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This paper demonstrates how new principles of compressed
sensing, namely asymptotic incoherence, asymptotic sparsity
and multilevel sampling, can be utilised to better understand un-
derlying phenomena in practical compressed sensing and im-
prove results in real-world applications. The contribution of the
paper is fourfold: First, it explains how the sampling strategy de-
pends not only on the signal sparsity but also on its structure, and
shows how to design effective sampling strategies utilising this.
Second, it demonstrates that the optimal sampling strategy and
the efficiency of compressed sensing also depends on the reso-
lution of the problem, and shows how this phenomenon markedly
affects compressed sensing results and how to exploit it. Third,
as the new framework also fits analog (infinite dimensional) mod-
els that govern many inverse problems in practice, the paper de-
scribes how it can be used to yield substantial improvements.
Fourth, by using multilevel sampling, which exploits the structure
of the signal, the paper explains how one can outperform random
Gaussian/Bernoulli sampling even when the classical l1 recovery
algorithm is replaced by modified algorithms which aim to exploit
structure such as model based or Bayesian compressed sens-
ing or approximate message passaging. This final observation
raises the question whether universality is desirable even when
such matrices are applicable. Examples of practical applications
investigated in this paper include Magnetic Resonance Imaging
(MRI), Electron Microscopy (EM), Compressive Imaging (CI) and
Fluorescence Microscopy (FM). For the latter, a new compressed
sensing approach is also presented.

Compressed sensing (CS), introduced by Candès, Romberg &
Tao (1) and Donoho (2), states that under appropriate conditions

one can overcome the Nyquist sampling barrier and recover signals
using far fewer samples than dictated by the classical Shannon the-
ory. This has important implications in many practical applications
which caused CS to be intensely researched in the past decade.

CS problems can be divided into two types. Type I are prob-
lems where the physical device imposes the sampling operator, but
allows some limited freedom to design the sampling strategy. This
category is vast, with examples including Magnetic Resonance Imag-
ing (MRI), Electron Microscopy (EM), Computerized Tomography,
Seismic Tomography and Radio Interferometry. Type II are prob-
lems where the sensing mechanism offers freedom to design both the
sampling operator and the strategy. Examples include Fluorescence
Microscopy (FM) and Compressive Imaging (CI) (e.g. single pixel
and lensless cameras). In these two examples, many practical setups
still impose some restrictions regarding the sampling operator, e.g.
measurements must typically be binary.

Traditional CS is based on three pillars: sparsity (there are s im-
portant coefficients in the vector to be recovered, however, the loca-
tion is arbitrary), incoherence (the values in the measurements matrix
should be uniformly spread out) and uniform random subsampling.

For Type I problems the issue is that the above pillars are of-
ten lacking. As we will argue, many Type I problems are coherent
due to the physics or because they are infinite-dimensional. The tra-
ditional CS framework is simply not applicable. However, CS was
used successfully in many Type I problems, though with very differ-
ent sampling techniques than uniform random subsampling, which
lack a mathematical justification.

For Type II problems the traditional CS theory is applicable, e.g.
in CI one can use random Bernoulli matrices. The issue is that the use
of complete randomness does not allow one to exploit the structure

of the signal to be recovered from a sampling point of view. As we
argue, real world signals are not sparse, but asymptotically sparse in
frames such as wavelets(3, 4) or their *-let cousins such as curvelets
(5), contourlets (6) or shearlets (7). In particular, the asymptotic spar-
sity is highly structured.
New CS principles. To bridge the gap between theory and prac-
tice, the authors introduced a new CS theory (8) that replaces the tra-
ditional CS pillars with three new CS principles: asymptotic incoher-
ence, asymptotic sparsity and multilevel sampling. The new theory
and principles reveal that the optimal sampling strategy and bene-
fits of CS depend on two factors: the structure of the signal and the
resolution. This suggests a new understanding of the underlying phe-
nomena and of how to improve CS results in practical applications,
which are main topics of this paper. At the same time, this paper
demonstrates how the new CS principles go hand in hand even with
applications where traditional CS is applicable, and that substantial
improvements and flexibility can be obtained.

Traditional Compressed Sensing

A traditional CS setup is as follows. The aim is to recover a signal
f from an incomplete (subsampled) set of measurements y. Here,
f is represented as a vector in CN and is assumed to be s-sparse in
some orthonormal basis Φ ∈ CN×N (e.g. wavelets) called sparsity
basis. This means that its vector of coefficients x = Φf has at most
s nonzero entries. Let Ψ ∈ CN×N be an orthonormal basis, called
sensing or sampling basis, and write U = ΨΦ∗ = (uij), which is an
isometry. The coherence of U is

µ(U) = max
i,j
|uij |2 ∈ [1/N, 1]. [1]

and U is said to be perfectly incoherent if µ(U) = 1/N .
Let the subsampling pattern be the set Ω ⊆ {1, . . . , N} of car-

dinality m with its elements chosen uniformly at random. Owing
to a result by Candès & Plan (9) and Adcock & Hansen (10), if we
have access to the subset of measurements y = PΩΨf then f can be

(a)(a) (b)(b)

(c)(c) (d)(d)

Fig. 1. (a) 12.5% uniform random subsampling scheme, (b) CS reconstruction
from uniform subsampling, (c) 12.5% multilevel subsampling scheme, (d) CS re-
construction from multilevel subsampling.
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recovered from y exactly with probability at least 1− ε if

m & µ(U) ·N · s · (1 + log(1/ε)) · log(N), [2]

where PΩ ∈ {0, 1}N×N is the diagonal projection matrix with the
jth entry 1 if j ∈ Ω and 0 otherwise, and the notation a & b means
that a ≥ C b where C > 0 is some constant independent of a and b.
Then, f is recovered by solving

min
z∈CN

‖z‖1 subject to ‖y − PΩUz‖ ≤ η. [3]

where η is chosen according to the noise level (0 if noiseless). The
key estimate [Eq. 2] shows that the number of measurements m re-
quired is, up to a log factor, on the order of the sparsity s, provided

CS recovery CS flipped recovery Subsampling map

Fluorescence Microscopy (FM), U =ΨHadΦ∗dwt 512×512 @ 6.25%

Compressive Imaging (CI), U =ΨHadΦ∗dwt 256×256 @ 12.5%

MRI, U =ΨdftΦ
∗
dwt 1024×1024 @ 20%

Tomography, Electron Microscopy (FM), U =ΨdftΦ
∗
dwt 512×512 @ 12.5%

Radio Interferometry, U =ΨdftΦ
∗
dwt 512×512 @ 15%

Fig. 2. Flip test. Recovery from direct versus flipped wavelet coefficients show-
ing that the RIP does not hold in these cases. The percentage shown is the
subsampled fraction of Fourier/Hadamard coefficients.

the coherence µ(U) = O (1/N). This is the case, for example, when
U is the DFT, which was studied in some of the first CS papers (1).

The real world is often coherent. Consider the MRI CS setup, i.e.
U = ΨdftΦ

∗
dwt ∈ CN×N , where Ψdft and Φdwt are the discrete

Fourier and wavelet transforms (sampling and sparsity bases) respec-
tively. The coherence here is

µ(U) = O (1) , N →∞,

for any wavelet basis, so this problem has the worst possible coher-
ence. The traditional CS bound [Eq. 2] states that all samples are
needed in this case (i.e. full sampling, m = N ), even though the
orignal signal is typically highly sparse in wavelets. This lack of in-
coherence means that uniform random subsampling leads to a very
poor recovery. This is known in MRI and is illustrated in Fig. 1.

The root cause of this lack of incoherence is the discretization
of what is intrinsically an infinite-dimensional problem into a finite-
dimensional one. In short, U converges to an infinite matrix (8) and
since the incoherence is the supremum of its entries, there exists some
N for which a coherence barrier is hit, resulting in the worst case for
a CS recovery. This is not restricted to MRI. Any such discretization
of an infinite-dimensional problem will suffer the same fate, includ-
ing MRI, tomography, microscopy, seismology, radio interferometry
etc. Changing Ψ may provide marginal benefits, if any, since the
coherence barrier always occurs at some N .

Sparsity, flip test and the absence of RIP. Traditional CS states
that the sampling strategy is completely independent of the location
of the nonzero coefficients of an s-sparse vector x, i.e. with the s
nonzero coefficients at arbitrary locations. The flip test allows one
to evaluate whether this holds in practice. Let x ∈ CN be a vector,
and U ∈ CN×N a measurement matrix. We then sample according
to some pattern Ω ⊆ {1, . . . , N} with |Ω| = m and solve [Eq. 3]
for x, i.e. min ‖z‖1 s.t PΩUz = PΩUx to obtain a reconstruction
z = α. Now we flip x to obtain a vector x′ with reverse entries,
x′i = xN−i, i = 1, . . . , N and solve [Eq. 3] for x′ using the same
U and Ω, i.e. min ‖z‖1 s.t. PΩUz = PΩUx

′. Assuming z to be a
solution, then by flipping z we obtain a second reconstruction α′ of
the original vector x, where α′i = zN−i.

Assume Ω is a sampling pattern for recovering x using α. If
sparsity alone dictates the reconstruction quality, then α′ must yield
the same reconstruction quality (since x′ has the same sparsity as x,
being merely a permutation of x). Is this true in practice?

Fig. 2 investigates this for several applications using U =
ΨdftΦ

∗
dwt or U = ΨHadΦ∗dwt, where Ψdft, ΨHad, Φdwt are the dis-

crete Hadamard, Fourier and wavelet transforms respectively. As is
evident, the flipped recovery α′ is substantially worse than its un-
flipped version α. This confirms that sparsity alone does not dictate
the reconstruction quality. Furthermore, note that PΩU cannot sat-
isfy an RIP for realistic values of N , m and s. Had this been the
case, both vectors would have been recovered with the same error,
and this is in direct contradiction with the results of the flip test.

It is worth noting that the same phenomenon exists for to-
tal variation (TV) minimization. Briefly, the CS TV problem
is minz∈Cn ‖z‖TV s.t. ‖y − PΩΨz‖ ≤ η, where the TV
norm ‖x‖TV in case of images is the `1 norm of the im-
age gradient, ‖x‖TV =

∑
i,j ‖∇x(i, j)‖2 with ∇x(i, j) =

{D1x(i, j), D2x(i, j)}, D1x(i, j) = x(i + 1, j) − x(i, j),
D2x(i, j) = x(i, j+1)−x(i, j). Fig. 3 shows an experiment where
we we chose an image x ∈ [0, 1]N×N and then built an image x′

from the gradient of x so that {‖∇x′(i, j)‖2} is a permutation of
{‖∇x(i, j)‖2} for which x′ ∈ [0, 1]N×N . Thus, the two images
have the same “TV sparsity” and the same TV norm. It is evident
how the reconstruction errors differ substantially for the two images
when using the same sampling pattern, confirming that sparsity struc-
ture matters for TV recovery as well.
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New Compressed Sensing Principles

The previous discussion on traditional CS calls for a more general ap-
proach. We consider the generalization of the traditional principles of
sparsity, incoherence, uniform random subsampling into asymptotic
sparsity, asymptotic incoherence and multilevel subsampling (8).

Asymptotic sparsity. We saw that signal structure is essential, but
what structure describes such sparse signals? Let us consider a
wavelet basis {ϕn}n∈N. Recall that there exists a decomposition of
N into finite subsets according to different wavelet scales, i.e. N =⋃
k∈NMk, whereMk = {Mk−1 + 1, . . . ,Mk} is the set of indices

corresponding to the kth scale, with 0 = M0 < M1 < M2 < . . ..
Let x ∈ l2(N) be the coefficients of a function f in this basis. Sup-
pose that ε ∈ (0, 1] is given, and define the local sparsities

sk = sk(ε) = min
{
L :
∥∥∥ ∑
i∈Mk,L

xiϕi

∥∥∥ ≥ ε ∥∥∥ ∑
i∈Mk

xiϕi

∥∥∥}, [4]

whereMk,L ⊆Mk is the set of indices of the largest L coefficients
at the kth scale, i.e. |xl| ≥ |xj |, ∀l ∈ Mk,L, ∀j ∈ Mk \Mk,L. In
order words, sk is the effective sparsity of the wavelet coefficients of
f at the kth scale.

Sparsity of x means that for a given large scale r ∈ N, the ratio
s/Mr � 1, where M = Mr and s =

∑r
k=1 sk is the total spar-

sity of x. However, Fig. 4 shows that besides being sparse, practical
signals have more structure, namely asymptotic sparsity, i.e.

sk(ε)/(Mk −Mk−1)→ 0, [5]

rapidly as k→∞, ∀ε∈(0, 1]: they are far sparser at fine scales (large
k) than at coarse scales (small k). This also holds for other function
systems such as curvelets (5), contourlets (6) or shearlets (7).

Given the structure of modern function systems such as wavelets
and their generalizations, we propose the notion of sparsity in levels:
Definition 1. Let x ∈ C. For r ∈ N let M = (M1, . . . ,Mr) ∈ Nr
and s = (s1, . . . , sr) ∈ Nr , with sk ≤ Mk −Mk−1, k = 1, . . . , r,
where M0 = 0. We say that x is (s,M)-sparse if, for each
k = 1, . . . , r, the sparsity band

∆k := supp(x) ∩ {Mk−1 + 1, . . . ,Mk},
satisfies |∆k| ≤ sk. We denote the set of (s,M)-sparse vectors by
Σs,M.

Asymptotic incoherence. In contrast with random matrices (e.g.
Gaussian or Bernoulli), many sampling and sparsifying operators
typically found in practice yield fully coherent problems, such as
the Fourier with wavelets case discussed earlier. Fig. 5 shows the
absolute values of the entries of the matrix U for three examples. Al-
though there are large values of U in all three case (since U is coher-
ent as per [Eq. 1]), these are isolated to a leading submatrix. Values
get asymptotically smaller once we move away from this region.
Definition 2. Let {UN} be a sequence of isometries with UN ∈ CN .
{UN} is asymptotically incoherent if µ(P⊥KUN ), µ(UNP

⊥
K )→ 0,

when K→∞, with N/K = c,∀c ≥ 1. Here PK is the projection
onto span{ej : j = 1, . . . ,K}, where {ej} is the CN canonical
basis, and P⊥K is its orthogonal complement.

In brief, U is asymptotically incoherent if the coherences of the
matrices formed by removing either the first K rows or columns
of U are small. As Fig. 5 shows, Fourier/wavelets, discrete co-
sine/wavelets and Hadamard/wavelets are examples of asymptoti-
cally incoherent problems.

Multilevel sampling. Asymptotic incoherence calls for a different
strategy than uniform random sampling. High coherence in the first
few rows of U means that important information about the signal to
be recovered is likely to be contained in the corresponding measure-
ments, and thus we should fully sample these rows. Once outside this
region, as coherence starts decreasing, we can subsample gradually.

Err 36.9%Err 36.9%
Subsample map Original TV recovery

Err 2.52%Err 2.52%
Same subsample map Permuted gradients TV recovery

Fig. 3. TV flip test. TV recovery at 256×256 from 8192 DFT samples (12.5%
subsampling). The Permuted gradients image was built from the gradient vec-
tors of the Original image, having the same TV norm and gradient sparsity,
differing only in the ordering and sign of the gradient vectors. The large error
difference confirms that sparsity structure matters for TV recovery as well.
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Fig. 4. Sparsity of Daubechies-8 coefficients of an image. The levels corre-
spond to wavelet scales and sk(ε) is given by [Eq. 4]. Each curve shows the
relative sparsity at level k as a function of ε. The decreasing nature of the curves
for increasing k confirms asymptotic sparsity [Eq. 5].

0

1

U = ΨdftΦ
∗
db3 U = ΨdctΦ

∗
db3 U = ΨHadΦ∗haar

Fig. 5. Visualizing incoherence. The absolute values of the matrix U .

Definition 3. Let r∈N, N=(N1, . . . , Nr)∈Nr with 1≤N1<. . .<
Nr , m=(m1, . . . ,mr)∈Nr , with mk≤Nk −Nk−1, k = 1, . . . , r,
and suppose that Ωk ⊆ {Nk−1 +1, . . . , Nk}, |Ωk| = mk, are cho-
sen uniformly at random, where N0 = 0. We refer to the set
Ω = ΩN,m =

⋃r
k=1 Ωk as an (N,m)-multilevel sampling scheme

(using r levels).

Briefly, for a vector x, the sampling amount mk needed in each
sampling band Ωk is determined by the sparsity of x in the corre-
sponding sparsity band ∆k and the asymptotic coherence µ(P⊥Nk

U).
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Designing a multilevel sampling scheme

Let U be an isometry. The (k, l)th local coherence of U with respect
to N and M is given by

µN,M(k, l) =

√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) · µ(P

Nk−1

Nk
U),

where k, l = 1, . . . , r and P ab is the projection matrix corresponding
to indices {a+ 1, . . . , b}. The kth relative sparsity is

Sk = Sk(N,M, s) = max
z∈Θ
‖PNk−1

Nk
Uz‖2,

where Θ = {z : ‖z‖∞ ≤ 1, |supp(P
Ml−1

Ml
z)| = sl, l = 1, . . . , r}.

Sampling in levels. From (8) we know that to recover an (s,M)-
sparse vector x∈CN from multilevel sampled measurements PΩUx,
it suffices that the number of samples mk in each level satisfies

1 &
Nk −Nk−1

mk
·

(
r∑
l=1

µN,M(k, l) · sl

)
· log(N), [6]

where mk & m̂k · log(N), and m̂k is such that

1 &
r∑
k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, [7]

∀l = 1, . . . , r and ∀s̃1, . . . , s̃r ∈ (0,∞) for which s̃1 + . . .+ s̃r ≤
s1 + . . .+ sr and s̃k ≤ Sk(N,M, s).

The bounds [Eq. 6] and [Eq. 7] are key. As opposed to the tradi-
tional CS bound [Eq. 2], which relates the total amount of subsam-
pling m to the global coherence and the global sparsity, these new
bounds relate the local sampling amounts mk to the local coherences
µN,M(k, l) and local and relative sparsities sk and Sk. A direct result
is that the theorem agrees with the flip test shown earlier: the optimal
sampling strategy must indeed depend on the signal structure. An-
other important note is that the bounds [Eq. 6] and [Eq. 7] are sharp
in the sense that they reduce to the information-theoretic limits in a
number of important cases. Furthermore, in the case of Fourier sam-
pling with wavelet sparsity, they provide near-optimal recovery guar-
antees using the infinite-dimensional generalization of the theorem.
For further details and proofs, the reader is referred to (8).

We devised a flexible all-round multilevel sampling scheme. As-
suming the coefficients f ∈ CN×N of a sampling orthobasis, e.g.
DFT, our multilevel sampling scheme divides f into n regions de-
limited by n − 1 equispaced concentric circles plus the full square.
Normalizing the support of f to [−1, 1]2, the circles have radius rk
with k = 0, . . . , n−1, which are given by r0 = m and rk = k · 1−m

n−1

for k > 0, where m ∈ (0, 1) is a parameter. In each of the n regions,
the fraction of coefficients sampled with uniform probability is

pk = exp
(
−(b k/n)a

)
, [8]

where k = 0, . . . , n and a > 0 and b > 0 are parameters. The total
fraction of subsampled coefficients is p =

∑
k pkAk, where Ak is

the normalized area of the kth region. Since p0 = 1 and pk > pk+1,
the first region will sample all coefficients and the remaining regions
will sample a decreasing fraction. An example is shown later in 9.

Effects and benefits of the new principles

Having reviewed the theory, we now discuss the important effects
and benefits of asymptotic incoherence and asymptotic sparsity, and
of exploiting them via multilevel sampling. We show how they allow
one to improve the CS recovery, and take practical examples from
FM, MRI, EM and CI. We begin here with a short summary of the
effects and benefits, which are detailed in subsequent sections.

The optimal sampling strategy is signal dependent. As the flip
test shows, the optimal sampling strategy depends on the structure of
the signal. Multilevel sampling takes this into account and allows one
to further improve the CS recovery by tailoring the sampling accord-
ing to e.g. the resolution and expected wavelet structure of the sig-
nal. This has additional advantages as one can mitigate application-
specific hurdles or target application-specific features (e.g. brain and
spine imaging would use different subsampling schemes). This ap-
plies to both Type I and Type II problems. The FM and Resolution
dependency sections below provide examples from FM and MRI.
Resolution dependency. An important effect is that regardless of
the sampling basis and subsampling scheme, the quality of the recon-
struction increases as resolution increases. This is first revealed by
fixing the subsampling strategy and fraction across resolutions, and a
more striking result is obtained by fixing the number (instead of frac-
tion) of samples, revealing hidden details, previously inaccessible.
This is due to signals being typically increasingly (asymptotically)
sparse at higher resolutions. The FM and Resolution dependency
sections show this phenomena with examples from FM and MRI.
Infinite dimensional CS. The new theory provides a good fit to
some real-world problems that are fundamentally continuous, e.g.
EM or MRI. The errors arising from recovering the continuous sam-
ples using discrete models are sometimes significant (11). The sec-
tion Infinite dimensional problems discusses this aspect and shows an
EM example where such large errors can be overcome by using gen-
eralized sampling theory (8) and recovery into boundary wavelets.
Structured sampling vs Structured Recovery. We exploit spar-
sity structure by using multilevel sampling of asymptotically inco-
herent matrices and standard `1 minimization algorithms. Alterna-
tively, sparsity structure can be exploited by using universal sampling
matrices (e.g. random Gaussian/Bernoulli) and modified recovery al-
gorithms. The section Structured sampling vs Structured Recovery
discusses and compares the two approaches, highlighting the advan-
tages of the former, which, in contrast with the latter, allows to choose
the sparsity frame, is applicable to both Type I and Type II problems,
and yields overall superior results.
Structure vs Universality: Asymptotic vs Uniform incoherence.
The universality property of random sensing matrices (e.g. Gaussian,
Bernoulli), explained later on, is a reason for their popularity in tra-
ditional CS. But is universality desirable when the signal sparsity is
structured? Should one use universal matrices when there is freedom
to choose the sampling operator, i.e. in Type II problems? Random
matrices are largely inapplicable in Type I problems, where the sam-
pling operator is imposed. The Structure vs Universality section ar-
gues that universal matrices offer little room to exploit extra structure
the signal may have, even in Type II problems, and that non-universal
matrices, such as Hadamard, coupled with multilevel sampling pro-
vide a better solution for both Type I and Type II problems as they
can exploit the prevalent asymptotic sparsity of signals in practice.
Storage and speed. Random matrices, popular in traditional CS,
besides being inapplicable in many applications, are also slow and
require (large) storage. This yields slow recovery and limits the max-
imum signal size, which severely affects computations and, more im-
portantly, sparsity structure. The Storage/speed section discusses this
aspect and also shows that simply addressing the speed and storage
problems via fast transforms and non-random matrices is not suffi-
cient to achieve improved recovery compared to what multilevel sam-
pling of non-universal matrices can offer.
Frames and TV. Although investigating frames or TV as sparsity
systems in CS is not the purpose of this paper, we provide results in
the Frames and TV section below, which are an experimental verifi-
cation of the advantages offered by various frames in the CS context.
More importantly, they show the added benefit of incorporating sig-
nal structure in the sampling procedure, which provides ample free-
dom to choose the sparsifying system for a CS recovery.
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A new CS approach in Fluorescence Microscopy

We start with a FM example which encompasses many of the previ-
ously enumerated effects and benefits and shows how they allow to
improve performance in a CS setting. The subsequent sections pro-
vide focused detailed discussions.

Compressive Fluorescence Microscopy (CFM), a Type II prob-
lem, where the sampling operator can be chosen, was first introduced
and implemented practically by Studer et al. (12) and we refer the
reader to their work for details. In short, a digital micromirror de-
vice of N×N mirrors can form any N×N pattern of 0’s and 1’s
to project multiple parallel laser beams (the 1’s) through a lens onto
a specimen, which is excited and emits light (the fluorescence) of a
different wavelength, collected and summed by a photodetector, thus
taking one CS measurement. Successive measurements are taken,
changing the N×N pattern on the mirrors each time.
Initial approach. Studer et al. used a 2D Hadamard matrix, i.e.
each pattern on the mirrors corresponds to one row in the 2D
Hadamard matrix, reordered into N×N .

Subsampling pattern. The pattern Ω used in (12) was the “half-
half” scheme, i.e. a two-level sampling scheme where the first level
samples fully and the second level samples uniformly at random.
Hadamard matrices contain 1’s and −1’s but digital mirrors can only
represent 1’s and 0’s so (12) used the modified sampling operator
Ψm = (Ψ+1)/2 where 1 is the all-1’s matrix and Ψ is the Hadamard
operator, and solved minz ‖Φz‖1 s.t. ‖y − Ψmx‖ < η. This, how-
ever, is suboptimal since, unlike Ψ, Ψm is non-orthogonal and far
from an isometry.

Point spread effect. A point emission of light is spread by a lens
into an airy disc, a blurring effect. The lens acts as a circular low-pass
filter, i.e. its 2D Fourier spectrum is a disc. This is important in the
CFM setup where the patterns of 0’s and 1’s contain dicontinuities.
To mitigate the lens point-spread effect the above authors binned mir-
rors together into groups of 2×2 or 4×4 to represent a single 0 or
1 value, which narrows the Fourier response of the combined light
beam coming from such a group, and is less affected by the lens. The
major drawback is that this reduces the resolution of the recovered
image by 2 or 4 times. This is a serious limitation: as we shall see,
CS recovery improves with resolution so limiting to low resolutions
causes a cap in performance. Also, the point-spread function (PSF)
of the lens was ignored during the CS minimization recovery.

Photonic noise. A further challenge is the photonic (Poisson)
noise at the receptor, which essentially counts the number of pho-
tons in a preset time interval. Unlike white Gaussian noise in other
systems, the photonic noise mean and variance are signal dependent:
the noise power grows with the signal. This is accentuated by the
CFM setup since there are alwaysN2/2 light beams at a time, gener-
ating a large background luminance (DC offset) and thus impacting
the signal-to-noise ratio when measuring higher frequency Hadamard
components, e.g. patterns where 0’s and 1’s are alternating.
New approach. In what follows we present an approach which em-
ploys a multilevel subsampling pattern, explaining why it is benefi-
cial, takes into account the lens PSF as well as the photonic noise,
and also avoids mirror binning, thus reaching much higher resolu-
tions, of the order of 2048× 2048. The new approach employs a
few techniques to improve performance and strives to stay loyal to
the planned practical setup in collaboration with the Cambridge Ad-
vanced Imaging Centre (CAIC), now in the process of building a flu-
orescence microscope of the scale N = 2048.

Given a subsample pattern Ω ⊆ {1, . . . , N2} with |Ω| = m,
denote with Ppsf ∈ {0, 1}N2×N2 the projection matrix correspond-
ing to the Fourier response of the PSF (the disc low-pass filter), with
F ∈ CN2×N2 the 2D Fourier transform and with x ∈ RN2 the orig-
inal specimen image ordered as a vector. In a noiseless scenario, the
measurements γ = {γi} ∈ Nm would be

γ =
⌊∣∣PΩF

∗PpsfFΨmx
∣∣⌋ =

⌊∣∣∣∣12PΩF
∗PpsfF (Ψ + 1)x

∣∣∣∣⌋. [9]

Since the photonic noise is dominant in the CFM setup, the actual
measurements y can be modelled as values drawn from a Poisson
distribution with mean and variance equal to γ, i.e.

y = {yi} ∼ Poisson({γi}) ∈ Nm [10]

Knowing that a spatially wide light beam is very little affected by the
PSF, the following approximation holds to a high accuracy:

F ∗PpsfF 1x ' 1x, [11]

since 1 gives the widest combined beam, so we can transform the
measurements y into

y′ = 2y − y1, [12]

where y1 is the vector with all entries equal to y1 which represents
the measurement taken with the all-1’s pattern on the mirrors (the
first Hadamard matrix row). This allows us to solve [Eq. 3] using the
sampling operator F ∗PpsfFΨ (or even just Ψ as we shall explain),
which allows fast transforms and is much closer to an isometry com-
pared to F ∗PpsfFΨm (or Ψm). Thus we solve:

min
z∈CN2

‖z‖1 s.t. ‖y′ − PΩUz‖ < η, [13]

where U = F ∗PpsfFΨΦ∗ and Φ is an orthobasis like wavelets in
which the image is expected to be sparse. This allows us to use fast
transforms exclusively for U and its adjoint U∗, needed during the
above minimization, since both Ppsf and Ψ are real and symmetric,
hence self-adjoint, so U∗ = ΦΨ∗F ∗PpsfF .

Fig. 6 shows zebra fish cells captured by a 2048×2048 raster scan
florescence microscope from CAIC. Measurements y were formed

Raster scan New CS approach Initial CS approach

25
6×

25
6

51
2×

51
2

10
24

×
10

24
20

48
×

20
48

Fig. 6. Fluorescence Microscopy (FM) example. Recovering from 6.25%
Hadamard coefficients [Eq. 10] into Daubechies-4. The subsampling pattern for
the new CS approach is the the one used in Fig. 2 for the FM case.
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using [Eq. 10] (adding large Poisson noise with mean γ [Eq. 9]),
where the cutoff value of Ppsf corresponds to the PSF of the lenses
that will be used in the microscope which is now being built, so the
real-world measurements are expected to be close to y. As can be
seen the new approach CS recovery is much improved compared to
the initial approach that uses Ψm and half-half sampling.
Why multilevel subsampling works better. While in Fig. 6 the
use of FPpsfF

∗Ψ and y′ (instead of Ψm and y) provide a substantial
advantage, a multilevel subsampling pattern Ω intrinsically mitigates
the effects of the PSF, thus avoiding any mirror binning. This in turn
achieves higher resolutions and also higher quality recovery. The
key, as discussed in the section New CS principles, is that Ω should
follow the asymptotic decrease of the coherence of Hadamard with
wavelets. A Hadamard matrix, much like Fourier, captures spatial
frequency of increasing orders. The Hadamard rows that give higher
coherence with wavelets correspond to lower spatial frequencies, as
seen in Fig. 5, i.e. the rows with more adjacent 0’s or 1’s. The new
theory states that favoring those rows when sampling will provide
better CS recovery. Importantly, in the CFM setup those rows also
inherently emulate mirror binning, owing to the adjaceny of 1’s and
0’s, so they are bound to be less affected by the lens PSF. For this
reason, for an appropriate choice of the multilevel pattern, one could
even simply use the faster Ψ (instead of the full F ∗PpsfFΨ) as the
sampling operator. In contrast, a “half-half” subsampling pattern,
besides bound to perform more poorly as it does not closely follow
the asymptotic incoherence, also subsamples heavily from the high
spatial frequency rows which are more severely affected by the PSF,
further decreasing CS recovery quality.

Resolution dependency

A resolution dependency effect could first be noticed in Fig. 6 where
the CS recovery gets better as the resolution increases since the image
is increasingly (asymptotically) sparser in wavelets, and the coher-
ence between Hadamard and wavelets decreases asymptotically (see
Fig. 5). Fig. 7 shows a 2048×2048 MRI image of a pomegranate
fruit obtained using a 3T Philips MRI machine, which also contains
noise specific to MRI. MRI is an example of Type I problem, where
the sampling operator is imposed, but the same new CS principles
apply. We subsampled a fixed fraction of 6.25% Fourier samples and
solved [Eq. 3] with U = ΦdftΨ

∗
dwt. The asymptotic sparsity of the

wavelet coefficients and the asymptotic incoherence of Fourier and
wavelets (see Fig. 5) exploited via multilevel sampling again yield
increasingly better reconstruction quality as the resolution increases,
in this case to the point where differences are hardly noticeable.
Fixed number of samples. A more striking result of asymptotic
sparsity and asymptotic incoherence is obtained by fixing the num-
ber of samples taken, instead of the fraction. This was done in Fig. 8,
sampling the same number of 5122 = 262144 Fourier coefficients in
four scenarios, the latter revealing previously hidden details when
using multilevel sampling from a broader spectrum.

The explanation? The higher resolution opens up higher-order
regions of wavelet coefficients which are mostly sparse, and higher-
order regions of coherence between sinusoids and wavelets (see
Fig. 5) which is low. As discussed in the section New CS Princi-
ples, when using a nonlinear recovery, these two asymptotic effects
can be fruitfully exploited with a multilevel sampling scheme that
spreads the same number of samples across a wider range, aiming
for the more coherent regions and reconstructing finer details to a
much clearer extent, even in the presence of noise in this example.
It is worth noting that other sampling strategies (e.g. half-half) will
also benefit from sampling at higher resolutions, provided samples
are sufficiently spread out, but a multilevel sampling strategy will
provide near optimal guarantees (8).
Sampling strategy is also resolution dependent. The resolution
dependency effect also influences the optimum subsampling strategy,

in that the latter will depend on the resolution in addition to signal
sparsity and structure. Fig. 9 shows an experiment in which we com-
puted the best subsampling patterns [Eq. 8] for two resolutions of the
same image. As is evident, the resulting patterns are different and
also yield different results for the same resolution.

Full sampled 5% subsampled Subsample map

25
6×

25
6

Err 10.8%Err 10.8%

51
2×

51
2

Err 6.01%Err 6.01%

10
24

×
10

24

Err 3.60%Err 3.60%

20
48

×
20

48

Err 1.87%Err 1.87%

Fig. 7. MRI example. Multilevel subsampling of 5% Fourier coefficients recov-
ered into Daubechies-4.

No noise White noise (16 dB SNR) Map

(a)
512

(b)
2048

(c)
2048

(d)
2048

Fig. 8. MRI example. Recovery from a fixed number of 5122 = 262144 Fourier
coefficients of the phantom from Fig. 1. (a) 512 × 512 linear, from the first
512×512 coefficients. (b) 2048×2048 CS into Daubechies-4, from the first
512×512 (6.25%) coefficients. (c) 2048×2048 linear, from 5122 (6.25%) co-
efficients sampled with a multilevel sampling map. (d) 2048 × 2048 CS into
Daubechies-4, from the same 5122 (6.25%) coefficients from (c).
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a = 4.4375
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S1: Best for 256x256

S2: Best for 2048x2048

6.73%7.30%

21.3%20.5%

Recovery error

S1
256

S2
2048

S1
2048

S2
256

Fig. 9. Compressive Imaging (CI) example. Recovering from 12.5%
Hadamard coefficients into Daubechies-4. The best subsampling maps [Eq. 8]
were computed heuristically for each resolution of this image.

Remarks. There are a few remarks worth making at this point.
– By simply going higher in resolution (e.g. further in the Fourier
spectrum), one can recover a signal much closer to the exact one, yet
taking the same number of measurements; or
– By simply going higher in resolution one can obtain the same re-
construction quality, yet taking fewer measurements.
– These experiments showed that it is important in practice to be able
to access high resolutions (higher frequencies in the MRI case) in or-
der for CS to provide higher gains. Thus, for MRI, the benefits will
be even more visible on future generations of MRI machines.
– Multilevel sampling can better exploit the resolution dependency
effect and allows for better tailoring according to sparsity structure,
resolution or application specific requirements (e.g. different patterns
for different body parts, allow lower overall quality but recover con-
tours better etc) as opposed to uniform random sampling or sampling
schemes such as half-half (12) or continuous power laws (13).
– Thirdly, practical CS in MRI has several limitation regarding point-
wise sampling. The multilevel patterns used here are the result of our
quest for a theoretically optimal sampling pattern, which could then
be approximated by realistic MRI patterns or contours, e.g. paramet-
ric spirals. The latter is work in progress in collaboration with the
Wolfson Brain Imaging Centre.

Infinite dimensional problems

The underlying model in some applications is continuous, such as in
MRI, EM, X-ray tomography and its variants. These are Type I prob-
lems, where the sensing operator is imposed. In MRI, the measure-
ments y are samples of the continuous (integral) Fourier transform
F . The same applies for EM and X-ray and its variants, where the
Radon transform is sampled one angle at the time. Via the Fourier
slice theorem, the procedure is equivalent to sampling the Fourier
transform at radial lines and so the Fourier and Radon transform re-
covery problems are equivalent to recovering the continuous f from
pointwise samples ĝ, which are evaluations of

g = Ff, f ∈ L2(Rd), supp(f) ⊆ [0, 1]d. [14]

The issue. Consider the CS recovery into wavelets (see (14) for the
general case). Using discrete tools, in this case U = ΨdftΦ

∗
dwt in

[Eq. 3], to solve a continuous inverse problem can cause large errors,
due to measurement mismatch (11, 15) and the wavelet crime (16).
The former assumes a discrete model for f , f̃ =

∑N
j=1 β̃jψj , where

ψj are step functions, and then (more seriously) replaces the contin-
uous f and F in [Eq. 14] with f̃ and DFT respectively, leading to the
discretization g̃ = Ψdftβ̃, which is a poor approximation of the sam-
ples of g. The wavelet crime is as follows. Given scaling and mother
wavelet functions ϕ and ψ, obtaining the wavelet coefficients of f via
the DWT should assume f =

∑∞
j=−∞ βjϕ(· − j) and then compute

them from {βj} via the DWT. The crime is when one simply replaces
βj with pointwise samples of f .

To illustrate these issues, let y = PΩĝ be the measurements in
[Eq. 3], where ĝ are the first 2N continuous Fourier samples of f .
The matrix Ψ∗dft maps ĝ to a vector x ∈ C2N on an equispaced
2N grid of points in [0,1]. Specifically, Ψdftx = ĝ where x is
given by the values fN (t)=1/2

∑N
j=1−N Ff(j/2)e2πiεj on the 2N

grid. Taking x0 = Φdwtx, the right-hand side of [Eq. 3] becomes
PΩΨdftΦ

∗
dwtx0. But [Eq. 3] now requires x0 to be sparse, which

means the truncated Fourier series fN must be sparse in wavelets,
which cannot happen. While f is assumed sparse in wavelets, fN
is not, since it consists of smooth complex exponentials. Large er-
rors thus occur in the recovery, as there is no sparse solution due to
the poor approximation of f by fN . This could be avoided if the
measurements arose from the DFT, but that would be the well-known
and pervasive inverse crime (11): artificially superior performance
when data is simulated incorrectly using the DFT, as opposed to the
continuous FT, which is the true underlying model.
How to solve. The above crimes stem from discretizing first and
then applying finite-dimensional tools. Instead, we shall use the tech-
niques of infinite-dimensional CS (10), i.e. first formulate the prob-
lem in infinite dimensions and then discretize. Let {ψj}j∈N and
{ϕj}j∈N be the sampling and sparsity bases (Fourier and wavelets).
If f =

∑
j∈N βjϕj , then the unknown vector of coefficients β =

{βj}j∈N is the solution of Uβ = f̂ , where

U =

 〈ϕ1, ψ1〉 〈ϕ2, ψ1〉 · · ·
〈ϕ1, ψ2〉 〈ϕ2, ψ2〉 · · ·

...
...

. . .

 ,

and f̂ = {f̂j}j∈N is the infinite vector of samples of f . Suppose
we have access to a finite number of samples {f̂j : j ∈ Ω}, where
Ω is the sampling map. To recover β from these samples, we first
formulate the infinite-dimensional optimization problem

inf
z∈`1(N)

‖z‖1 subject to PΩUz = PΩf̂ , [15]

Sampling map Original Enlarged

Err 17.8%Err 17.8% Err 9.8%Err 9.8% Err 0.1%Err 0.1%
Linear, Inverse DFT CS `1, DFT to CS `1, Inf-dim CS,

Periodic DB6 Boundary DB6

Fig. 10. Electron Microscopy (EM) example. Recovery from 16120 (6.15%)
continuous FT samples onto a 512×512 grid.
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which commits no crimes. However, [Eq. 15] cannot typically be
solved numerically, so we now discretize. We truncate U to K ∈ N
columns, solving the now finite-dimensional problem

min
z∈PK(`2(N))

‖z‖1 subject to PΩUPKz = PΩf̂ . [16]

We refer to this as infinite-dimensional CS, where K should be suf-
ficiently large to ensure good recovery. Fig. 10 shows an exam-
ple of such a continuous problem where the continuous function
f(x, y) = exp(−x− y) cos2(x) cos2(y) is recovered on a 512×512
grid from 16120 (6.15%) continuous Fourier samples taken radially,
as in an EM setup. The infinite-dimensional CS recovery is done in
boundary DB6 wavelets (17) instead of the periodic DB6 (to preserve
the vanishing moments at the boundaries). It is evident that its recon-
struction is far superior to both the discrete linear reconstruction (via
Ψ∗dft) and discrete CS reconstruction (via U = ΨdftΦ

∗
dwt) which are

affected by the crimes.
In conclusion, given sufficiently many vanishing moments, the

infinite dimensional CS with boundary wavelets will give substan-
tially better convergence than the slow truncated Fourier convergence
fN whenever f is non-periodic. Knowing that the computational
complexity in this case is the same as with FFT, this means that
infinite-dimensional CS yields a markedly better approximation of
f at little additional cost. The infinite-dimensional CS approach de-
scribed here is of particular benefit to applications like EM and spec-
troscopy where smooth functions are encountered. This is work in
progress in collaboration with the Department of Materials Science
& Metallurgy at University of Cambridge.

Structured sampling vs Structured recovery

The new CS principles in this paper take into account sparsity struc-
ture in the sampling procedure via multilevel sampling of non-
universal sensing matrices. Sparsity structure can also be taken into
account in the recovery algorithm. An example of such an approach is
model-based CS (18), which assumes the signal is piecewise smooth
and exploits the connected tree structure of its wavelet coefficients
to reduce the search space of the matching pursuit algorithm (19).
Another approach is the class of message passing and approximate
message passing algorithms (20, 21), which exploit the persistence
across scales structure (4) of wavelet coefficients by a modification
to iterative thresholding algorithms inspired by belief propagation
from graph models. This can be coupled with hidden Markov trees
to model the wavelet structure, such as in the Bayesian CS (22, 23)
and TurboAMP (24) algorithms. Another approach is to assign non-
uniform weights to the sparsity coefficients (25), to favor the impor-
tant coefficients during `1 recovery by assuming some typical decay
rate of the coefficients. A recent approach assumes the actual sig-
nal (not its representation in a sparsity basis) is sparse and random,
and shows promising theoretical results when using spatially coupled
matrices (26, 27, 28), yet it is unclear how a real-world setup can be
implemented where signals are sparse in a transform domain.

The main difference is that the former approach, i.e. multilevel
sampling of asymptotically incoherent matrices, incorporates spar-
sity structure in the sampling strategy and uses standard `1 minimiza-
tion algorithms, whereas the latter approaches exploit structure by
modifying the recovery algorithm and use universal sampling opera-
tors which yield uniform incoherence (see section Structure vs Uni-
versality), e.g. random Gaussian or Bernoulli.
Comparison. Structured recovery: Due to the usage of universal
operators and assumptions on the sparsity basis, this approach is typ-
ically restricted to Type II problems, where the sensing operator can
be designed, and is further restricted in the choice of the sparsity
frame, whose structure is exploited by the modified algorithm.
Structured sampling: In contrast, this approach practically has no
limitation regarding the sparsity frame, thus allowing for further im-

provement of CS recovery (see section Frames and TV), and it also
works for Type I problems, where the sensing operator is imposed.

To compare performance, we ran a large set of simulations of a CI
setup. CI (29, 30), a Type II problem, is an application where univer-
sal sensing matrices have been traditionally favored. Here the mea-
surements y are typically taken using a sensing matrix with only two
values (usually 1 and −1). Any matrix with only two values fits this
setup, e.g. Hadamard, random Bernoulli, Sum-To-One (see section
Storage/speed), hence we can directly compare the two approaches.
Fig. 11 shows a representative example from that set, which points to

Err 16.0%Err 16.0%
Original Random Bernoulli to db4 — `1

Err 21.2%Err 21.2% Err 17.5%Err 17.5%
Rnd. Bernoulli to db4 — ModelCS Rnd. Bernoulli to db4 — TurboAMP

Err 10.6%Err 10.6% Err 10.4%Err 10.4%
Random Bernoulli to db4 — BCS Rnd. Bernoulli to db4 — Weighted `1

Err 7.1%Err 7.1% Err 6.3%Err 6.3%
Multilevel Hadamard to db4 — `1 Multilevel Had. to Curvelets — `1

Fig. 11. Compressive Imaging (CI) example. 12.5% subsampling at
256×256. The multilevel subsample map is the one from Fig. 2. The weighted
`1 weights were wk = ak for all coefficients in the kth wavelet scale, where
a = 2 was computed heuristically for this example.

8



the conclusion that asymptotic incoherence combined with multilevel
sampling of highly non-universal sensing matrices (e.g. Hadamard,
Fourier) allows structured sparsity to be better exploited than uni-
versal sensing matrices, even when structure is accounted for in the
recovery algorithm. The figure also shows the added benefit of being
able to use a better sparsifying system, in this case curvelets.

Structure vs Universality: Is universality desirable?

Universality is a reason for the popularity in traditional CS of ran-
dom sensing matrices, e.g. Gaussian or Bernoulli. A random matrix
A ∈ Cm×N is universal if for any isometry Ψ ∈ CN×N , the matrix
AΨ satisfies the RIP with high probability. For images, a common
choice is Ψ = Ψ∗dwt, the inverse wavelet transform. Universality
helps when the signal is sparse but possesses no further structure.

But is universality desirable in a sensing matrix when the sig-
nal is structured? First, random matrices are largely inapplicable in
Type I problems, where the sampling operator is imposed. They are
applicable mostly in Type II problems, where there is freedom to de-
sign the sampling operator. Should then one use universal matrices
there? We argue that universal matrices offer little room to exploit
extra structure the signal may have, even in Type II problems.

Practical applications typically entail signals that exhibit far more
structure than sparsity alone: in particular, asymptotic sparsity struc-
ture in some sparsity basis. Thus, an alternative is to use a non-
universal sensing matrix, such as Hadamard, ΦHad. As previously
discussed and shown in Fig. 5, U = ΦHadΨ∗dwt is completely co-
herent with all wavelets yet asymptotically incoherent, and thus per-
fectly suitable for a multilevel sampling scheme which can exploit
the inherent asymptotic sparsity. This is precisely what we see in
Fig. 11: multilevel sampling of a Hadamard matrix can markedly
outperform solutions employing universal matrices in Type II prob-
lems. For Type I problems, an important practical aspect is that many
imposed sensing operators happen to be highly non-universal and
asymptotically incoherent with popular sparsity bases, and thus eas-
ily exploitable using multilevel sampling, as seen in Figs. 1 and 2.
Asymptotic incoherence vs Uniform incoherence. The reasons
for the superior results are rooted in the incoherence structure. Uni-
versal and close to universal sensing matrices typically provide a rel-
atively low and flat coherence pattern. This allows sparsity to be ex-
ploited by sampling uniformly at random but, by definition, these ma-
trices cannot exploit the distinct asymptotic sparsity structure when
using a typical (`1 minimization) CS reconstruction.

In contrast, when the sensing matrix provides a coherence pattern
that aligns with the signal sparsity pattern, one can fruitfully exploit

Rand Bernoulli Rand Gaussian STOne

to
db4

Err 15.9%Err 15.9% Err 15.9%Err 15.9% Err 15.9%Err 15.9%

to
db4
flip

Err 15.9%Err 15.9% Err 15.9%Err 15.9% Err 15.8%Err 15.8%

Fig. 12. Subsampling 12.5% at 256×256 with Bernoulli, Gaussian and STOne;
part of a larger set of experiments using various images, ratios and sparsity
bases. All three matrices yield very similar quality, indicating that they behave
the same and that universality and RIP hold for all three.

such structure. As discussed in the sections New CS principles and
Resolution dependency a multilevel sampling scheme is likely to give
superior results by sampling more in the coherent regions, where the
signal is also typically less sparse. Even though the optimum sam-
pling strategy is signal dependant (see section Traditional CS), real-
world signals, particularly images, share a fairly common structure
and thus good, all-round multilevel sampling strategies can be de-
signed. An added benefit of multilevel sampling is that it also allows
for tailoring of the sampling pattern to target application-specific fea-
tures rather than an all-round approach, e.g. allowing a slightly lower
overall quality but recovering contours better.

Storage/speed: Is non-random/orthogonality enough?

Random matrices have another important practical drawback: they
require (large) storage and lack fast transforms. This limits the max-
imum signal resolution and yields slow recovery. For example, a
1024×1024 experiment with 25% subsampling of a random Gaus-
sian matrix would require 2 Terabytes of free memory and O(1012)
time complexity, making it impractical at best.

A low maximum resolution is a big limitation not just for com-
putations. As seen in the section Resolution dependency, at low res-
olutions the asymptotic sparsity has not kicked in and CS yields only
marginal benefits. In order to obtain better recovery it is thus of great
interest to be able to access high signal resolutions, yet random ma-
trices prevent that.

But is the problem of quality CS recovery solved if we address
the storage and speed issues? These were in fact addressed to various
extents, e.g. pseudo-random column permutations of the columns of
orthogonal matrices such as (block) Hadamard or Fourier (31, 32),
Kronecker products of random matrix stencils (33), or even fully
orthogonal matrices such as the Sum-To-One (STOne) matrix (34)
which has a fast O(N logN) transform. However, all these strive to
provide universality, i.e. behave like purely random matrices. Fig. 12
shows an extract of a large experiment on various images, resolutions,
sparsity bases and subsampling rates, which tests for universality and
RIP by performing the flip test (see section Traditional CS). It is evi-
dent that the orthogonal STOne matrix behaves like random matrices
in the CS context which we probed in Fig. 11 (though we note that

Subsample mapSubsample map OriginalOriginal
Original
100%zoom
Original
100%zoom

Linear
inverse DFT
Linear
inverse DFT TVTV Daubechies 4Daubechies 4

CurveletsCurvelets ContourletsContourlets ShearletsShearlets

Fig. 13. Recovering from the same 6.25% DFT coefficients at 2048×2048.

9



the STOne matrix was invented to serve other purposes as well (34)).
The poor performance is due to their flat incoherence with sparsity
bases, discussed in the section Structure vs Universality.

Another solution to the storage and speed problem is to instead
use orthogonal and structured matrices like Hadamard, DCT or DFT.
These have fast transforms and do not require storage, but also pro-
vide asymptotic incoherence with sparsity bases, thus a multilevel
subsampling scheme can be used. The important added benefits are
that this yields significantly better CS recovery in most Type II prob-
lems when compared to universal matrices, as discussed in the sec-
tion Structure vs Universality and probed in Fig. 11, and that, unlike
universal matrices, it is also applicable to Type I problems, which
impose the sensing operator.

In conclusion, the sensing matrix must contain additional struc-
ture besides simply being non-random and/or orthogonalin order to
provide asymptotic incoherence. Typically, sensing and sparsifying
matrices that are discrete versions of integral transforms, e.g. Fourier,
wavelets etc. will provide asymptotic incoherence, but other orthog-
onal and structured matrices like Hadamard will do so too.

Frames and TV: Freedom of choice

Many images are known to be sparser in TV or frames such as
curvelets (5), shearlets (7) or contourlets (6), than in orthobases such
as wavelets or DCT. Without going into details regarding frames or
TV as sparsifying systems, some further results are shown in Fig. 13,
which provides clear experimental verifications of the improvements
offered by such sparsifying systems at practical resolution levels.

More important is that, unlike the class of modified recovery al-
gorithms from the section Structure sampling vs Structure recovery,
and in addition to the benefits discussed in the sections Structure vs

Universality and Storage/speed, incorporating sparsity structure in
the sampling procedure also offers complete freedom in the choice
of the sparsity system. This holds generally, and is of particular in-
terest in applications where the sampling operator is imposed.

Concluding remarks

The traditional CS pillars: sparsity, incoherence and uniform random
subsampling, are often inapplicable in Type I problems, where the
sampling operator is imposed (MRI, EM, Tomography, Interferom-
etry etc.), while for Type II problems, where the sampling operator
can be designed (FM, CI etc.), they provide little room to exploit ex-
tra sparsity structure that real-world signals typically possess. This
is due to the coherent nature of Type I problems and of the uniform
incoherence of universal sampling operators with sparsity bases.

The new CS principles: asymptotic sparsity, asymptotic incoher-
ence and multilevel subsampling, introduced by the authors (8) to
bridge the gap between theoretical and practical CS, provide a better
fit for both types of problems. This paper shows how the new prin-
ciples can be used to better understand the underlying phenomena in
practical CS problems, and that an approach based on the new CS
principles coupled with non-universal sampling operators can over-
come many traditional CS limitations and provide several important
benefits and improved CS recovery in real-world applications.
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