
Code-centered kernel compartmentalization in CheriBSD
Konrad Witaszczyk, Department of Computer Science and Technology, University of Cambridge, March 2025

The CHERI-extended CheriBSD kernel based on the FreeBSD kernel, as other monolithic kernels, consists of 
millions of trusted lines of code that are compiled into the kernel binary or separate kernel modules. The kernel binary 
itself includes code from over 1,700 ELF object files linked together. In this research, I explore compartmentalization 
of the CheriBSD kernel that focuses on its code (Figure 1) and aims to split the kernel code into compartments that 
can call functions of other compartments only if a system-defined policy allows such a call.

Konrad.Witaszczyk@cl.cam.ac.ukContact

Static and dynamic linking for compartmentalization

The kernel and kernel modules are statically linked into 
binaries that consist of object files grouped into compartments. 
When relocating their symbols at run time, the dynamic kernel 
linker wraps the symbols with trampolines that implement
compartment switching.

Figure 2. An example function call between compartments 
using a trampoline. The blrr instruction branches into the 
Restricted mode using a capability without the Executive 
permission bit set making the csp register refer to rcsp_el0
instead of csp_el1

Figure 1. Incremental code-centered compartmentalization approach in a monolithic kernel. Case b presents the current state.

Approved for public release; distribution is unlimited. Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-24-C-B047 (“DEC”) as part 
of the I2O CPM research program. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or 
the U.S. Government.

Nanokernels Microkernels Unikernels Anykernel with
rump kernels

Hybrid kernels
(monolithic/micro-)

Monolithic 
kernels

MINIX 3

CheriOS

< 3K (CPU instr.!) > 8M (assembly, C, Rust, …)

Lines of Code in Trusted Computing BaseLines of Code in Trusted Computing Base

Hypothesis: Hardware-assisted compartmentalization with CHERI can significantly reduce the risk of 
vulnerabilities being exploited in a monolithic kernel with minor implementation and performance costs.

Optimal compartment boundaries

The security and performance characteristics of the system can 
significantly differ depending on the choice of the Trusted 
Computing Base and untrusted compartment boundaries. The 
search for the optimal compartmentalization policy requires 
extensive experiments and engineering.

The trampolines (Figure 2) use architectural features (e.g., the 
Executive and Restricted modes in Arm Morello) to protect 
capability registers from being manipulated by an untrusted 
compartment. Those features are specific to a CHERI-
extended architecture and are co-designed with software.

Calls between compartments


