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Abstract

This paper investigates fundamental properties of Marker-based Vision (MBV) systems.
We present a theoretical analysis of the performance of basic tag designs which is extended
through simulation to investigate the effects of differentprocessing algorithms. Real-world
data are processed and related to the simulated results. Image processing is performed using
Cantag, an open source software toolkit for building Marker-based Vision (MBV) systems
that can identify and accurately locate printed markers in three dimensions. Cantag sup-
ports multiple fiducial shapes, payload types, data sizes and image processing algorithms
in one framework. This paper explores the design space of tags within the Cantag system,
and describes the design parameters and performance characteristics which an application
writer can use to select the best tag system for any given scenario.
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1 Introduction

Developers of pervasive computing systems have long recognised the utility of de-
termining location information about system components, users and other entities
in the operating environment. Machine-based vision systems are becoming an in-
creasingly popular way of collecting these data. Some vision systems locate objects
by processing images of the natural environment. However, many vision systems
are designed to recognisefiducial marker tags rather than operating upon uncon-
strained images. This approach provides improved performance in terms of runtime
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costs and increased reliability in object identification and localisation at the cost of
attaching specially designed tags to every object to be tracked. Fiducial markers
can be thought of as advanced bar-codes (often printed usingcommodity printing
hardware) with the potential not only to label an object but to position it accurately.
The field of Augmented Reality (AR) has been the traditional development do-
main for such Marker-Based Vision (MBV) systems (Billinghurst and Kato, 1999),
(Rekimoto, 1998), (Rekimoto and Ayatsuka, 2000), where they are favoured for
their dependence on commodity hardware (decreasing deployment costs) and for
their high degree of precision and accuracy across six degrees of freedom (ideal
for image-object registration). Most AR applications focus onvideo overlaywhere
three-dimensional models are rendered into the video stream viewed by the user.

As pervasive computing systems emerge, MBV systems also offer the potential
to create large scale, ubiquitous tracking environments with a multitude of novel
applications. Different applications demand different properties from an MBV sys-
tem. A mobile user, for example, may wish to trade-off accuracy in favour of ex-
tended battery life, whilst another may only be interested in identifying objects in
the image without the need to locate them.

This paper makes use ofCantag(Rice et al., 2006), an open-source software toolkit
suitable for designing and deploying an MBV system as part ofa pervasive com-
puting application. Cantag differs from previous MBV systems, which we compare
in Section 7, in a number of important ways. In particular, itallows an application
writer to:

• select the most appropriate tag design from a wide variety offiducial types, or
implement a custom marker;

• choose the most appropriate algorithm for each stage of image processing, given
the application requirements;

• characterise the MBV system through simulation before deployment;
• build a custom MBV system executable, optimised for their particular applica-

tion;
• efficiently track multiple tag types in the same video streamby sharing common

processing steps; and
• deploy their system using normal or high frame-rate Firewire or Video4Linux

cameras.

The remainder of this paper describes how pervasive computing researchers can
use the Cantag system to design, build and integrate an MBV system with their
application. Section 2 provides an overview of the Cantag system and describes
how various system components can be composed with C++ templates to provide
an optimised executable. In Section 3 we present a theoretical analysis of tag per-
formance to provide high-level insights into design options. Section 4 extends this
analysis with simulated results from the OpenGL test-harness in Cantag allowing
the evaluation of the performance trade-offs available to application writers when
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(a) CircleInner (b) CircleSplit (c) CircleOuter (d) Square

Figure 1. Four example tag types in the Cantag system.

using different algorithms and tag designs. Section 5 checks predicted results from
our analysis using the Cantag system with real world images.Section 6 reviews
the salient points of our analysis on tag performance and describes how a pervasive
computing researcher can make the most effective use of the wide variety of tag
designs available in Cantag for their application domain. Section 7 contrasts the
Cantag system with related work and Section 8 describes the lessons learned and
reviews the key tag features an application designer shouldconsider when deploy-
ing an MBV system.

2 Cantag

Cantag is an open-source computer vision framework writtenin C++. It makes ex-
tensive use of thetemplateprogramming metaphor, enabling the compiler to gen-
erate an optimised executable for any particular set of tag design and algorithm
options. This is important since the use of templates allowsus to deliver a flexible
tag framework, whilst still providing real-time processing of image data, even for
high frame-rate cameras. Since Cantag is written in C++, it can easily be integrated
with existing C or C++ code.

Cantag currently only processes 1-bit images, since this methodology is most appli-
cable to resource constrained platforms; however we have developed Cantag with
a view to extending support to greyscale and colour processing in the future. Even
when constrained to processing 1-bit images, pervasive computing applications
have a surprisingly large variety of needs from an MBV system. Cantag allows
system designers to choose algorithms with the desired execution costs or accura-
cies and to customise tag designs to provide the best trade-off between data capacity
and reliability.

Our system currently implements two fundamental tag types:the CircleTag de-
scribes tags based around a circular bullseye; and theSquareTag describes tags
based around a square border. TheCircleTag can be further configured to control
the relative proportions of the tag that are occupied by the bullseye and data rings,
giving rise to four tag shapes which may contain either template or symbolic pay-
loads. The symbolic payload can be configured to store an arbitrary amount of data
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Figure 2. A sample Cantag pipeline with example code.

using therotational invarianceabstraction (Rice et al., 2004). Figure 1 shows four
example tags. We will see later in the paper that there are various performance
trade-offs associated with the choice of fiducial. Therefore an application designer
should choose the fundamental tag design with care.

Once the basic tag design has been selected, the Cantag system then allows a num-
ber of different algorithm choices for the image processing. The programming ab-
straction used by Cantag models a tag processing pipeline bya sequence ofalgo-
rithms (C++ function objects) operating onentities. Examples of entities include
contours, ellipses, quadrilaterals and payload data.

The system is extended by adding additional algorithms which explicitly indicate
the types of entity used as argument and result types. For example, a simple pro-
cessing pipeline could use seven processing stages to builda fully-functional MBV
system: image capture, thresholding, building a tree of contours, correcting camera
lens distortion, testing and fitting tag shapes to contours in the image, calculating
each camera-to-tag transform, and finally decoding the tagsin the scene. This pro-
cess is shown visually in Figure 2—in this example the application designer would
write approximately one line of C++ code for each stage in this pipeline.

The Cantag framework also allows the construction of more complex processing
pipelines. For example, we can build pipelines which process multiple tag types
within the same scene (and share common processing steps), or dynamically change
processing algorithms depending on the current needs of theapplication. The re-
mainder of this section briefly describes the various algorithms currently available
within Cantag and summarises their performance.
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2.1 Thresholding

The thresholding algorithms are used to convert an input image to a 1-bit image.
The Global threshold algorithm takes a fixed threshold value. Every pixel in the
image is converted to black or white depending on whether itsintensity is greater or
less than the threshold. This algorithm has a very low cost per pixel and is suitable
for images where the lighting intensity is uniform across all areas of interest in the
image. For example, tags captured on a mobile phone camera will often be taken at
a relatively short range and therefore the tag is likely to have an even illumination.

The Adaptive threshold algorithm utilises a moving average across the image to
choose the threshold value (Wellner, 1993). Systems recognising images with vary-
ing light conditions will need to accept the higher computational cost required to
perform an adaptive threshold.

2.2 CircleTag

The perspective transformation of a circle is an ellipse (Eves, 1972) which con-
tains (almost) enough information to deduce the projectivemapping (known as
back-projection) between the real-world position of the tag and the resulting im-
age. Therefore the first stage of recognising aCircleTag is that of fitting ellipses
to contours in the image. TheLeast squares algorithm performs a least-squares
ellipse fit to the contour points (Halı́ř and Flusser, 1998). This algorithm requires
numerous non-trivial floating point algorithms1 . However, the quality of the posi-
tion and pose information produced by the system is directlydependent upon the
quality of the ellipse fit and so systems requiring accurate positioning information
might consider this a necessary expense.

TheSimple fit algorithm provides a low cost alternative to least-squaresfitting of an
ellipse. This algorithm calculates the central point of theellipse as centre of gravity
of the contour and then finds the major and minor axes as the longest and shortest
distances from the centre. Low power or high-speed applications may be prepared
to accept the reduced accuracy in return for a simple, fast algorithm.

Once the ellipse has been fitted the perspective transformation may then be be de-
rived. The3D transform algorithm implements an adaption of Forsyth’s ellipse back
projection algorithm (Forsyth et al., 1991) to recover a general 3D transformation
from object co-ordinates to camera co-ordinates. This algorithm is computationally
complex but produces accurate 3D information for the tag’s position and pose.

Alternatively, theLinear transform algorithm simply scales the located ellipse lin-

1 In particular, it is necessary to solve a 3x3 eigensystem fora non-symmetric matrix.
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early within the image. This requires little computationaloverhead but provides a
transform which is only valid when projected into the image—and so overlay of
3D models and 3D position information are unavailable. Thistransform also makes
assumptions about the perspective transform which are invalid under large perspec-
tive distortion.

2.3 SquareTag

RecognisingSquareTags follows a similar process to the circular tags. Perspec-
tive projection of a square results in a general quadrilateral and hence the contour
follower must identify the four corners of the quadrilateral. The Corner fitting al-
gorithm slides a window around the contour and returns all points with discrete
curvature above a chosen threshold. This algorithm is fast,efficient and easy to im-
plement but is susceptible to noise on the contour. Its resilience can be increased
by simplifying the polygon of points using a convex hull algorithm and identifying
corners based on maximal local curvature: this has been implemented within the
Convex hull simplification algorithm. ThePolygon simplification algorithm (Dou-
glas and Peucker, 1973) repeatedly hypothesises polygon approximations to the
contour and adds additional vertexes in order to reduce the contour’s deviation from
the polygon. It has a high cost but is better able to withstandcontour noise.

A further option is to apply theLinear regression algorithm to fit each set of points
corresponding to a side of the quadrilateral to best estimate the infinite line passing
through the set. The four intersections of the infinite linesrepresent the best esti-
mate of the true corner points. This algorithm ignores the samples near the corners
and bases the corner determination on the more reliable bodyof points between
them. Note that regression needs the contour points to be segmented into the four
edges of the quadrilateral, implicitly requiring an estimate of the corners. Such esti-
mates can be derived using any of the aforementioned algorithms: an advantage of
regression is that the corner estimate need not be highly accurate, merely sufficient
to partition the dataset.

TheProjective transform algorithm may then be applied to the recognised quadri-
lateral to recover the 3D projection. This algorithm returns a 3D transformation
suitable for 3D model overlay but is susceptible to noise in the image, making 3D
position information unreliable. The algorithm solves a set of linear equations for
the four point correspondence between the corners of the tagin object co-ordinates
and in image co-ordinates. These constraints are not sufficient to preclude inde-
pendent scaling of the vertical and horizontal object axes.However, any warping
is exactly cancelled out when projecting from the surface ofthe tag in object co-
ordinates into image co-ordinates. Furthermore, the errorin resulting re-projected
projection co-ordinates (as used in visual overlay) is often sub-pixel and so this
algorithm is a good choice for systems that do not require 3D position or pose
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Figure 3. The size of the tag in the camera image is inversely proportional to the distance
from the camera.

information.

Better 3D transform results are possible using anon-linear transform algorithm
since this can be used to incorporate (the inherently non-linear) constraints relat-
ing to a square into a four-point correspondence problem. This algorithm requires
multiple iterations to find a non-linear solution and is therefore computationally
expensive to execute.

We systematically name tags according to the algorithms selected for their decod-
ing based on the concatenation of tag name (as shown in Figure1), shape fitting
algorithm, back-projection algorithm, and payload size. For example, aCircleInner
tag, using theLeast squares shape fitting algorithm, followed by the3D transform
algorithm, with a payload of 36 bits is namedCircleInnerLS3D-36.

3 Modelling Tag Performance

The Cantag system permits an examination of the fundamentallimits of tag read-
ability. In this Section we use a series of mathematical models to assess the per-
formance of specific tag designs. We begin by providing some insight into how
the performance of a system will change as the payload size ofthe chosen tag is
altered.

We expect the performance of the system to decrease as the tracked tag’s distance
from the camera increases. However, a more useful metric to consider is the tag’s
size (in pixels) in the camera image. This metric is inversely proportional to the
distance from the camera. The constant of proportionality encodes the camera res-
olution and field-of-view. This is shown in Figure 3. The distance between the two
projected points is(x+1)/z−x/z = 1/z in units of tag size. The total width (also
in units of tag size) of the camera image is2 tan(θ/2). The total width occupiesr
pixels and so the total width of the imaged tag in pixels isr tan(θ/2)/2. This defi-
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Figure 4. Example minimum sample distances for circular andsquare tags.

nition of tag size should be interpreted as width (in pixels)that the tag image would
occupy if the tag were in its current position without any rotation of the normal
vector.

A tag design which incorporates a symbolic payload containsa series of data cells
positioned at precise locations around the fiducial. A sample point for each data cell
is located in the centre of the cell in tag coordinate space. In normal operation Can-
tag uses the transformation from camera coordinates to tag coordinates (deduced
from analysis of the image of the fiducial marker) to estimatethe position of the
sample point for each data cell in the image plane of the camera. The data held in
the thresholded image at each projected sample point can then be used to read the
symbolic payload of the tag.

For a given tag at a specific location and pose, we define theminimum sample dis-
tanceas the minimum distance between the projected sample point for any data cell
and the edges of that cell in the image plane of the camera. Figure 4 shows a num-
ber of candidate minimum sample distances—the shortest candidate distance for all
data cells corresponds to the minimum sample distance. Thisminimum sample dis-
tance gives a measure of how hard the tag is to read at this poseand location—the
smaller the value the less margin for error in estimating theposition of the sample
point.

If the minimum distance of a particular data cell is less thanone pixel then, even if
an algorithm can deduce the precise pose of the tag, the sample point may still read
the pixel value of an adjacent cell. Therefore there is a fundamental lower-bound
on the minimum sample distance of 1 pixel if we want to reliably read the payload
of a symbolic tag. This situation is analogous to the Nyquist-Shannon sampling
theorem which states that a discrete representation of an analogue signal is only
possible if the highest frequency component of the analoguesignal is less than half
the sampling rate. Therefore, data cells may occur no more frequently than once
every two pixels in the image plane of the camera. This corresponds to a minimum
distance of one pixel from the centre of the cell to the edge. If the minimum dis-
tance is any less than this then the tag data cells will sufferaliasing and accurately
measuring the payload will become impossible.
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Figure 5. Minimum tag size (pixels) such that the minimum sample distance is one pixel
for CircleInner-36 (left) and Square-36 (right) tags.

For a particular tag pose, the minimum sample distance varies linearly with the
size of the tag in the image. The size of the tag in the image is also inversely
proportional to its distance from the camera projection plane (i.e. along thez axis)
along a particular ray. We use the termray to refer to a straight line drawn from
the camera origin to some infinite point. Therefore linear interpolation can be used
to find the distance from the camera when the minimum sample distance is one
pixel. This tag size represents the fundamental maximum distance at which a tag
of a particular shape and pose can be read. This result does not guarantee the tag
can be read at this distance by any particular implementation; rather, it provides a
fundamental upper bound on the possible read distance of a tag.

Figure 5 shows the tag size in pixels such that the minimum sample distance is one
pixel for a Square-36 and CircleInner-36 tag. Both halves of the figure contains
nine sub-plots corresponding to one of nine equally sized regions in the image.
For example, the top-left sub-plot (on both sides of the figure) corresponds to a
ray that goes through a point in the top left corner of the image. The axes of each
sub-plot represent thex andy components of the tag’s normal vector. For example,
the centre of each sub-plot corresponds to a fully facing tagand the bottom-right
of each sub-plot corresponds to a tag facing down and to the right. The value at
each point on a sub-plot shows the tag size in the image such that the minimum
sample distance is one pixel. The white regions around the edges of each sub-plot
indicate orientations where it is not possible to make the minimum distance one
pixel no matter how close the tag is brought towards the camera. As expected, a
tag positioned at the top of the image (above the camera) is more easily read when
facing downwards in the image rather than upwards–this explains the truncation of
the circular plot pattern for the sub-plots corresponding to the edges of the image.
We also note that the square tag achieves longer read distances than the circular tag
for small angles of inclination. However, under more extreme angles of inclination
the performance of the two designs converge.
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Figure 6. Minimum tag size for varying payload size.

The effect of the shape of the data cells is evident in the way that the performance of
the tags drops off as the tag inclination is increased. The high degree of rotational
symmetry possessed by the Circular tag means that when the tag is in the centre
of the image the degradation in performance is only dependent upon the angle be-
tween the normal vector and the camera vector. The square tagis more directionally
sensitive, the square edges of this shape are due to the fact that tilting the tag in the
x direction will reduce all the cells in the far edge row in size. Subsequently tilting
in they direction will not reduce the minimum distance of these cells until the tilt
exceeds that applied in in thex direction. Rotation of the square tag around its nor-
mal vector causes the same rotation in the direction of the square edges seen in the
figure because cells’ favoured direction of tilt is moved round.

Figure 6 shows the effect of increasing payload size on the minimum sample dis-
tance. The tag size in the image such that the minimum sample distance is one pixel
was found for increasing payload sizes. We expect that the square tag will experi-
ence a decrease in read performance in proportion to the square of the payload size.
This is because going from ann × n tag to an(n + 1) × (n + 1) tag adds one data
cell along the edge causing a linear decrease in the minimum sample distance for
a quadratic increase in payload size. The curved line on the graph (which has the
same shape asy =

√
x) for the square tag is due to this effect. We also see that the

circular tags show no loss in performance when increasing payload size by adding
to a small number of sectors—this is because the distance between the data rings
is less than the distance between sectors (consequently thedistance between the
data rings rather than the distance between the sectors limits the tag performance).
This graph also shows the benefit of adding additional data rings to the tag once
the payload size increases. For example, a four ring tag with37 sectors (148 bits)
has a better minimum distance value than a smaller capacity tag with 3 rings and
49 sectors (147 bits).

Figure 5 indicates the likelihood of a single bit error for a particular position and
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Figure 7. Systematic data cell errors due to tag geometry.

pose of the tag. If the tag is utilising an error correcting code then a designer might
expect better performance because a certain number of bit errors can be tolerated
before the tag becomes unreadable. Figure 7 shows data captured from a tag located
at the centre of the camera image with a range of normal vectors. For each data cell
on the tag, the tag size, such that the minimum distance is onepixel, is shown. Data
cells with a value indicating small tag size are more robust (i.e. can be read at a
greater distance from the camera) than data cells requiringa larger tag size. For
the square tag design all the data cells produce errors at approximately the same
distance from the camera. This suggests that there is littlevalue in using an error
correcting code to recover from errors due to the tag geometry—although errors
from other sources such as image noise may still be worth correcting.

The circular tag shown in Figure 7(a) shows a more significantvariation in data
cell distances. Tags with an extreme inclination in one axis(e.g. large tilt in the x-
axis direction and no tilt in the y-axis direction) show minimal change for the data
cells close to the axis of rotation and a drop in performance for cells perpendicular
to the axis of rotation. This is because the minimum distancefor this tag design
(2 rings with 18 sectors) is radial (between rings) rather than tangential (between
sectors). This makes the tag more amenable to the addition ofmore sectors than
to the addition of more rings (Figure 6). Thus, when the tag isrotated, those cells
near to the axis of rotation are compressed in the tangentialdirection. This does not
affect the minimum distance. However, cells perpendicularto the axis of rotation
are compressed radially. This does reduce the minimum distance. As previously
mentioned the optimal tradeoff for a circular tag is to balance the width of the rings
with the size of the sectors. The results in Figure 7 further suggest that designers
unable to exactly match these parameters should err on the side of decreasing the
sector size rather than the ring width.
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4 Simulating Tag Designs

The Cantag system incorporates an image source for processing artificial images
produced by OpenGL. Tags may be rendered with arbitrary positions and poses,
processed by the system, and the resulting data compared against the ground-truth
input data. This mechanism provides a vital means to ensure that the algorithms
offered by the system are correctly implemented. However, it also provides a means
of understanding the relative performance of different tags and algorithms since
it allows huge numbers of images containing a variety of tag orientations to be
systematically simulated.

The images produced by the test harness can be considered ideal: there is no cam-
era distortion, lighting artefacts, or measurement error:the only sources of error are
derived from the pixelation of the image and any algorithmicapproximations used
in the processing pipeline. Hence this harness can be used toplace a quantitative
upper boundon the capabilities of a specific tag using a particular set ofprocessing
steps. Thus, in addition to providing a means for comparing two possible config-
urations of the Cantag system, we can also answer questions as to whether some
performance needs are actually possible with current algorithms.

The minimum sample distance described in the previous Section measured how
amenable a particular position and pose is to data decoding.However, there is also
the issue of how accurately the sample points are estimated from the image of
the tag. To investigate these effects we compute themaximum sample errorby
measuring the distance between the estimated sample point and the actual sample
point for each data cell on the tag. A simple check of the simulated data shows that
if the maximum sample error is less than the minimum sample distance then we
experience no data errors when reading the tag. We refer to the difference between
the maximum sample error and minimum sample distance as thesample strength.
If the sample strength is positive then we have successfullyread the tag because the
maximum error is less than the minimum error tolerance.

Figure 8 shows the effect of using the less complexSimple fit ellipse fitting algo-
rithm for various angles of inclination for the tag and distance from the camera
(shown here as the size of the tag in the image). The large variations in sample
strength shown by theSimple fit algorithm confirm that it is more susceptible to
noise in the shape contour. We also see that the algorithm performs badly for tags
which fully face the camera since the contour is circular in shape, making the iden-
tification of the longest and shortest axes an ill-posed problem. TheLeast squares
algorithm shows a much less noisy trace suggesting it is better at withstanding con-
tour noise caused by pixel truncation in the image.

Measurement of the sample strength is problematic in real-world images. However,
the sample strength is affected by the accuracy of the transform used to recognise
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Figure 8. The sample strength of the ellipse fitting algorithms for the CircleInner tag.

the tag and so we expect that a tag reading at a position with a large sample strength
will generate more accurate location information than a position with small sample
strength.

5 Real World Results

In order to validate the predicted trends from the test harness data we produced
a plate containing a number of different tags of different sizes. We photographed
the plate at distances between1.5 and4.5 metres from the camera with intervals of
10cm and at inclinations of0, 30 and45 degrees to the camera. We then mapped the
distance measurements on to tag size (in pixels) in the image(the camera’s vertical
field of view is approximately40 degrees). Figure 9 shows the experimental setup
and an example captured image.

We have asserted that the tag’s pixel size in the image is inversely proportional to
its distance from the camera and actual size. This is validated in the data whereby
results from different sized versions of the same tag designproduce similar results
when they appear with the same pixel size in the image. In the following graphs
all distances are measured in unit-less dimensions oftag widths. The reader may
prefer to interpret this as follows: if the tag is1m across then all distances are in
metres.

Figure 10 shows both real-world and simulated 3D location error for a number
of different tags and processing combinations. The location error values shown in
each subgraph have been clamped at 5 tag units so that the trends in the data remain
visible despite the noise in the results. We notice that as predicted by the sample
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Figure 9. Experimental Setup

strength measure theSimple fit algorithm is more susceptible to image noise than
the Least squares algorithm particularly when the target tag is fully facing the
camera. This is also evident in the simulated real-world location error.

We also see that theLinear regression algorithm performs more reliably than the
simpleCurvature algorithm. These results suggest that the algorithms making use
of the entire contour are more robust than the simple algorithms but the effect on
the location accuracy is surprisingly small. We note that the Projective transform
(not included in the figure) produced errors at least an orderof magnitude worse
that theNon-linear square transform for the smaller tags.

It is important to note that the actual errors reported by Cantag (of the order of
5–10cm) are not significantly bigger than the possible measurement error in our
experiment and so further work is needed with more precise equipment to be sure
of the absolute performance of the system. We limit ourselves here to examining
trends and relative performance of different tags and algorithms. The real-world
accuracy of the circular tag designs follows a similar shapecurve to the results
predicted by simulation.CircleSplit andCircleOuter tags produce similar accuracy
results because they have the same radius for the outer edge of the target bullseye.
The results from the square tags contain much more error in the real-world results
than predicted in simulation. This is because there are numerous other factors af-
fecting system operation which are not accomodated in the simulation. Examples
include incorrect thresholding of the original image due tolighting variation and
error in the calibration of the camera equipment. It seems that the square tag design
is much more succeptible to these unmodelled effects than the circular design.

The thresholding step at the beginning of the vision pipeline is particularly prob-
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Figure 10. Real-world and Simulated location error for different tags and processing algo-
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lematic in real-world systems because selection of the besttechnique and thresholds
to use varies at run-time. Projects such as ARToolKitPlus ((Wagner et al., 2005))
introduce automatic thresholding which attempts to searchfor, and to track, the best
threshold. We also notice that, in addition to whether the tag is successfully recog-
nised or not, the positioning accuracy of the system is also dependent upon the
chosen threshold. We are currently attempting to develop techniques to detect and
compensate for this. Further errors in the real-world data due to lens distortion also
require additional investigation. Results from photogrammetry suggest that these
errors can be corrected to high accuracy (Brown, 1966) although further work is
required to identify the trade-offs in the various possiblecorrection algorithms.

A number of trends predicted by simulation are borne out in the real-world data but
the effects of image noise amplify any algorithmic instabilities. The test harness re-
sults generally suggest that a square-based fiducial markeris superior to a circular
design. The square-based markers scale better to large datapayloads and the algo-
rithms for detecting and reading them are simpler to implement than for circular
tags. The real-world data show that shape fitting algorithmsare increasingly robust
as more contour points contribute to the fitted shape. For this reason, circular tags
provide more robust location information than squares in real-world images.

6 Discussion

The data produced by mathematical modelling, the OpenGL test harness and the
real-world results suggest a number of high-level design rules for MBV application
developers to bear in mind.

For short-range applications the expected performance of the system is directly de-
termined by the number of pixels occupied by the tag. This is evidenced by the
OpenGL test harness which produces the same results for a high resolution camera
picturing a distant tag as for a low resolution picture of a nearby tag. We expect
atmospheric effects to become significant only over large distances—perhaps af-
fecting applications using high magnification telephoto lenses.

The performance of tags with a cell based payload structure is governed by the
minimum distance between the sample point and the edge of thecell. The result of
this is that circular tags should balance data-ring radius against sector angle. Anal-
ysis of the distribution of data cell errors due to tag geometry suggests that error
correcting codes will have little mitigating effect for square tags due to the even
drop-out rate across the tag. Circular tags experience errors limited to particular re-
gions of the payload and so might expect an error correcting code to improve read
performance.

Circular tags provide more robust location information than square tags especially
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when using the simpler shape fitting techniques. This can be seen in Figure 10
where the traces for the circular tags show less jitter and noise than those for the
square tags. Square tags are, however, capable of carrying larger payloads than cir-
cular tags for the same tag dimensions. It is also apparant that decoding of data
payload stored on a square tag is successful despite the large location errors some-
times produced.

There are numerous combinations of algorithms and designs producing different
behaviour. Selection of these must be done carefully to optimize the trade-off be-
tween functionality and performance. For example, use of the expensiveLeast
squares ellipse fitting algorithm provides little advantage over the Simple fit al-
gorithm if theLinear transform algorithm is used later in the pipeline.

7 Related Work

Numerous MBV systems exist, particularly in the field of Augmented Reality.
These systems display huge heterogeneity in tag design and implementation. Can-
tag currently implements the processing pipeline of a number of these systems and
we note the additional implementation required for supportof the remainder.

Arguably the most popular system for video overlay is ARToolKit (Billinghurst
and Kato, 1999). ARToolKit utilises square tags which are detected and read from
black and white images. The four corner points in the image serve to compute
the projective transform and a template-based scheme is used to recognise specific
tags from a database of issued templates within the perspective-corrected image.
Owenet al. presented a scheme for selecting template images which maximises
the distance between tags (before projective distortion effects) (Owen et al., 2002).
The addition of a template matching algorithm for decoding the tag data would be
sufficient for Cantag to implement the ARToolKit pipeline.

Matrix (Rekimoto, 1998), CyberCode (Rekimoto and Ayatsuka, 2000) and Rohs’
mobile phone-based tag reader (Rohs and Gfeller, 2004) alsomake use of a square-
based tag design. However, the use of symbolic codes (as opposed to a template-
based system) allows the number of distinct tags to be quantified. ARToolKit and
Matrix tags use a solid black border around the entire tag andso shape recognition
follows from detecting a quadrilateral in the image. In contrast, the CyberCode and
Rohs systems use a combination of marker bars and points detected using region-
growing and computing a second-order moment. These algorithms are not currently
implemented in Cantag but can be straight-forwardly integrated into the framework
and make use of common steps such as recovering the tag position and decoding
the binary payload. The ARTag system (Fiala, 2004) also makes use of a square tag
design but detection is done based on the results of multi-resolution edge detection
rather than image thresholding. Again, extension of Cantagto support this system
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design requires only the implementation of edge detection and segment linking
algorithms because the remainder of the image processing pipeline reuses existing
algorithms.

Examples of circular fiducial tags also exist in the literature. The TRIP location
system (de Ipiña et al., 2002) uses circular tags with a symbolic code arranged
around the outside of a circular bullseye. Naimark and Foxlin’s tracker (Naimark
and Foxlin, 2002) also utilises a circular tag with additional asymmetric eyelets
to orient the tag. The Free-D camera tracking system (Thomaset al., 1997) uses
circular tags to determine the position of a mobile camera within a TV studio.
Bundle adjustment is used to derive an estimate of the cameraposition from the
angulation measurements to a set of sighted tags whose identifiers are encoded
using up to nine concentric circles. Support for this tag design in Cantag requires
the implementation of a radial sampling algorithm to read the tag and a bundle
adjustment algorithm to estimate position over the set of sighted tags.

The need for trade-offs in the design of marker tracking systems is evident in
projects such as Handheld Augmented Reality (Wagner et al.,2005) which per-
form video overlay on a handheld PDA and might be prepared to accept reduced
accuracy algorithms in order to decrease power consumptionor achieve real-time
performance. The MagicBook (Billinghurst et al., 2001) application overlays active
content onto the pages of a book and therefore we would hope for a large number
of recognisable tags at the cost of reducing the code distance between each tag.

8 Conclusion

This paper has presented a comparative analysis of the expected performance of
many different fiducial tag designs. We have identified fundamental limits to the
decoding of imaged tags and used this analysis to quantify the fundamental dif-
ferences between square and circular tag designs. We have demonstrated how the
position and pose of the tracked tag can cause systematic errors in tag decoding.

We have demonstrated how the Cantag system can be used to select the most ap-
propriate tag design for a given application. Important results have been derived
through simulation using the OpenGL test harness to comparethe performance of
different tag designs. For example, the choice of fiducial shape provides a perfor-
mance trade-off for a tag designer: square tags carry a larger symbolic data payload
than a circular tag of the same size, whereas circular tags offer better location and
pose accuracy. The test harness can also be used by tag designers to determine
whether their particular application idea will function atall, or whether their design
is overly optimistic.

The design space for fiducial marker tags is large and currently poorly understood.
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Previous investigations into the performance of tag tracking systems have com-
pared implementations rather than fundamental properties. The Cantag framework
enables the direct comparison of different tag designs and algorithm choices, pro-
viding benefit to fiducial tag designers and application developers alike: new de-
signs may be systematically profiled against each other and the most suitable de-
sign for a chosen application can be selected and used without requiring in-depth
knowledge of system operation.
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