi-
ciently using the Pohlig-Hellman algorithm[14].
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