Parallaft: Runtime-based CPU Fault Tolerance via

Heterogeneous Parallelism

Boyue Zhang* Sam Ainsworth =

tUniversity of Cambridge

“University of Edinburgh

Lev Mukhanov 3 Timothy M. Jones*

3Queen Mary University London

Summary

= CPUs are increasingly susceptible to errors leading to program
crashes or data corruption.

Existing software-based detection techniques suffer from high
power and performance overhead, while current hardware
schemes remain too complex for production deployment.

Parallaft's operation

= Parallaft improves energy efficiency by running error checkers

on multiple little cores in a heterogeneous processor, with the
main execution running on a big core.

't works by slicing the main execution into segments, with
each segment executed twice - once by the main process and

= \We propose Parallaft, a runtime-based error-detection once by a checker.

solution that exploits parallelism in the error-checking
computation, by slicing it into independent segments,
combined with the use of heterogeneous processors to
minimise power and performance overhead.

= At segment boundaries, it takes a copy-on-write checkpoint
and forks off a checker from the main execution. Each checker
runs independently. In addition to syscalls, each checker also
compares its final state with the next checkpoint to detect
errors. If everything matches, through the principle of
mathematical induction, we can prove all execution are
error-free.

= Qur evaluation on an Apple M2 processor shows Parallaft
halves the energy overhead compared with the previous
state-of-the-art runtime-based solution, RAFT [1] while
maintaining comparable performance overhead. = On the little cores, many checkers run concurrently to provide
enough computation power to keep up with the main
execution on the big core.

Previous state-of-the-art, RAFT [1]

» RAFT is a runtime-based solution that runs the program twice Results
in parallel on two different CPU cores. The results from the
two executions, such as system calls that write to the standard

e Parallaft E==x

S
output, are compared at runtime. 5 60
g ,,
Execution >
—»> @
S
- s
Main S
$
Write [l to stdout > Compare
Write B8 to stdout P
CheCker 140 T
R Parallaft | |
120 RAFT mmm —

9
= However, RAFT requires 2x CPU dynamic power. 8 100
IS 80
’ _ 2 60
Parallaft’s solution 3 49
0 20
0
Execution
> g
| | | |
Main : : : : Parallaft only incurs 15.9% performance overhead and 44.3% en-
I I | | ergy overhead, compared with 16.2% performance overhead and
Checker 1 | | | | 8/.8% energy tor RAFT under like-for-like threat models on our Ap-
ecrer T ' ' ' ple M2 machine
| | | |
| | | |
Checker 2 | ! | References
| | |
: I I I‘) I 1] Yun Zhang, Soumyadeep Ghosh, Jialu Huang, Jae W. Lee, Scott A. Mahlke, and David |. August.
CheCprlntS : : I ! Runtime asynchronous fault tolerance via speculation. In Proceedings of the Tenth International

Symposium on Code Generation and Optimization (CGO), 2012. doi: 10.1145/2259016.2259035.
Compare

CASCADE

bz275@cam.ac.uk

