MASCOT: Predicting memory

" CAMBRIDGE

Department of Computer
Science and Technology

Karl H. Mose !

Timothy Jones !
tUniversity of Cambridge

MASCOT

NDEP
Load is executed
A speculatively

MDP
Load is stalled on
dependent store

Prediction

Load PC NDEP :
/ MDP SMB

/ SMB Load obtains its value via

speculative bypassing
[Fetch]—)[Decode Rename Dispatch Issue

Memory Dependence Prediction vs Speculative Memory
Bypassing

Increasing Instruction Level Parallelism (ILP) is crucial for modern out-of-
order processors, but memory dependencies present both challenges and
opportunities. Here we explore two prediction strategies to exploit them.

Store addr | | | | \ |
Load addr | | | | |

(@) Memory dependence
and bypass opportunity

{c) No memory dependence
or bypass opportunity

(b) Memory dependence
but no bypass opportunity

= Memory-Dependence Prediction (MDP)
= Increases ILP by allowing load instructions to be issued even when
addresses in the store queue are unknown. MDPs predict if a load
will alias with a specific prior store, and if so delay the issue of the
load.

= Speculative Memory Bypassing (SMB)
= Increases ILP by short-circuiting a predicted load-store dependence

to forward the value written by a store, without necessarily knowing
the value of either address.

= Why not both?

« Both MDP and SMB require predictors with high accuracy, but the
benefits are not equal. For MDP, false negatives are more costly to
performance than false positives, since a missed dependence can
lead to a load being issued too early. For SMB, false positives can
cause loads to use incorrect values, requiring squashing. Because of
this, prior works have focused on doing just one of the two.

TAGE-based predictors

TAGE (TAgged-GEometric history length predictor), while originally
a branch predictor, has been used at the base for everything from
indirect-target predictors to value prediction. But how does it work?

= Increasing lengths of global history TAGE stores patterns of global
history which it uses for prediction. It does this via an array of tables
that are indexed by hashing the program PC with geometrically
increasing lengths of global history.

= Predicting TAGE accesses all tables in parallel, and picks the biggest
match it can find.

= Learning Upon misprediction in table N, TAGE allocates a new entry
in table N+1, which is indexed with a longer global history, thereby
allowing it to learn more complex patterns. Easy-to-predict
instructions are stored in the tables with shorter lengths of global
history, while harder ones use multiple entries in the bigger-history
tables.

TAGE has also been adapted for load-store dependency prediction
(MDP and SMB). In this case, it's accessed via load instruction PCs,
with entries encoding load-store dependencies and using store queue
offsets instead of taken/not-taken counters.

Contact; km781@cam.ac.uk

dependencies and opportunities for

speculative memory bypassing
Sebastian S. Kim @

UNIVERSIDAD
DE MURCIA

Alberto Ros 2
Robert Mullins *

“University of Murcia

Entries updated at commit

{ Store Queue [Conflicting store checker }] -

Predictions are checked after
addresses are resolved

\ 4

) 1
[Load Queue [Predicted load verifier }l
) 1

The challenge in learning load-store dependencies

TAGE-based predictors have been less successful in MDP/SMB than in
other areas. Unlike branch prediction, where a TAGE-based approach can
always allocate a new entry after a misprediction, memory-dependence
predictors typically store only dependencies. Because of this, a false de-
pendency prediction creates a dilemma.

= |f dependent on a different store, a new entry can be allocated as
usual.

= |f not dependent on any store, the choice is less obvious, as there is no
new dependency to learn. Previous TAGE-based memory-dependence
and SMB predictors so far have opted to deal with this by
decrementing the usefulness of the predicting entry.

This approach risks multiple mispredictions without learning. Instead, we
propose to allocate a new entry encoding a non-dependence.

MASCOT

MASCOT is a TAGE-like predictor that opts to deal with the above prob-
lem by tracking both load-store dependencies and non-dependencies. In
MASCOT, entries can encode dependencies as well as non-dependencies.
When it incorrectly predicts a dependence, it will allocate a non-
dependent entry in the next-history table. As a result, MASCOT has high
sensitivity to both false-positives and false-negatives, making it uniquely
suited for doing both MDP as well as SMB.

Results

When used for MDP only, MASCOT achieves on average a 0.4% perfor-
mance increase over the previous state-of-the-art in PHAST. When en-
abling SMB, it increases its lead to 1.9%, with some benchmarks seeing
improvements as high as 26%. It reduces false negatives by 39% and false
positives by 91% compared to PHAST.

E NoSQ @ PHAST [EE MASCOT (MDP only) [MASCOT

Furthermore, comparing MASCOT to a similar TAGE-based design that
does both MDP and SMB but does not track non-dependencies, we found
that MASCOT decreases false dependencies by 92%, and increases |PC on
average by 1.2%.

Computer Architecture Group

