A Network of Time Division Multiplexing for FPGAs

Rosemary Francis

Motivation

- FPGAs are now home to complex Systems on-Chip
- Designs require the use of Network-on-Chip
- FPGA global wiring is simple in comparison with ASIC Networks-on-Chip
- Networks for FPGAs use lots of wires or lots of logic
- Hard blocks are limited by the soft IP blocks

Goals

- Improve wiring density through TDM
- Use TDM components for effective soft NoC implementation
- Funnel data to high-speed hard blocks
 - Hard NoC
 - Multipliers
 - Block RAM

Hierarchy of interconnect

Architecture: Stratix vs TDM

Cluster of logic elements with latched inputs

Wire Sharing

 Many wires can be shared without a problem

Wire Sharing

- Many wires can be shared without a problem
- Other configurations require a more intelligent approach

Wire Sharing

- Many wires can be shared without a problem
- Other configurations require a more intelligent approach
- Signals can be delayed to allow more efficient wire use without rerouting

Parameter selection

Assume infinite time slots to reduce wiring
 Determine optimum number of TDM wires

Infinite resources

Parameter selection

- Assume infinite time slots to reduce wiring
 Determine optimum number of TDM wires
- Vary number of time slots
 - Determine optimum number of time slots
 - Investigate the effect this has on latency

Determine number of time slots

Number of time slots vs latency

Parameter selection

- Assume infinite time slots to reduce wiring
 Determine optimum number of TDM wires
- Vary number of time slots

 Determine optimum number of time slots
 Investigate the effect this has on latency
- Using optimum number of time slots

 Re-evaluate optimum number of TDM wires

Limited resources

Architectural drawbacks

- Extra configuration SRAM
- High-speed interconnect clock
- Benchmarks run over three times slower
- New CAD tools needed

 Re-routing in space as well as time
 Optimise for TDM wiring at every stage

Conclusions

- Using TDM wiring we can reduce the number of wires whilst increasing the data rate within channels
 - 75% less wiring * 24 time slots * 3 times slower means 2 times channel data rate
- This will allow
 - the design of effective global interconnect
 - more efficient sharing of on-chip resources
 - simplification of multi-chip designs

Future Work

- Current scheduling algorithm gives
 - Large wire reduction
 - Large latency penalty
- Is there a better compromise?
 - Halve the wiring, small latency penalties
- How can we reduce latency in other ways?
 - Better scheduling algorithms
 - Circuit redesign

Thanks for listening...

Rosemary.Francis@cl.cam.ac.uk

