Template based code generation for networks of hybrid systems
Cambdridge CodeGen Workshop

Boris Marin

Silver Lab
University College London

January 7, 2014
Requirements
(in the context of Computational Neuroscience)

- discrete *units*, modeled as dynamical systems
 - ODEs / maps
 - SDEs / kinetic schemes
- discontinuous state jumps (e.g. synaptic coupling)
 - event detection (rootfinding)
- networks of *units*
 - event propagation

In summary, *networks of hybrid systems*
Requirements
(in the context of Computational Neuroscience)

- discrete *units*, modeled as dynamical systems
 - ODEs / maps
 - SDEs / kinetic schemes
- discontinuous state jumps (e.g. synaptic coupling)
 - event detection (rootfinding)
- networks of *units*
 - event propagation

In summary, *networks of hybrid systems*
Requirements
(in the context of Computational Neuroscience)

- discrete units, modeled as dynamical systems
 - ODEs / maps
 - SDEs / kinetic schemes
- discontinuous state jumps (e.g. synaptic coupling)
 - event detection (rootfinding)
- networks of units
 - event propagation

In summary, networks of hybrid systems
Requirements
(in the context of Computational Neuroscience)

- discrete *units*, modeled as dynamical systems
 - ODEs / maps
 - SDEs / kinetic schemes
- discontinuous state jumps (e.g. synaptic coupling)
 - event detection (rootfinding)
- networks of *units*
 - event propagation

In summary, *networks of hybrid systems*
Requirements
(in the context of Computational Neuroscience)

- **discrete units**, modeled as dynamical systems
 - ODEs / maps
 - SDEs / kinetic schemes
- discontinuous state jumps (e.g. synaptic coupling)
 - event detection (rootfinding)
- networks of units
 - event propagation

In summary, *networks of hybrid systems*
Requirements
(in the context of Computational Neuroscience)

- discrete *units*, modeled as dynamical systems
 - ODEs / maps
 - SDEs / kinetic schemes
- discontinuous state jumps (e.g. synaptic coupling)
 - event detection (rootfinding)
- networks of *units*
 - event propagation

In summary, *networks of hybrid systems*
Requirements
(in the context of Computational Neuroscience)

- discrete *units*, modeled as dynamical systems
 - ODEs / maps
 - SDEs / kinetic schemes
- discontinuous state jumps (e.g. synaptic coupling)
 - event detection (rootfinding)
- networks of *units*
 - event propagation

In summary, *networks of hybrid systems*
Requirements
(in the context of Computational Neuroscience)

- discrete *units*, modeled as dynamical systems
 - ODEs / maps
 - SDEs / kinetic schemes
- discontinuous state jumps (e.g. synaptic coupling)
 - event detection (rootfinding)
- networks of *units*
 - event propagation

In summary, *networks of hybrid systems*
Requirements
(in the context of Computational Neuroscience)

- discrete *units*, modeled as dynamical systems
 - ODEs / maps
 - SDEs / kinetic schemes
- discontinuous state jumps (e.g. synaptic coupling)
 - event detection (rootfinding)
- networks of *units*
 - event propagation

In summary, *networks of hybrid systems*
LEMS: a general purpose model specification language

SPOILER ALERT!
LEMS: a general purpose model specification language

```xml
<ComponentType name="iafTauRefCell"
    extends="iafTauCell"
    description="Integrate and fire cell">

  <Parameter name="refract" dimension="time"/>

  <Dynamics>
    <StateVariable name="v" exposure="v" dimension="voltage"/>
    <StateVariable name="lastSpikeTime" dimension="time"/>

    <OnStart>
      <StateAssignment variable="v" value="reset"/>
    </OnStart>

    <Regime name="integrating" initial="true">
      <TimeDerivative variable="v" value="(leakReversal - v)/tau" />
      <OnCondition test="v .gt. thresh">
        <EventOut port="spike"/>
        <Transition regime="refractory" />
      </OnCondition>
    </Regime>

    <Regime name="refractory">
      <OnEntry>
        <StateAssignment variable="lastSpikeTime" value="t"/>
        <StateAssignment variable="v" value="reset"/>
      </OnEntry>
      <OnCondition test="t .gt. lastSpikeTime + refract">
        <Transition regime="integrating" />
      </OnCondition>
    </Regime>
  </Dynamics>

</ComponentType>
```
Bottom line: Simulation of hybrid systems is a well established field. Why not using state of the art numerical libraries?

- numerical stability
 - stiffness
 - Zeno
- error control (variable stepsize)
- accurate event detection
From MSL to simulation

Bottom line: Simulation of hybrid systems is a well established field. Why not using state of the art numerical libraries?

- numerical stability
 - stiffness
 - Zeno
- error control (variable stepsize)
- accurate event detection
Bottom line: Simulation of hybrid systems is a well established field. Why not using state of the art numerical libraries?

- numerical stability
 - stiffness
 - Zeno
- error control (variable stepsize)
- accurate event detection
Bottom line: Simulation of hybrid systems is a well established field. Why not using state of the art numerical libraries?

- numerical stability
 - stiffness
 - Zeno
- error control (variable stepsize)
- accurate event detection
Bottom line: Simulation of hybrid systems is a well established field. Why not using state of the art numerical libraries?

- numerical stability
 - stiffness
 - Zeno
- error control (variable stepsize)
- accurate event detection
Our contribution

The need for an intermediate format

- template-based code generation: attract expert users
 - close correspondence to target structure
 - most targets use a similar format
- alternative approach: develop a compiler
Our contribution

The need for an intermediate format

- template-based code generation: attract expert users
 - close correspondence to target structure
 - most targets use a similar format
- alternative approach: develop a compiler
Our contribution

The need for an intermediate format

- template-based code generation: attract expert users
 - close correspondence to target structure
 - most targets use a similar format

- alternative approach: develop a compiler
Our contribution

The need for an intermediate format

- template-based code generation: attract expert users
 - close correspondence to target structure
 - most targets use a similar format
- alternative approach: develop a compiler
Our contribution

The distilled LEMS format

Goal: direct mapping to widely used ODE steppers with event handling
Our contribution

The distilled LEMS format

```json
{
  "name": "izhikevich_burster",
  "state": {
    "v": "v0",
    "u": "b*v0"
  },
  "state_functions": {
    "phi": "0.04 * v**2 + 5*v + 140"
  },
  "dynamics": {
    "v": "phi - u + I",
    "u": "a * (b * v - u)"
  },
  "parameters": {
    "a": "0.02",
    "b": "0.2",
    "c": "-50",
    "d": "2",
    "I": "0",
    "v0": "-70"
  },
  "t_start": "0",
  "t_end": "300",
  "dt": "0.01",
  "events": [
    {
      "name": "spike",
      "condition": "v - 30",
      "direction": "+",
      "effect": {
        "state": {
          "v": "c",
          "u": "u + d"
        }
      }
    },
    {
      "name": "start_inj",
      "condition": "t - 30",
      "direction": "+",
      "effect": {
        "parameters": {
          "I": "5"
        }
      }
    },
    {
      "name": "end_inj",
      "condition": "t - 150",
      "direction": "+",
      "effect": {
        "parameters": {
          "I": "0"
        }
      }
    }
  ]
}
```
Our contribution

Current status

LEMS \mapsto dLEMS \mapsto

- LLNL Sundials (CVODE/IDA)
- matlab ODEsuite
- XPPAUT
- modelica
- (nearly) effortless accommodation of additional formats
- (nodes only: no event routing)
Our contribution

Current status

LEMS \mapsto dLEMS \mapsto

- LLNL Sundials (CVODE/IDA)
- matlab ODESuite
- XPPAUT
- modelica
- (nearly) effortless accommodation of additional formats
- (nodes only: no event routing)
LEMS \leftrightarrow dLEMS \leftrightarrow

- LLNL Sundials (CVODE/IDA)
- *matlab* ODEsuite
- XPPAUT
- Modelica
- (nearly) effortless accommodation of additional formats
- (nodes only: no event routing)
Our contribution

Current status

LEMS \mapsto dLEMS \mapsto

- LLNL Sundials (CVODE/IDA)
- matlab ODEsuite
- XPPAUT
- modelica
 - (nearly) effortless accommodation of additional formats
 - (nodes only: no event routing)
Our contribution

Current status

LEMS \mapsto dLEMS \mapsto
- LLNL Sundials (CVODE/IDA)
- matlab ODE suite
- XPPAUT
- modelica
- (nearly) effortless accommodation of additional formats
- (nodes only: no event routing)
Current status

LEMS \mapsto dLEMS \mapsto

- LLNL Sundials (CVODE/IDA)
- matlab ODEsuite
- XPPAUT
- modelica
- (nearly) effortless accommodation of additional formats
- (nodes only: no event routing)