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ABSTRACT

Accurate, dependable location information enables newicses to
users and efficient message routing within a sensor netviFnie-
grained location data are often degraded by prevalent patiftiand
varying transmission channel characteristics. Succkpsition-
ing systems have used over-constrained sensor data tagecre-
silience to these problems and improve the accuracy of te lo
tion information produced. In this paper we evaluate a sieleof
commonly used algorithms for range-based (lateration)somea
ment data. We consider their accuracy, dependability, ama-c
putational requirements. The evaluation is performedgusiata
collected over an extended period using an establishe@inmirsi-
tioning system that locates active tags using the propawgati ul-
trasound from tag to a matrix of static sensors distributedugh-
out a 550m office floor space. We identify algorithms with suc-
cessful multipath rejection and highlight the importantthe sen-
sors’ geometric configuration. This is particularly peetit when
considering positioning near cell boundaries in the senstwork.
We introduce two new metrics to characterise the deperitabfl
positioning algorithms.
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1. INTRODUCTION

There is a growing interest in the localisation of both peapid
objects in the mobile computing world. Systems are beingldev
oped to provide location-based services to humans, whalssar
networks are increasingly using location information tatsly
localise disparate nodes and sensed objects, potentidilygan
communications routing [9].

Fine-grained location systems (with sub-metre positig@iocu-
racy or better) have emerged primarily from sensor platboda-
signed solely with positioning in mind. Fine-grained triaxgken-
ables new interfaces (augmented reality, three-dimeakimouse
input, etc), better contextual inferences (people seatathd a ta-
ble implies a meeting, etc), and accurate, location caeéd|asens-
ing (mobile nodes placed on a seabed, etc). To date manyrsyste
have been developed to provide location data for static gndrdic
objects alike [8], utilising visible light [2, 3, 10] infraed [14], ul-
trasound [13, 16], and radio in many guises [1, 5]. The pasiiig
calculation has been based on multiangulation (angularirzpa
based), multilateration (time- or range-based), or a mitheftwo.

It may be offloaded to nearby high power systems or performed |
cally on mobile devices . The former case allows for more desnp
algorithms, whilst the latter increases location privagybtermin-
ing its own position.

A significant challenge facing location system designethas
of multipathed signals — all location systems rely on theppiga-
tion of signals, and multipathed signals are those that dqrup-
agate along the expected direct line-of-sight paths. [daltied
signals reduce the dependability of the output locationpeect
positioning algorithm rejects all multipathed signalst isureality
itis not always possible to distinguish direct from multiped. Tra-
ditionally this issue is tackled by using algorithms thaarsé for
consistent positioning solutions within an over-constedi system
of lateration measures.

In this paper, we examine the trade-offs associated witlusiee
of five positioning algorithms for lateration data. The aw®ibf
lateration data over an angular equivalent allows evalnadf the
algorithms using real positioning data from an establisfiee-
grained positioning system known as the Bat system [16]. X¥e e
amine the performance of the chosen algorithms with resjgect
precision, dependability, and computation costs: metriesiefine
in detail. The algorithms are implemented within an operra®u
positioning library which we have made generally available

The rest of this paper is structured as follows: Section 2-sum
marises the algorithms evaluated, Section 3 describesdltecc
tion of location data, Section 4 presents the results, antde5
concludes.
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Figure 1: Predicted and actual error.

2. POSITIONING ALGORITHMS

In a realistic environment it is important to acknowledge pler-
formance of the algorithm in terms of results and executiostc
We parameterise the space of location algorithms with thewe
ing dimensions:

e Actual Error The algorithm’sactual error describes the
Euclidean distance of the estimated position (algorithita ou
put) to the corresponding true position (measured exp@rime
tally).

e Predicted Error The predicted erroris an estimate of the
actual error when the true position is unknown i.e. based
solely on the lateration data. See Figure 2 for a comparison
with actual error. We also introduce the notiond&fpend-
ability which is the proportion of time the true position lies
within the predicted error of the estimated position (islie
outside in the example of Figure 2).

e Computation Cost It is often important to minimise com-
putation costs for systems with mobile devices.

The five algorithms analyzed in this paper are chosen to geovi

a spectrum of algorithms with different trade-offs. Theg ased to
process range-based data, and represent a necessarythgepan
sitioning solution (some systems effectively amalgametgiences
of mobile positions using a filter to increase accuracy ankde-
ability [6]: we do not consider such algorithms here sinceane
interested in deterministic position calculations that aften used
as input to such filters)

2.1 Non-linear Regression (NLR)

In essence the problem of positioning is one of data-fittiyingn
a set of input measurements {nwhat parameters {g} provide
a best fit? In general for such problems regression analgsidbe
used to estimate the parameters, which in the case of pasigio
will include the location (x,y,z). The standard choice dftfig func-
tion for position determination fits each of the range meas@nts
to the distance between the current position estimatg@{p.) and
the associated static sensof,6,s.),

di = /(52— pa)®+ (5y —py)2 + (5: —p=)2. (1)

This is a non-linear function of the parameters, and thusra no
linear regression analysis is appropriate. A single appibo of
non-linear regression results in a position estimate basal in-
put measurements. If the input data set is densely packédrevit
liable data and only one or two datums are multipathed, tgis-a
rithm should perform reasonably well, generally prefegrinposi-
tion that agrees with the majority of the input set. A residuaa,
is defined for each input datur),by measuring its agreement with
the final output. The overall model fit far measurements can be
estimated by a standard erret,where

n

> (ri—di)’

i

2 1~ 2 1
== e == 2
where  represents the range measurement associated with da-
tum<.! This quantity serves as the predicted error.

2.2 Iterative Non-linear Regression (INLR)

A useful extension to NLR is to iteratively form NLR models re
ducing the size of the input data set with each iterationlofahg
the formation of a model, the single measurement determined
disagree with the estimate most (i.e. the measurementiagsibc
with the greatest residual) is discarded and the modellioggss
starts afresh. The Bat system makes use of a such an algorithm
to perform its multilateration. Here, outliers arise fronc@mbi-
nation of signal reflections and noise. With each rejectiba o
range value, a new non-linear model is computed using oy th
remaining data [15]. This process repeats until eitheretlage in-
sufficient measurements remaining to fully constrain thelehda
failure) or the modeb value goes below a nominal threshold (a
success). The finat is used as the predicted error. Essentially
this algorithm searches for the largest quorum of condisteines
within the measurement set, adopting the correspondinitjgqoas
its position estimate and the level of agreement within tinergm
as the predicted error.

2.3 Least Squares (LS)

It is possible to linearise Equation 1 in order to use morditra
tional linear regression (or least squares). The solutéonthen be
represented as a matrix computation which can be compusést fa
than using the NLR analysis. Whilst NLR effectively cons&lthe
intersection of spheres centred on each receiver, therigagian
considers the intersection of infinite planes. Each paimpbieses
that intersect do so entirely within a plane and linearisatdenti-
fies all such planes. The point that best represents thes@ution
of all these planes is then found by the least squares aiguorit
Previous work has shown that this technique is highly sugdep
to outliers [12]. Evaluating the value of the model does not pro-
vide a good predicted error since the linearisation processlts
in residuals that are not representative of obvious spatiahtities.
Instead the predicted error can be derived from calculatfaine
distance residuals using the original (non-linearisecgsneements
and the estimated position (Equation 2), or based on the itoagn
of the maximum residual (where we have used the former we refe
to LLSA, whilst we use LLSB for the latter).

2.4 Random Sample Consensus (RANSAC)

The RANSAC [4] technique uses trilateration [11] to derive a
position from a randomly selected triplet within the datasehe
remainder of the data set is then partitioned into supppréind
non-supporting data based on the expected error of eacingead

!We assume each measurement has a variance of unity.



If a quorum of suitable size is found the algorithm returresékti-
mated position. Otherwise, another triplet is selectedoarly and

the process repeated until a predetermined number ofidasatas
elapsed. We nominally assign the maximum expected error of a
reading to be the precision of this algorithm. This algarithcts

in the opposite sense to the INLR algorithm given above, e/aér
data is taken and iteratively discarded. In this case amastiis
produced and additional support is garnered by adding réni
consistent data points.

2.5 Trilaterate on Minima (ToM)

Low resource location systems might require much simpler al
gorithms for position estimation than those mentioned abdhe
ToM algorithm produces a position by selecting the threetssb
readings from the sample set. This heuristic hopes to editain
reflected signals by assuming they take a longer path totdiigc
nals. This technique has no mechanism for rejecting sightamd
so cannot be considered dependable — bad data cannot lye disti
guished from good. It uses a heuristic to select a set of datdgp
from the available data. A solution, potentially avoidingtleers,
can be reached without iteration. Since the input data to &M
not over-constrained, calculating a predicted error ab wtiter al-
gorithms is not possible: the algorithm will either fail aopide a
result in perfect agreement with its input.

3. DATA COLLECTION

An evaluation of the performance of each algorithm requires
measurements from a real-world environment. Meaningfsiilte
cannot be drawn from simulated data since no reliable siiounla
of indoor environments and people exists.

As part of the Sentient Computing project at the University o
Cambridge, we have deployed the Bat system [16] — an ultiason
positioning system. This uses sensors in the form of ultiase-
ceivers installed at precisely measured locations in tliengeof
the laboratory and powered tags (“Bats”) which act as wiiad
transmitters. It is an example of a centralised sensor rm&twith
the sole purpose of accurately locating Bats and, by exiangte
people and objects attached to them. The system is capapte of
sitioning to within 3cm of the true position 95% of the timengs
iterative multilateration of ranging data (the INLR tecatune).

The Bat system provides a testbed with which to evaluate posi
tioning algorithms: it has a dense distribution of ceilimgsors (as
might be expected in more generic sensor node deploymerat), i
established and well-tested platform, and offloads theutation
of position to surrounding infrastructure, allowing cl@s®lysis of
computational demands. A four month study using the Baesyst
was conducted to collect data in an office environment. Iresxc
of two million sightings were collected for a total of ten Bagight
of which were fixed to office walls and two to the centre of office
(Figures 2 and 3). The Bats were thus in a static configuratios
allowed determination of their true position using laserveying
equipment. Given that the error associated with the Batsyss$
at least one decimal order of magnitude greater than trédager
survey results are treated here as absolute.

The choice to place the majority of Bats on walls decreased th
likelihood of accidental movement by the room’s users withef-
fecting the room’s normal usage patterns. The few Bats pglate
the centre of offices permit significant differences in béhawvbe-
tween central and perimeter Bats to be detected. We alsdhmaite
in our Sentient Environment many of the interaction zonegiire
ing location of Bats are placed on the perimeter of offices.

For each sighting of a Bat, the raw positioning data was ldgge
This consisted of a series of timing pulses and measurenaénts

Figure 2: Bats were fixed in positions in the centre of an office
and to the walls.

)

Figure 3: The location of each of the deployed survey Bats.

the local environment details at the time (temperature).efthe
logs were then used to post-process the data using the saiigo-
rithms. This permitted fair comparison of the candidat@etms
on using the same real-world dataset. The computation Gsbe
estimated, to some extent, by monitoring the computatioe tie-
quired by each algorithm. The actual error was derived bypaom
ing the returned positions with the corresponding laseasueed
true positions.

4. RESULTS

Examination of the raw sighting data has shown that mukigdt
outliers occupy between 5% and 20% of the sighting inforamati
There seems to be little correlation between the rate ofesudt-
currence when the Bat is fixed to a wall or when it is affixed to
the centre of an office, consistent with the expected bebavib
inwardly-facing Bats

All algorithms show, to a varying extent, decreased prenisi
near the room boundaries. We attribute this to Dilution afdrr
sion (DOP) due to the fact that the walls physically pantttbe
ultrasonic system. Bats fixed to the edge of the room will see
only ceiling receivers in front of them rather than behindhu3
each incoming measurement data set contains a reducedevofum
data and the degree of redundancy present is similarly estjaacl-
versely affecting the position estimate. Table 1 shows teesed
actual error for each algorithm tested. Table 2 shows theepéage
of sightings that lay within the predicted error of the truasipion
(thedependability.

On the basis of actual error alone, it is clear that ILNR is&an a
tractive solution. This is attributable to its iterativetur@ which
completely discards inconsistent data and proves very pfola
eliminating multipathed signals. However, Table 2 showswa |
density of positions within its predicted error, relatigethe other
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Figure 4: Histograms of actual error distributions for Bat 1.
Bat 1 2 3 4 5 6 7 8 9 10 Average
INLR 0.027 0.023 0.019 0.045 0.047 0.03 0.06 0.06 0.06 0.06 0.04
RANSAC | 0.048 0.048 0.149 007 009 009 011 01 0.09 ©0.07 .09
NLR 0.418 0.058 0.074 1058 054 021 0.12 037 042 048 D.38
LLS 15.392 3.742 6.135 26.24 9.849 1501 6.26 3.36 111.7 1894 .6621
ToM 0.899 0.36 0.636 0.984 0468 1.16 0.62 0.27 0.63 0.3 D.63

Table 1: Actual error (metres) for the positioning algorithms.
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Bat 1 2 3 4 5 6 7 8 9 10 Average
INLR 99.443 99.988 99.838 95.556 79.017 99.52 76.44 95.71 81.97479 91.99
RANSAC | 99.967 99.979 99.983 99.964 99.969 99.56 99.33 96.45 99.7%.4 9 99.44
NLR 99.95 99.963 99.996 100 100 100 100 100 100 100 99.99
LLSA 5.456 79.122 27.081 2.038 12567 0.89 16.81 4552 0.03 33.62.312
LLSB 5.458 79.143 27.095 4.474 12577 6.19 28.15 4553 0.03 33.624.23
Table 2: Dependability (%).
Bat 1 2 3 4 5 6 7 8 9 10 Average
INLR 0.026 0.046 0.09 0.032 0.065 0.067 0.044 0.049 0.017 0.025 0460Q.
RANSAC | 2513 0.946 2.305 2.024 0.799 1.161 0.815 0.252 0.459 0.288.1561
NLR 6.642 3.079 4569 7.315 3.609 6.156 3.005 1.661 2.032 2531 .06 |4
LLSA 0.994 1.178 1.185 0.303 0.887 0.295 0.175 1.38 1.045 0.442 7880Q.
LLSB 0.995 1.179 1186 1.21 0.887 0.592 0.58 1.382 1.046 0.443 510.9

Table 3: Dependability strength (metres).

algorithms. This can be attributed to the thresheldalue used,

produce similar results in the x-y plane but the z axis of th& L

which defines how accurate a model must be (and hence how muchshows enormous errors.

data is to be discarded) before a success is declared. Foe-the
sults as presented, was set to 3cm. The result of the threshold
is that it may be possible for only three noisy measurements-t
main and for them to be consistent with a single (noisy) pmsit
which is duly returned alongside the fit error, failing to regent
the true noise. i.e. A particular sighting may have a set aisuee-
ments only affected by random noise. Use of INLR runs theafck
reducing that set since each reduction produces a new se¢a@f m
surements that are more consistent (suggesting a loweicfeed
error). Thus the final predicted error does not faithfullpresent
the noise encountered in the entire data.

Over time we have become aware of a further subtle issue with
with the standard INLR algorithm. To summarise, the aldponit
iteratively discards the data that disagrees with the ritgjof the
input data set. This should produce a more accurate postitn
mate with a correspondingly better predicted error. Uniivately,
this can be misleading in certain extreme cases. Considenth
jority of signals reflecting specularly from the same obpud the
remaining measures being direct measures. The majoritheof t
data set then agrees with a position that is a reflection ofrthee
position through the reflecting surface. Thus INLR will dist
the correct measurements and converge on the reflectiorce Sin
the remaining (reflected) signals are in close agreementl| ias-
sociate a small predicted error with the position estimdéspite
being wildly incorrect. Such cases arise in the Bat systehgre
application of physical principles to the ordering of regits has
drastically reduced the issue [7].

The NLR algorithm produces a degraded position and pretlicte
error relative to INLR. From the standpoint of accurate post
ing, then, the iterative element is clearly desirable. Hareit is
clear that the dependability of the result is much bettecesitne
evaluation of fit uses all available data.

The LLS algorithm might be expected to show similar results
to the NLR algorithm, since it is effectively a linearisedrsien
of it. Itis clear from Table 1, however, that LLS performedye
badly in our tests. Closer inspection revealed that thatisation
process (which considers intersecting planes) resultsy@mapoor
constraint in the vertical dimension — a by-product of thet faat
system receivers are each installed at an approximatelyademt
height, giving planes with near horizontal normal vectoiius
LLS tended to provide accurate estimates of the x- and y-dioor
nates, but poor estimates of the z. Figure 6 shows that LL3N&nd

RANSAC shows a more significant change in actual error when
the Bats are fixed to a room boundary. This is because the RANSA
algorithm starts by randomly selecting a candidate trifgetrilat-
eration. If this tuple should happen to have weak geometn th
a poor estimate of position will be used to initialise therskdor
a supporting set. The possibility of RANSAC selecting artiahi
choice with poor geometry is exemplified by looking at the-dis
tribution of errors produced by the algorithm. When locgtin
Bat in the centre of a room (Figure 4) the distribution digplan
evident, strong peak. However, when considering a Bat fired t
a wall the distribution becomes markedly heavy tailed (Fégd).
We note that the performance of the LS algorithm shows htilé-
ation between Bats fixed to the wall or in the office centre.sThi
is due to the fact that the rate of outliers is largely unaéddy
the Bat's position. The ToM algorithm shows actual erroriEim
to the RANSAC algorithm. However, it is evident for Bat 5 that
the selection heuristic breaks down and produces answénrsawi
average 1 metre of error. This is due to the weak geometric ar-
rangement of the closest receivers to this Bat. We can exbatt
performance of the RANSAC and ToM algorithms to vary depend-
ing on the geometry of the ceiling receivers contributingigiting
information.

Table 3 shows thetrengthfor each algorithm, calculated as the
average discrepancy between the error estimate and thal actu
ror for those sightings where the algorithm gave a depeedahl
sult. This metric is designed to identify algorithms thahiave
dependability through overly large error estimates. Aroatgm
with a low strength distance is one that produces error astisn
that bound tightly the actual error. As is shown in the tab&ehigh
dependability of the NLR algorithm comes at the price of arpoo
value for strength. The INLR algorithm produces betterrgite
readings but this reduces its dependability because oftireased
likelihood of a reading falling outside the error bound.

The computation times for RANSAC and INLR were approxi-
mately 0.1ms for each sighting on our test platform wherbas t
computation times for the ToM and LS algorithms were approxi
mately 0.02ms per sighting. The LLS algorithm performedt,bes
completing each calculation in an average of 0.01lms. This su
gests that the LLS algorithm is a good candidate for low resmu
location systems if there is rarely a planar arrangemengs@s.
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5. CONCLUSIONS

We have evaluated five popular positioning algorithms usiag
perimental data collected over a four month period. Of tlzdge-
rithms, iterative non-linear regression (INLR) offers tiest accu-
racy but is an order of magnitude slower in execution tharother
simpler algorithms, and the associated predicted error moaye
truly reliable. Comparison with the NLR algorithm shows tiee
sults of rejecting rather than tolerating multipathed measients,
but the latter algorithm is undeniably faster since it is bhsat of
the operations required for INLR. LLS is popular for easerof i
plementation but these tests have highlighted an inhereakmess
that favours the use of NLR.

We have introduced two metrics: dependability and depehdab
ity strength which can be used to assess the performanceende
able algorithms.

The optimal algorithm for a given purpose depends upon the co
straints in the system. Whilst INLR offers higher precisiias a
more computation-demanding nature, which means the siraple
gorithms may be favourable for small embedded platformufass
ing the drop in precision is acceptable to the intended egfitins).

It is important to realise, however, that the output from aoy
sitioning algorithm can only ever be as good as its inputsanif
algorithm receives purely multipathed signals, for examitlcan-
not hope to recognise the erroneous signals since all mag agr
a reflected position. Within the Bat system, we have obsetivisd
ambiguity when users sit close to a vertical screen, engmgaall
signals to specularly reflect from the screen before recepti

In future work we hope to extend the simpler algorithms to enak
more intelligent groupings of data. For example, RANSAGtsta
by forming three randomly chosen inputs. An improvement may
be toselectthe inputs based on their geometry (GDOP) about a
low granularity estimate of the position of the locatablecisap-
proaches promise to increase the efficiency of algorithmesplah
to expand the error estimation techniques for each algor{grer-
haps by including sensor GDOP) in order to improve their ddpe
ability and strength.

Code for the algorithms discussed here are available wittgn
open source C++ software library named NLMaP, availablenfro
http://www.cl.cam.ac.uk/Research/DTG/.
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