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Abstract

This paper investigates fundamental properties of Mabkesed Vision (MBV) systems.
We present a theoretical analysis of the performance of bagidesigns which is extended
through simulation to investigate the effects of differpricessing algorithms. Real-world
data are processed and related to the simulated resulige lpnacessing is performed using
Cantag, an open source software toolkit for building Maitk@sed Vision (MBV) systems
that can identify and accurately locate printed markerdied dimensions. Cantag sup-
ports multiple fiducial shapes, payload types, data sizdsraage processing algorithms
in one framework. This paper explores the design space sféhin the Cantag system,
and describes the design parameters and performance tetstars which an application
writer can use to select the best tag system for any giveragicen
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1 Introduction

Developers of pervasive computing systems have long resedhe utility of de-
termining location information about system componensgrsi and other entities
in the operating environment. Machine-based vision systara becoming an in-
creasingly popular way of collecting these data. Some misystems locate objects
by processing images of the natural environment. Howevanynvision systems
are designed to recognisiducial marker tags rather than operating upon uncon-
strained images. This approach provides improved perfocaman terms of runtime
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costs and increased reliability in object identificationd éocalisation at the cost of
attaching specially designed tags to every object to bé&edcFiducial markers
can be thought of as advanced bar-codes (often printed asimgnodity printing

hardware) with the potential not only to label an object bytdsition it accurately.
The field of Augmented Reality (AR) has been the traditioratedopment do-
main for such Marker-Based Vision (MBV) systems (Billingbuand Kato, 1999),
(Rekimoto, 1998), (Rekimoto and Ayatsuka, 2000), where e favoured for
their dependence on commodity hardware (decreasing daplalycosts) and for
their high degree of precision and accuracy across six degrefreedom (ideal
for image-object registration). Most AR applications feanvideo overlaywhere

three-dimensional models are rendered into the videoratweawed by the user.

As pervasive computing systems emerge, MBV systems alsv tfeé potential
to create large scale, ubiquitous tracking environments wimultitude of novel
applications. Different applications demand differeragerties from an MBV sys-
tem. A mobile user, for example, may wish to trade-off accyia favour of ex-
tended battery life, whilst another may only be interesteuientifying objects in
the image without the need to locate them.

This paper makes use Gantag(Rice et al., 2006), an open-source software toolkit
suitable for designing and deploying an MBV system as pad pérvasive com-
puting application. Cantag differs from previous MBV syste which we compare
in Section 7, in a number of important ways. In particulaalibws an application
writer to:

¢ select the most appropriate tag design from a wide variefidatial types, or
implement a custom marker;

e choose the most appropriate algorithm for each stage oférpemcessing, given
the application requirements;

e characterise the MBV system through simulation beforea@gpént;

e build a custom MBV system executable, optimised for thertipalar applica-
tion;

¢ efficiently track multiple tag types in the same video strégnsharing common
processing steps; and

e deploy their system using normal or high frame-rate Firevar Video4Linux
cameras.

The remainder of this paper describes how pervasive congpuéisearchers can
use the Cantag system to design, build and integrate an MB¥sywith their
application. Section 2 provides an overview of the Cantaiesy and describes
how various system components can be composed with C++ agéespto provide
an optimised executable. In Section 3 we present a theareialysis of tag per-
formance to provide high-level insights into design opsioBection 4 extends this
analysis with simulated results from the OpenGL test-hesrie Cantag allowing
the evaluation of the performance trade-offs availablepjaieation writers when
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(a) Circlelnner (b) CircleSplit (c) CircleOuter (d) Square

Figure 1. Four example tag types in the Cantag system.

using different algorithms and tag designs. Section 5 cheoidicted results from
our analysis using the Cantag system with real world ima8estion 6 reviews
the salient points of our analysis on tag performance anctitbes how a pervasive
computing researcher can make the most effective use of ithe variety of tag
designs available in Cantag for their application domagct®n 7 contrasts the
Cantag system with related work and Section 8 describestsohs learned and
reviews the key tag features an application designer stemridider when deploy-
ing an MBV system.

2 Cantag

Cantag is an open-source computer vision framework writté€++. It makes ex-
tensive use of theemplateprogramming metaphor, enabling the compiler to gen-
erate an optimised executable for any particular set of &gigch and algorithm
options. This is important since the use of templates allasvio deliver a flexible
tag framework, whilst still providing real-time procesgiof image data, even for
high frame-rate cameras. Since Cantag is written in C+giteasily be integrated
with existing C or C++ code.

Cantag currently only processes 1-bitimages, since thisadelogy is most appli-
cable to resource constrained platforms; however we havel@@d Cantag with
a view to extending support to greyscale and colour proogseithe future. Even
when constrained to processing 1-bit images, pervasivepatng applications
have a surprisingly large variety of needs from an MBV syst@antag allows
system designers to choose algorithms with the desireduggacosts or accura-
cies and to customise tag designs to provide the best tfiletaveen data capacity
and reliability.

Our system currently implements two fundamental tag typesCircleTag de-
scribes tags based around a circular bullseye; andtinareTag describes tags
based around a square border. TheleTag can be further configured to control
the relative proportions of the tag that are occupied by thiséye and data rings,
giving rise to four tag shapes which may contain either testepbr symbolic pay-
loads. The symbolic payload can be configured to store atramnpamount of data



Square8 tag;

| Source | GreyImage* i = fs.Next();
<: MonochromeImage m(i->GetWidth(),i->GetHeight()) ;
Threshold | Apply (*i,m, ThresholdGlobal<GreyImage> (180)) ;

Tree<ComposedEntity<TL4 (ContourEntity, ShapeEntity<QuadTangle>,

TransformEntity,DecodeEntity<64>) > > tree;

Contour Follower Apply (m, tree, ContourFollowerTree (tag)) ;

Distortion Correctio ApplyTree (tree,DistortionCorrection (camera)) ;

ApplyTree (tree,FitQuadTangleRegression()) ;

ApplyTree (tree, TransformQuadTangleSpaceSearch()) ;

ApplyTree (tree,Bind (SampleTagSquare (tag,camera) ,m)) ;

n|
Fit Quadrilateral | ApplyTree (tree, FitQuadTanglePolygon () ) ;
| ApplyTree (tree,Decode<CRCSymbolChunkCoder>()) ;

Refine Fit
Derive Transform
Sample Code
Decode Payload

Figure 2. A sample Cantag pipeline with example code.

ApplyTree (tree, TransformRotateToPayload(tag)) ;

using therotational invarianceabstraction (Rice et al., 2004). Figure 1 shows four
example tags. We will see later in the paper that there areusaperformance
trade-offs associated with the choice of fiducial. Therefam application designer
should choose the fundamental tag design with care.

Once the basic tag design has been selected, the Cantaig $lysteallows a num-
ber of different algorithm choices for the image processiige programming ab-
straction used by Cantag models a tag processing pipelireseguence dalgo-
rithms (C++ function objects) operating antities Examples of entities include
contours, ellipses, quadrilaterals and payload data.

The system is extended by adding additional algorithms kvbigplicitly indicate
the types of entity used as argument and result types. Fon@gaa simple pro-
cessing pipeline could use seven processing stages toeblully-functional MBV
system: image capture, thresholding, building a tree ofaios, correcting camera
lens distortion, testing and fitting tag shapes to contautbé image, calculating
each camera-to-tag transform, and finally decoding theitetlie scene. This pro-
cess is shown visually in Figure 2—in this example the apgilbie designer would
write approximately one line of C++ code for each stage ias fipeline.

The Cantag framework also allows the construction of morapiex processing
pipelines. For example, we can build pipelines which preaesiltiple tag types
within the same scene (and share common processing stegghamically change
processing algorithms depending on the current needs dppkcation. The re-
mainder of this section briefly describes the various atbors currently available
within Cantag and summarises their performance.



2.1 Thresholding

The thresholding algorithms are used to convert an inpugéarta a 1-bit image.
The Global threshold algorithm takes a fixed threshold value. Every pixel in the
image is converted to black or white depending on whethantéssity is greater or
less than the threshold. This algorithm has a very low casppel and is suitable
for images where the lighting intensity is uniform acrodsedas of interest in the
image. For example, tags captured on a mobile phone camiadten be taken at
a relatively short range and therefore the tag is likely teeten even illumination.

The Adaptive threshold algorithm utilises a moving average across the image to
choose the threshold value (Wellner, 1993). Systems résiogrimages with vary-

ing light conditions will need to accept the higher compiotaal cost required to
perform an adaptive threshold.

2.2 CircleTag

The perspective transformation of a circle is an ellipsee@\1972) which con-
tains (almost) enough information to deduce the projeatnagping (known as
back-projection) between the real-world position of thg &ad the resulting im-
age. Therefore the first stage of recognisingi@leTag is that of fitting ellipses
to contours in the image. Theeast squares algorithm performs a least-squares
ellipse fit to the contour points (Halif and Flusser, 1998)is algorithm requires
numerous non-trivial floating point algorithrhsHowever, the quality of the posi-
tion and pose information produced by the system is diretglyendent upon the
quality of the ellipse fit and so systems requiring accuratgtning information
might consider this a necessary expense.

TheSimple fit algorithm provides a low cost alternative to least-squattasg of an
ellipse. This algorithm calculates the central point oféligse as centre of gravity
of the contour and then finds the major and minor axes as tlye&trand shortest
distances from the centre. Low power or high-speed appiicaimay be prepared
to accept the reduced accuracy in return for a simple, fgstighm.

Once the ellipse has been fitted the perspective transfummaiay then be be de-
rived. The3D transform algorithm implements an adaption of Forsyth'’s ellipse back
projection algorithm (Forsyth et al., 1991) to recover aggah3D transformation
from object co-ordinates to camera co-ordinates. Thisrdlga is computationally
complex but produces accurate 3D information for the tag&tpn and pose.

Alternatively, theLinear transform algorithm simply scales the located ellipse lin-

L In particular, it is necessary to solve a 3x3 eigensystena fown-symmetric matrix.



early within the image. This requires little computationaérhead but provides a
transform which is only valid when projected into the imagmad so overlay of
3D models and 3D position information are unavailable. Ti@issform also makes
assumptions about the perspective transform which arédnwader large perspec-
tive distortion.

2.3 SquareTag

RecognisingSquareTags follows a similar process to the circular tags. Perspec-
tive projection of a square results in a general quadrad&mnd hence the contour
follower must identify the four corners of the quadrilateighe Corner fitting al-
gorithm slides a window around the contour and returns attpawith discrete
curvature above a chosen threshold. This algorithm iséffstjent and easy to im-
plement but is susceptible to noise on the contour. Itsieesié can be increased
by simplifying the polygon of points using a convex hull aiigom and identifying
corners based on maximal local curvature: this has beeremmaited within the
Convex hull simplification algorithm. ThePolygon simplification algorithm (Dou-
glas and Peucker, 1973) repeatedly hypothesises polygmoxamations to the
contour and adds additional vertexes in order to reducedhar’s deviation from
the polygon. It has a high cost but is better able to withstaomdour noise.

A further option is to apply theinear regression algorithm to fit each set of points
corresponding to a side of the quadrilateral to best estittint infinite line passing
through the set. The four intersections of the infinite lingsresent the best esti-
mate of the true corner points. This algorithm ignores tmeas near the corners
and bases the corner determination on the more reliable bbgdgints between
them. Note that regression needs the contour points to beesggd into the four
edges of the quadrilateral, implicitly requiring an estienaf the corners. Such esti-
mates can be derived using any of the aforementioned digusitan advantage of
regression is that the corner estimate need not be highlyaie; merely sufficient
to partition the dataset.

The Projective transform algorithm may then be applied to the recognised quadri-
lateral to recover the 3D projection. This algorithm regim3D transformation
suitable for 3D model overlay but is susceptible to noisénamitmage, making 3D
position information unreliable. The algorithm solves addinear equations for
the four point correspondence between the corners of the tagect co-ordinates
and in image co-ordinates. These constraints are not suftitd preclude inde-
pendent scaling of the vertical and horizontal object akisvever, any warping
is exactly cancelled out when projecting from the surfacéheftag in object co-
ordinates into image co-ordinates. Furthermore, the émrcgsulting re-projected
projection co-ordinates (as used in visual overlay) isroab-pixel and so this
algorithm is a good choice for systems that do not require 8Bitjpn or pose
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Figure 3. The size of the tag in the camera image is inverselygstional to the distance
from the camera.

information.

Better 3D transform results are possible usingoa-linear transform algorithm
since this can be used to incorporate (the inherently noeah) constraints relat-
ing to a square into a four-point correspondence problens dligorithm requires
multiple iterations to find a non-linear solution and is #fere computationally
expensive to execute.

We systematically name tags according to the algorithmescted for their decod-
ing based on the concatenation of tag name (as shown in Figushape fitting
algorithm, back-projection algorithm, and payload siz&. &ample, &irclelnner
tag, using the.east squares shape fitting algorithm, followed by tr&D transform
algorithm, with a payload of 36 bits is name&itclelnnerLS3D-36.

3 Modelling Tag Performance

The Cantag system permits an examination of the fundamkmiéd of tag read-
ability. In this Section we use a series of mathematical nsotteassess the per-
formance of specific tag designs. We begin by providing samsght into how
the performance of a system will change as the payload siteeathosen tag is
altered.

We expect the performance of the system to decrease as tkedrtag’s distance
from the camera increases. However, a more useful metriortsider is the tag’s
size (in pixels) in the camera image. This metric is inverggbportional to the
distance from the camera. The constant of proportionatigpdes the camera res-
olution and field-of-view. This is shown in Figure 3. The diste between the two
projected pointsi$z +1)/z —x/z = 1/z in units of tag size. The total width (also
in units of tag size) of the camera imageisan(#/2). The total width occupies
pixels and so the total width of the imaged tag in pixelstisn(6/2)/2. This defi-
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Figure 4. Example minimum sample distances for circularsmare tags.

nition of tag size should be interpreted as width (in pixéis} the tag image would
occupy if the tag were in its current position without anyatain of the normal
vector.

A tag design which incorporates a symbolic payload contaiseries of data cells
positioned at precise locations around the fiducial. A samplnt for each data cell
is located in the centre of the cell in tag coordinate spaceormal operation Can-
tag uses the transformation from camera coordinates todaglimates (deduced
from analysis of the image of the fiducial marker) to estinthte position of the

sample point for each data cell in the image plane of the canidre data held in

the thresholded image at each projected sample point carbthased to read the
symbolic payload of the tag.

For a given tag at a specific location and pose, we definenthenum sample dis-
tanceas the minimum distance between the projected sample poiahf data cell
and the edges of that cell in the image plane of the camerard-ggshows a num-
ber of candidate minimum sample distances—the shortedidate distance for all
data cells corresponds to the minimum sample distance niinisnum sample dis-
tance gives a measure of how hard the tag is to read at thisgpolslecation—the
smaller the value the less margin for error in estimatingaibgtion of the sample
point.

If the minimum distance of a particular data cell is less tbaa pixel then, even if
an algorithm can deduce the precise pose of the tag, the saoiplt may still read
the pixel value of an adjacent cell. Therefore there is a &nmehtal lower-bound
on the minimum sample distance of 1 pixel if we want to relyaielad the payload
of a symbolic tag. This situation is analogous to the Nyg8isannon sampling
theorem which states that a discrete representation of alogue signal is only
possible if the highest frequency component of the analsgreal is less than half
the sampling rate. Therefore, data cells may occur no meguéntly than once
every two pixels in the image plane of the camera. This cpoeds to a minimum
distance of one pixel from the centre of the cell to the edjhd minimum dis-
tance is any less than this then the tag data cells will saffasing and accurately
measuring the payload will become impossible.
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Figure 5. Minimum tag size (pixels) such that the minimum glndistance is one pixel
for Circlelnner-36 (left) and Square-36 (right) tags.

For a particular tag pose, the minimum sample distance s/éinearly with the
size of the tag in the image. The size of the tag in the imagdsis iaversely
proportional to its distance from the camera projectiomelé.e. along the axis)
along a particular ray. We use the teray to refer to a straight line drawn from
the camera origin to some infinite point. Therefore lineéenpolation can be used
to find the distance from the camera when the minimum samglamte is one
pixel. This tag size represents the fundamental maximutante at which a tag
of a particular shape and pose can be read. This result dogmamntee the tag
can be read at this distance by any particular implemematather, it provides a
fundamental upper bound on the possible read distance gf a ta

Figure 5 shows the tag size in pixels such that the minimunpgadistance is one
pixel for a Square-36 and Circlelnner-36 tag. Both halves of the figure contains
nine sub-plots corresponding to one of nine equally sizggbrs in the image.
For example, the top-left sub-plot (on both sides of the &yuorresponds to a
ray that goes through a point in the top left corner of the iendthe axes of each
sub-plot represent theandy components of the tag’s normal vector. For example,
the centre of each sub-plot corresponds to a fully facingatadjthe bottom-right
of each sub-plot corresponds to a tag facing down and to ¢ie. rThe value at
each point on a sub-plot shows the tag size in the image sathh@ minimum
sample distance is one pixel. The white regions around tgesedf each sub-plot
indicate orientations where it is not possible to make theimim distance one
pixel no matter how close the tag is brought towards the canfs expected, a
tag positioned at the top of the image (above the camera)is gasily read when
facing downwards in the image rather than upwards—thissexpthe truncation of
the circular plot pattern for the sub-plots correspondmthe edges of the image.
We also note that the square tag achieves longer read destttran the circular tag
for small angles of inclination. However, under more exteeangles of inclination
the performance of the two designs converge.
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The effect of the shape of the data cells is evident in the Walythe performance of
the tags drops off as the tag inclination is increased. Tgk tegree of rotational
symmetry possessed by the Circular tag means that whenghs ita the centre
of the image the degradation in performance is only depeng®m the angle be-
tween the normal vector and the camera vector. The squaiertage directionally
sensitive, the square edges of this shape are due to théadtiting the tag in the
x direction will reduce all the cells in the far edge row in sid@bsequently tilting
in they direction will not reduce the minimum distance of thesescatitil the tilt
exceeds that applied in in thedirection. Rotation of the square tag around its nor-
mal vector causes the same rotation in the direction of tharggedges seen in the
figure because cells’ favoured direction of tilt is movedrdu

Figure 6 shows the effect of increasing payload size on themmuim sample dis-
tance. The tag size in the image such that the minimum sangténde is one pixel
was found for increasing payload sizes. We expect that tharsgag will experi-
ence a decrease in read performance in proportion to theesqtidne payload size.
This is because going from anx n tag to an(n + 1) x (n + 1) tag adds one data
cell along the edge causing a linear decrease in the mininaunple distance for
a quadratic increase in payload size. The curved line onridyghg(which has the
same shape as= /) for the square tag is due to this effect. We also see that the
circular tags show no loss in performance when increasigtppd size by adding
to a small number of sectors—this is because the distaneesbgrtthe data rings
is less than the distance between sectors (consequenttiidtamce between the
data rings rather than the distance between the sectots timei tag performance).
This graph also shows the benefit of adding additional daigsrto the tag once
the payload size increases. For example, a four ring tag 3vitbectors (148 bits)
has a better minimum distance value than a smaller capagjtyith 3 rings and
49 sectors (147 bits).

Figure 5 indicates the likelihood of a single bit error forartpular position and

10
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Figure 7. Systematic data cell errors due to tag geometry.

pose of the tag. If the tag is utilising an error correctingethen a designer might
expect better performance because a certain number ofrbiseran be tolerated
before the tag becomes unreadable. Figure 7 shows datae@dfrtom a tag located
at the centre of the camera image with a range of normal \&@d¥or each data cell
on the tag, the tag size, such that the minimum distance ipieet is shown. Data

cells with a value indicating small tag size are more robust ¢an be read at a
greater distance from the camera) than data cells requérilagger tag size. For
the square tag design all the data cells produce errors abxpyately the same
distance from the camera. This suggests that there is\dtlée in using an error
correcting code to recover from errors due to the tag gegmedithough errors

from other sources such as image noise may still be wortlecting.

The circular tag shown in Figure 7(a) shows a more signifiean@ation in data
cell distances. Tags with an extreme inclination in one éxig. large tilt in the x-
axis direction and no tilt in the y-axis direction) show nmr@l change for the data
cells close to the axis of rotation and a drop in performanceélls perpendicular
to the axis of rotation. This is because the minimum distdocehis tag design
(2 rings with 18 sectors) is radial (between rings) rathanttangential (between
sectors). This makes the tag more amenable to the additiorooé sectors than
to the addition of more rings (Figure 6). Thus, when the tagiated, those cells
near to the axis of rotation are compressed in the tangeitedtion. This does not
affect the minimum distance. However, cells perpendictdahe axis of rotation
are compressed radially. This does reduce the minimummndistaAs previously
mentioned the optimal tradeoff for a circular tag is to bakathe width of the rings
with the size of the sectors. The results in Figure 7 furthiggest that designers
unable to exactly match these parameters should err ondbeosidecreasing the
sector size rather than the ring width.

11



4 Simulating Tag Designs

The Cantag system incorporates an image source for prageadificial images

produced by OpenGL. Tags may be rendered with arbitrarytipasiand poses,
processed by the system, and the resulting data comparetstile ground-truth

input data. This mechanism provides a vital means to engaitethe algorithms

offered by the system are correctly implemented. Howetalso provides a means
of understanding the relative performance of differenstagd algorithms since
it allows huge numbers of images containing a variety of tagntations to be

systematically simulated.

The images produced by the test harness can be consideatdlindee is no cam-
era distortion, lighting artefacts, or measurement eth@only sources of error are
derived from the pixelation of the image and any algorithepproximations used
in the processing pipeline. Hence this harness can be uggdde a quantitative
upper boundn the capabilities of a specific tag using a particular sptotessing
steps. Thus, in addition to providing a means for companvig possible config-
urations of the Cantag system, we can also answer questaiosvehether some
performance needs are actually possible with current dihgos.

The minimum sample distance described in the previous @eatieasured how
amenable a particular position and pose is to data decodmgever, there is also
the issue of how accurately the sample points are estimabed the image of
the tag. To investigate these effects we computentiagimum sample erroby
measuring the distance between the estimated sample poirtha actual sample
point for each data cell on the tag. A simple check of the sataeal data shows that
if the maximum sample error is less than the minimum sam@&adce then we
experience no data errors when reading the tag. We refeetdiffierence between
the maximum sample error and minimum sample distance asatin@le strength
If the sample strength is positive then we have successkalg the tag because the
maximum error is less than the minimum error tolerance.

Figure 8 shows the effect of using the less com@enple fit ellipse fitting algo-
rithm for various angles of inclination for the tag and dista from the camera
(shown here as the size of the tag in the image). The largatiars in sample
strength shown by th8imple fit algorithm confirm that it is more susceptible to
noise in the shape contour. We also see that the algorithforpes badly for tags
which fully face the camera since the contour is circulahagge, making the iden-
tification of the longest and shortest axes an ill-posedlprobTheLeast squares
algorithm shows a much less noisy trace suggesting it isbattvithstanding con-
tour noise caused by pixel truncation in the image.

Measurement of the sample strength is problematic in realedvimages. However,
the sample strength is affected by the accuracy of the wamsfised to recognise

12
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Figure 8. The sample strength of the ellipse fitting algonghfor the Circlelnner tag.

the tag and so we expect that a tag reading at a position watlga sample strength
will generate more accurate location information than atpeswith small sample
strength.

5 Rea World Results

In order to validate the predicted trends from the test resmata we produced

a plate containing a number of different tags of differemesi We photographed
the plate at distances betwekf and4.5 metres from the camera with intervals of
10cm and at inclinations df, 30 and45 degrees to the camera. We then mapped the
distance measurements on to tag size (in pixels) in the irftageamera’s vertical
field of view is approximatelyt0 degrees). Figure 9 shows the experimental setup
and an example captured image.

We have asserted that the tag’'s pixel size in the image issalyeproportional to
its distance from the camera and actual size. This is valiet the data whereby
results from different sized versions of the same tag dgsigduce similar results
when they appear with the same pixel size in the image. Indhewing graphs
all distances are measured in unit-less dimensioritagfvidths The reader may
prefer to interpret this as follows: if the tag isn across then all distances are in
metres.

Figure 10 shows both real-world and simulated 3D locatiaorefor a number

of different tags and processing combinations. The looagiwor values shown in
each subgraph have been clamped at 5 tag units so that tde inghe data remain
visible despite the noise in the results. We notice that adipted by the sample

13
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Figure 9. Experimental Setup

strength measure tt&mple fit algorithm is more susceptible to image noise than
the Least squares algorithm particularly when the target tag is fully facinget
camera. This is also evident in the simulated real-worldtion error.

We also see that thienear regression algorithm performs more reliably than the
simpleCurvature algorithm. These results suggest that the algorithms rngakse
of the entire contour are more robust than the simple algostbut the effect on
the location accuracy is surprisingly small. We note thatRlojective transform
(not included in the figure) produced errors at least an ooflenagnitude worse
that theNon-linear square transform for the smaller tags.

It is important to note that the actual errors reported byt@arof the order of
5—10cm) are not significantly bigger than the possible measunémeor in our
experiment and so further work is needed with more precisgaetent to be sure
of the absolute performance of the system. We limit oursehare to examining
trends and relative performance of different tags and dlgos. The real-world
accuracy of the circular tag designs follows a similar sheyere to the results
predicted by simulatiorCircleSplit andCircleOuter tags produce similar accuracy
results because they have the same radius for the outer etlgetarget bullseye.
The results from the square tags contain much more erroeingidl-world results
than predicted in simulation. This is because there are museother factors af-
fecting system operation which are not accomodated in thelation. Examples
include incorrect thresholding of the original image dudigbting variation and
error in the calibration of the camera equipment. It seerasthie square tag design
is much more succeptible to these unmodelled effects thaaitbular design.

The thresholding step at the beginning of the vision pigeigparticularly prob-
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Figure 10. Real-world and Simulated location error foretént tags and processing algo-
rithms
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lematic in real-world systems because selection of thetbelshique and thresholds
to use varies at run-time. Projects such as ARToolKitPIW&af(ner et al., 2005))
introduce automatic thresholding which attempts to sefncland to track, the best
threshold. We also notice that, in addition to whether tigegasuccessfully recog-
nised or not, the positioning accuracy of the system is atqmeddent upon the
chosen threshold. We are currently attempting to develcmigues to detect and
compensate for this. Further errors in the real-world datatd lens distortion also
require additional investigation. Results from photognagtry suggest that these
errors can be corrected to high accuracy (Brown, 1966) athdurther work is
required to identify the trade-offs in the various possierection algorithms.

A number of trends predicted by simulation are borne outé@ré#al-world data but
the effects of image noise amplify any algorithmic instiileis. The test harness re-
sults generally suggest that a square-based fiducial migrkaperior to a circular
design. The square-based markers scale better to largpaldteads and the algo-
rithms for detecting and reading them are simpler to implantiean for circular
tags. The real-world data show that shape fitting algoritarasncreasingly robust
as more contour points contribute to the fitted shape. Ferr#dason, circular tags
provide more robust location information than squares atrweorld images.

6 Discussion

The data produced by mathematical modelling, the OpenGlLhtasess and the
real-world results suggest a number of high-level desitgsrior MBV application
developers to bear in mind.

For short-range applications the expected performandeedcytstem is directly de-
termined by the number of pixels occupied by the tag. Thisvidesced by the

OpenGL test harness which produces the same results fohadsglution camera
picturing a distant tag as for a low resolution picture of arbg tag. We expect
atmospheric effects to become significant only over largtéadces—perhaps af-
fecting applications using high magnification telephotuskes.

The performance of tags with a cell based payload structugoverned by the
minimum distance between the sample point and the edge otthd he result of
this is that circular tags should balance data-ring radgasrest sector angle. Anal-
ysis of the distribution of data cell errors due to tag geoynstiggests that error
correcting codes will have little mitigating effect for sape tags due to the even
drop-out rate across the tag. Circular tags experiencesdmaited to particular re-
gions of the payload and so might expect an error correctinlg ¢o improve read
performance.

Circular tags provide more robust location informationrtisguare tags especially
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when using the simpler shape fitting techniques. This canebe & Figure 10
where the traces for the circular tags show less jitter anseniban those for the
square tags. Square tags are, however, capable of caraygey bayloads than cir-
cular tags for the same tag dimensions. It is also apparantd#coding of data
payload stored on a square tag is successful despite tteeltar@tion errors some-
times produced.

There are numerous combinations of algorithms and desigruping different
behaviour. Selection of these must be done carefully taropé the trade-off be-
tween functionality and performance. For example, use efdkpensive_ east
squares ellipse fitting algorithm provides little advantage ovee Simple fit al-
gorithm if theLinear transform algorithm is used later in the pipeline.

7 Reated Work

Numerous MBV systems exist, particularly in the field of Augmed Reality.
These systems display huge heterogeneity in tag desigmgsidmentation. Can-
tag currently implements the processing pipeline of a nurabthese systems and
we note the additional implementation required for suppbthe remainder.

Arguably the most popular system for video overlay is ARKab[Billinghurst
and Kato, 1999). ARToolKit utilises square tags which areedied and read from
black and white images. The four corner points in the imageesto compute
the projective transform and a template-based schemedstasecognise specific
tags from a database of issued templates within the perggaxrrected image.
Owencet al. presented a scheme for selecting template images whichnmsed
the distance between tags (before projective distortifaces) (Owen et al., 2002).
The addition of a template matching algorithm for decodimgtig data would be
sufficient for Cantag to implement the ARToolKit pipeline.

Matrix (Rekimoto, 1998), CyberCode (Rekimoto and Ayatsu#@00) and Rohs’
mobile phone-based tag reader (Rohs and Gfeller, 2004hadke use of a square-
based tag design. However, the use of symbolic codes (asego a template-
based system) allows the number of distinct tags to be diexhtARToolKit and
Matrix tags use a solid black border around the entire tagsarghape recognition
follows from detecting a quadrilateral in the image. In cast, the CyberCode and
Rohs systems use a combination of marker bars and pointstelétesing region-
growing and computing a second-order moment. These digasiaire not currently
implemented in Cantag but can be straight-forwardly irdegg into the framework
and make use of common steps such as recovering the tagopaaitil decoding
the binary payload. The ARTag system (Fiala, 2004) also siake of a square tag
design but detection is done based on the results of mgkitidon edge detection
rather than image thresholding. Again, extension of Catdaypport this system
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design requires only the implementation of edge detectiah ssegment linking
algorithms because the remainder of the image procesgiagjme reuses existing
algorithms.

Examples of circular fiducial tags also exist in the literaturhe TRIP location
system (de Ipifa et al., 2002) uses circular tags with a sfimlcode arranged
around the outside of a circular bullseye. Naimark and FRéxtiracker (Naimark
and Foxlin, 2002) also utilises a circular tag with addiitbasymmetric eyelets
to orient the tag. The Free-D camera tracking system (Tharhat, 1997) uses
circular tags to determine the position of a mobile camerdiwia TV studio.

Bundle adjustment is used to derive an estimate of the capumidion from the

angulation measurements to a set of sighted tags whoséfiglenare encoded
using up to nine concentric circles. Support for this taggtes Cantag requires
the implementation of a radial sampling algorithm to reael thg and a bundle
adjustment algorithm to estimate position over the setgifted tags.

The need for trade-offs in the design of marker tracking esyst is evident in
projects such as Handheld Augmented Reality (Wagner e2@D5) which per-
form video overlay on a handheld PDA and might be preparea¢efs reduced
accuracy algorithms in order to decrease power consumpti@achieve real-time
performance. The MagicBook (Billinghurst et al., 2001) legagion overlays active
content onto the pages of a book and therefore we would hopeléyge number
of recognisable tags at the cost of reducing the code distagivveen each tag.

8 Conclusion

This paper has presented a comparative analysis of the texibbpperformance of
many different fiducial tag designs. We have identified fundatal limits to the
decoding of imaged tags and used this analysis to quangfyfuhdamental dif-
ferences between square and circular tag designs. We henvend&rated how the
position and pose of the tracked tag can cause systemairs @nrtag decoding.

We have demonstrated how the Cantag system can be useddbtkelenost ap-

propriate tag design for a given application. Importantiltsshave been derived
through simulation using the OpenGL test harness to contparperformance of
different tag designs. For example, the choice of fiduciabghprovides a perfor-
mance trade-off for a tag designer: square tags carry alaygebolic data payload
than a circular tag of the same size, whereas circular tdgs luétter location and
pose accuracy. The test harness can also be used by tagetssigrdetermine
whether their particular application idea will functionedit or whether their design
is overly optimistic.

The design space for fiducial marker tags is large and cuyrpabrly understood.
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Previous investigations into the performance of tag traglsystems have com-
pared implementations rather than fundamental propefftes Cantag framework
enables the direct comparison of different tag designs &uadithm choices, pro-
viding benefit to fiducial tag designers and application teers alike: new de-
signs may be systematically profiled against each otherlandbst suitable de-
sign for a chosen application can be selected and used witequiring in-depth
knowledge of system operation.
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