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Abstract

Apportioning the total energy consumption of a building
or organisation to individual users may provide incentives to
make reductions. We explore how sensor systems installed in
many buildings today can be used to apportion energy con-
sumption between users. We investigate the differences be-
tween a number of possible policies to evaluate the case for
apportionment based on energy and usage data collected over
the course of a year. We also study the additional possibili-
ties offered by more fine-grained data with reference to case
studies for specific shared resources, and discuss the poten-
tial and challenges for future sensor systems in this area.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-
neous

General Terms
Measurement, Economics
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1 Introduction

As part of the Computing for the Future of the Planet re-
search theme [10], we are investigating the concept of a Per-
sonal Energy Meter [7]. We envisage a system that collects
information about an individual’s daily consumption (direct
and indirect) and provides breakdowns of the energy costs
of our activities to help us target areas for reduction in our
environmental footprint [12].

There is evidence to suggest that providing real-time feed-
back on energy consumption lead to significant reductions
[15, 16]. In 2004, buildings accounted for 37% of total en-
ergy consumption in the EU [2]; however, economists warn
of ‘grave inefficiencies’ resulting from scenarios where bills
are split evenly without regard for individual consumption as
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each person minimises their own losses by taking advantage
of others [5]. It is this phenomenon that encourages people
to order the most expensive items from the menu when out
for dinner with a group of friends: if the final sum is to be
divided evenly, nobody wants to be subsidising his fellow
diners. The same is true of energy consumption in shared
buildings: in a house of four where all bills are split, the
marginal cost to any individual of turning on an appliance is
only a quarter of what it would otherwise be.

Sensors offer the potential to change this balance and ap-
portion energy costs to those who cause them to be incurred:
the person standing at the photocopier should be responsi-
ble for the energy it consumes during that period, and the
cost of the electricity required by a television should be split
between all those watching it. There are many challenges
which must be overcome in order to achieve an appropriate
level of sensor coverage to provide this information.

In this paper we investigate the apportionment of the elec-
tricity consumption of our office building. We infer oc-
cupancy data from security access logs and show how the
choice of policy can have a big impact on personal energy
bills. We go on to iteratively refine these initial estimates
through the addition of further sensing. We conclude by
describing our plans for addressing the challenges in wide-
scale sensing for apportionment.

2 Apportionment Policies

We define apportionment as the process of dividing up the
total consumption of a building, organisation or other entity
and allocating it to individuals. There are numerous pos-
sible policies to determine how this should be carried out
and different policies will suit different buildings and organ-
isations. Nevertheless, there are certain desirable properties
that all apportionment policies should exhibit: 1) Complete-
ness: the sum of the energy apportioned to all individuals
should be equal to the total energy to be apportioned and 2)
Accountability: actions by an individual should have a max-
imal effect on their own allocation and a minimal effect on
others

The result of apportionment is necessarily specific to a
particular individual and so we consider three representative
individuals for our building: a member of staff working a
standard 9-5 day, a PhD student who arrives later but works
the same number of hours and a visiting professor who works
part time and has a long commute. Details are shown in Fig-



Pattern Hours
1 0900-1700 Mon—Fri 40
2 PhD student 1100-1900 Mon—Fri 40
3 | Visiting professor | 1100-1700 Tue,Thu 12
Figure 1. Working patterns of example individuals

Description
Member of staff

Person 1 | Person 2 | Person 3
Equal 150 150 150
Occupants 132 107 28.9
Occupants+base 168 160 135
Personal load 160 160 143
Personal load+print 168 160 143

Figure 2. Total energy (kWh) allocated by the apportion-
ment policies for a week in November 2007

ure 1. We now develop a variety of apportionment policies
and evaluate them with respect to these three individuals for
a typical week in November 2007. A summary of the to-
tal apportioned energy for each policy is given in Figure 2;
these policies are explained in more detail in the following
sections.

3 Static Apportionment

The most obvious policy is simply to apportion a static
fraction of the building’s power consumption to all those
who work there. The number of people allocated desks in our
building is around 250 and total energy consumed in 2008
was 2025778 kWh, meaning a user allocated a flo share
would be responsible for 8103 kWh. For comparison, the to-
tal energy consumption for one author’s house for the same
year was around 2200 kWh.

The electricity meter of our office building, in common
with those of many large buildings, logs half-hourly mea-
surements of the total energy consumed. The resulting power
apportioned for our example week is shown in Figure 3. The
line is a scaled version of the overall power consumption;
all users pay more on weekdays, regardless of whether or
not they were present. This policy violates our principle
of accountability by making no accommodation for work-
ing patterns or individual actions—any and all consumption
is shared amongst all building users.

4 Dynamic Apportionment

Dynamically varying the proportion of the building’s con-
sumption assigned to each individual allows us to capture
the variation in energy due to individual activity. In this first
instance we assume that all building users behave similarly
and so perform apportionment based on the current occu-
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Figure 3. Power apportioned to each individual under
the ‘equal’ policy

pancy of the building. A variety of sensor systems could
be used to provide this information, including fully fledged
location systems [9], existing building access control mecha-
nisms and second order information such as computer activ-
ity. Clearly, dedicated sensors provide the best quality data,
but we are unlikely to see widespread adoption of these tech-
nologies (with their own associated energy consumption)
solely to improve energy metering. It is therefore interest-
ing to investigate how we can make use of systems that are
in place today before adding more sensing.

4.1 Estimating Occupancy

Although some parts of our building such as the café and
lecture theatres are open to all during the normal working
day, access cards are required to access most of the office
space or to gain entry to the building outside office hours.
Holding a card up to a reader unlocks the door from the out-
side; from the inside, a green button releases it to let peo-
ple out. The security system keeps logs of all the ‘entry’
and ‘exit’ events and identifies each user on entry with a
pseudonym that changes each day. Since multiple people can
enter or leave for a single unlock if someone holds the door
open, and the identity of those leaving is not determined, we
cannot use these to infer who is in the building at any given
time. However, the logs can provide us with a reasonable
estimate of the overall occupancy. Many buildings have sim-
ilar systems, but use gates instead of doors and require users
to swipe out as well as in; clearly, the records from these
systems would be ideal for our purposes.

If we were to assume that one person enters or leaves for
each logged event, the running estimate of the occupancy of
the building would rapidly drop below zero since, in general,
there are approximately 1.25 ‘exit’ events logged for each
‘entry’ event. In order to maintain a stable estimate of the
building populate we use the following algorithm

1. Count the total number of distinct pseudonyms in a 24
hour period, and assume this is the maximum occu-
pancy for that day (this will under-count people who
only entered while someone else held the door open,
but it will also over-count because not everyone seen
in a day will necessarily have been in the building at
once);

2. Calculate the ratio between people entering on ‘entry’
events and people leaving on ‘exit’ events so that the
occupancy drops to zero at 5 AM (the logs show this is
statistically the quietest time);

3. Scale each day’s estimates so that the peak occupancy
is equal to the total number of ‘entry’ events calculated
in step 1.

The estimates this produces for our example week are
illustrated in Figure 4. Occupancy and power usage are
strongly correlated; the occupancy drops off dramatically at
weekends, and dips at lunchtime are clearly visible.

4.2 ‘Occupants’ policy

Our first dynamic policy is to split the instantaneous
power consumption amongst only those individuals who are
in the building at the time. The results of this policy for our
example week are shown for several typical working patterns
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Figure 4. Correlation between estimated occupancy and
power usage for the William Gates Building

as the dark lines in Figure 5. There is significant variation
dependent on working hours: the example visiting Profes-
sor (bottom graph) has a small allocation, but this policy pe-
nalises the staff member who now sees large spikes early in
the morning when few people are in. This is because the
building exhibits cyclic load: many lights and other devices
operate on timers or are triggered by movement detectors, so
as soon as a few people arrive in the morning the load jumps.
In fact this policy strongly discourages any use of the build-
ing at unusual times (but this might be the goal). Critically,
however, our principle of completeness is violated in that the
sum of the energy allocated to all the individual users is not
necessarily equal to the total energy consumed by the build-
ing: if nobody is in, no energy is apportioned.

4.2.1 Base load

To improve on this policy, we can estimate the base load
and divide this amongst all those who work in the building
before splitting the remaining power amongst the actual oc-
cupants. The results of this calculation are also shown as the
pale lines in Figure 5. The base load is estimated as the low-
est power consumption seen so far that day. As expected, the
peaks during the working day are lower, and the graph no
longer drops to zero when a person leaves, instead reflecting
his share of the ongoing base load. The sum of the energy ap-
portioned is now equal to the total energy consumed, so from
this point of view this policy represents an improvement. In-
tuitively, the policy is better, too, since now all those who
have reserved office space in the building are held responsi-
ble for some share of its ongoing costs.

The graphs still display several peculiarities. In particular,
two people working the same number of hours are allocated
substantially different amounts of energy because fewer peo-
ple are in at 9 AM than at 11 AM but a large proportion of the
shared energy consumers (lighting etc.) have already been
switched on.

The policy also runs into problems with accountability: if
the base load is shared evenly amongst all users of the build-
ing while the additional energy consumed is divided between
the occupants at the time, it is in an individual’s best inter-
ests to maximise the base load (of which he is only allocated
a small fraction). One way to exploit this policy is by leaving
his computer and lights on overnight—this results in a lower
energy cost to him than switching them off, since they are
then included in the base load and split between many more
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Figure 5. Power apportioned under the ‘occupants’ poli-
cies to example individuals

people.
4.3 ‘Personal load’ policy

Instead of estimating the base load and assuming the re-
mainder is personal, we can approach the problem from the
opposite direction by estimating the personal load and as-
suming the remainder should be divided evenly. The ‘per-
sonal load’ policy allocates a certain amount of power to
each occupant of the building and then divides the remainder
evenly amongst all users. A survey of one of our offices with
a simple power meter revealed that the devices we all typi-
cally switch on when we arrive (lights, monitors) consume
between 100 and 200 W, depending on office size and com-
puter configuration. Supporting this observation, our dataset
reveals that 150 W is a sensible average figure to allocate
to each occupant—any more results in the total energy al-
located to occupants dipping beneath our earlier estimate of
the base load. Figure 6 shows the results of this policy for
the same three sample individuals as before.

The output of this policy is reminiscent of the previous
one, as we might hope and expect, but the incentives now
work in the correct direction: the motivation for an individ-
ual is to do his best to reduce his own energy consumption.
For these incentives to work the effect of any changes made
must be visible in the results, and this entails a more detailed
measurement of power consumption than we have consid-
ered so far. Instead of simply dividing up the total energy bill
for the building, it will be necessary to identify which spe-
cific devices an individual uses and how much power they all
require.

Clearly, the different policies make a significant differ-
ence to the end results, but it is interesting to note that
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Figure 6. Power apportioned under the ‘personal load’
policy to example individuals

the ‘occupants+base’ and ‘personal load’ policies produce
broadly comparable numbers. This supports our intuition
that both are reasonable strategies and the only difference be-
tween them is a result of an inaccurate estimate of the base
load: if we had omniscient sensor data and could tell exactly
which devices were consuming power the two policies would
become the same.

S Refining Personal Load

The accountability of the ‘personal load’ policy can be
incrementally improved by adding particular information
about the components of each user’s personal load. In certain
cases this is easy: we define the notion of owned resources,
which belong in some sense to an individual who is in gen-
eral held responsible for their energy consumption. Someone
with a private office might be considered to own everything
in it; certainly everyone will ‘own’ the computers and moni-
tors on their desks.

Many resources do not fit into the pattern described
above; they are not owned, but communal, shared by a group
or team. Printers, photocopiers, projectors, coffee machines
and showers fall into this category. The obvious mechanisms
for handling these resources are either simply to divide their
total energy cost amongst all those entitled to use them or to
attempt to ascertain who is using them at any given time and
allocate the energy used accordingly.

The energy used must now be measured at a much finer
resolution; we require additional sensors that can measure
the usage of a corridor, room or specific device. Previously
knowing the cumulative energy consumed was sufficient and
the required update frequency was dictated only by the de-
sired reporting period; to apportion energy costs based on
usage, we must measure the energy consumed in each in-
dividual interaction. As a middle ground short of continu-
ous online measurement, we built custom hardware that in-
tegrates the readings of an off-the-shelf clamp meter and logs
the timestamped results card at 10 Hz. This high frequency
allows us to identify the energy costs of specific events, such
as printing a page or making a cup of coffee. The intention
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Figure 7. Power drawn printing five single pages
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here is to profile a device in detail and then use some other
indication of usage to infer energy consumption.

5.1 Printing

Printing provides a good case study of the value of appor-
tioning use of shared resources since we have second order
information on usage in the form of print server logs.

We performed an analysis of the printer logs for our build-
ing The logs cover 28 printers for a period of 47 days, during
which time 198 users printed a total of 82349 pages. Dur-
ing this period there were 313 users with accounts who were
entitled to use the printers.

The data shows a large deviation between different users’
printing habits. The heaviest user printed 3452 pages, while
the lightest printed just 1, and the top 15 users accounted for
over half the total printing between them.

As an illustration, we measured the energy consumption
of one printer using the apparatus described above. An ex-
ample trace is shown in Figure 7. The printer draws 32 W
when idle (in power save mode), and consumes, on average,
an additional 11200 J to print a single page. Printing multiple
pages at once costs less per page than printing a single page
on its own as the warm up costs are amortised; we found that
the average energy cost per page for the whole workload over
several days was 8720 J. Assuming these figures to be typi-
cal of all printers, the average energy cost per day of having
the printers switched on was 21.5 kWh, with an additional
4.24 kWh consumed by printing.

We can now combine our energy measurement with the
logs from the print server to improve on the ‘personal load’
policy. The energy consumed by a particular print job was
originally spread over all occupants and so for each job we
remove a share of the energy consumed from all occupants
before reassigning the total to the individual who printed the
material. The results of this policy for our chosen staff mem-
ber, who printed a large set of lecture course material in the
week in question, are shown in Figure 8 and represent an
increase of 8 kWh for the week. Neither of our other exam-
ple users printed anything; their results show a reduction in
allocated energy of around 0.5 kWh for the week.

5.2 Anonymous Shared Resources

Our research group shares a coffee machine. In this case,
as for most shared resources, there is no second order infor-
mation available on its usage. We are left with several pos-
sible options that require varying investments of time and
infrastructure. We could ignore their usage entirely and al-
low them to be counted as part of the base load; we could
ask users to keep track of their usage manually; we could
depoy some form of identity prompt, such as the PINs of-
ten required on photocopiers for accounting purposes, or we
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Figure 8. Apportionment with printing costs

could install a separate sensor system. The most appropriate
will depend on the significance of the resource in question.

Our measurement apparatus showed that the electrical en-
ergy required to make a single cup of coffee is approximately
62 KJ, or 0.02 kWh, and two cups coffee per day accounts
for about 3% of an individual’s 150W personal load. This is
totally insignificant relative to the power draw of the whole
building and it would not be worth the energy cost of a sen-
sor system to apportion its use. Ignoring it altogether would
probably be justifiable—but lessons learnt from the coffee
machine can be applied to all sorts of other equipment.

To evaluate the feasibility of the manual method, during
the course of one week we asked members of our research
group to make a mark against their name on a tally sheet
every time they had a coffee. We also included an ‘Anony-
mous’ row to allow those who preferred not to have their
usage recorded to participate in the study.

25 separate people logged their consumption, ranging
from only 1 cup in the whole week to 17. For comparison,
there were 53 registered members of the research group or
visiting students during the week in question. Out of 212
cups of coffee logged, 58, or 27%, were anonymous. How-
ever, the machine’s own audit trail shows that in fact 333
cups of coffee were produced over the period in question;
only 64% of cups were logged. This suggests that a number
of people chose not to record their usage on grounds other
than privacy concerns, even for research purposes when no
attempt at charging was being made—most probably on ac-
count of the extra time and effort involved. We conclude that
any attempt to apportion the use of these resources as part
of a future personal energy meter must therefore be entirely
unobtrusive and automatic, requiring no additional interven-
tion on the user’s part; schemes such as RFID readers that
require swiping a access card, or logon systems, will prob-
ably irritate users and not be adopted unless they are made
compulsory (i.e. integrated with the appliance itself). This
is unlikely to be practical in the majority of real world situa-
tions.

Location systems promise to provide all the input required
for accurate apportionment, revealing exactly who is in a
building at any given time and (generally) who is using a
particular device (although depending on the resolution of
the system ambiguities may remain where a number of peo-
ple are gathered around). Figure 9 shows the trace of a user
walking from his office to the coffee machine recorded using
the Bat system [1] — but note that since no sensors are in-
stalled in the kitchen, it is ambiguous exactly which device
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Figure 9. Location trace of walking to the coffee machine

he was using. Matching locations against usage logs may
reveal the user in most cases, but even with perfect instru-
mentation, it will be difficult to distinguish which of several
people next to a machine is using it, or whether he is doing
so on behalf of someone else.

The majority of these systems have not spread outside re-
search labs, primarily due to the cost of deploying and main-
taining building wide location technologies. Large amounts
of custom hardware must be deployed, surveyed and cali-
brated; users must all remember to wear an additional de-
vice, and in many existing environments the infrastructure
requirements are simply impractical. It seems unlikely that
institutions will choose to deploy such a system solely for
the purpose of energy apportionment.

The ideal solution seems to be context awareness in de-
vices, so they themselves were aware of the identity of the
user and so could personalise their response accordingly. A
coffee machine might recognise an RFID tag in a user’s mug
and so produce his preferred drink automatically: this would
serve as a ‘carrot’ providing a valuable incentive rather than
a ‘stick’ forcing users to comply [14].

Any viable system for our purposes must have a very
low cost, both in monetary, infrastructure and energy terms.
One technology we have investigated that has the potential to
meet these requirements is tracking based on Bluetooth [8],
but there are several other possibilities, and we believe this
is an exciting and relevant area of research.

6 Scaling up

While the owners of certain classes of equipment such as
computers may be well known, maintaining an up-to-date in-
ventory, alongside either detailed power profiles for devices
or continuous monitoring sensors, is a challenge. One possi-
ble solution is to encourage users to maintain their own data
on devices they own or supply additional sensor data: pro-
viding additional or more accurate information voluntarily
could result in a reduction in apportioned energy. This tech-
nique has seen success with water companies encouraging
home owners to fit meters. Device profiles and even office
layouts could be shared, allowing everyone to benefit from
and build on the work of others. Establishing such commu-



nities around the data may have another benefit: social net-
works provide an ideal forum for users to share consumption
patterns and reduction strategies.

7 Related Work

Energy apportionment cuts across a broad range of re-
search areas, from energy monitoring through location and
identity sensing systems to human-computer interaction and
social questions. Krumm et al. have used sensors that detect
electrical noise on power lines and machine learning tech-
niques in an attempt to recognise use of certain electrical
equipment [11]. In the field of detecting a user’s presence,
Harle has investigated the potential for using location sys-
tems to optimise energy consumption dynamically [6], while
Garg and Bansal show how to improve on the estimates of
simple occupancy sensors by adapting to changing activity
levels [4]. Dodier et al. explore the use of belief networks
with occupancy sensors [3]. There is a significant body of
work on simulating occupancy profiles using Markov chains
where live data is unavailable [17, 18]. There has also been
research on presenting this data to end users: in particular,
Mankoff et al. explore how social networks can motivate
users to reduce their ecological footprints [13].

8 Conclusions and Future Work

Through the simulation of several policies for example
individuals, we have shown that apportionment is important
and the correct choice merits careful consideration. Different
policies have significant effects on the total energy allocated
to individuals. We believe that personal load provides the
best opportunity to personalise results and improve accuracy
incrementally and offers valuable incentives for users to re-
duce their consumption.

Although reasonable estimates can be made from sen-
sor data commonly available today, more precise analy-
sis requires investment of time in power profiling and in-
ventory management as well as research into novel, low-
infrastructure identity and location sensing systems. This
represents a building block towards a true Personal Energy
Meter.
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