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traps or junctions.

with cooling, under a 5x gate improvement. Cooling improves data rate scaling across all trap capacities for the
WISE architecture, allowing low logical error rates at modest data rate requirements compared to standard

capacity-2 systems. (b) Elapsed QEC shot time versus target logical error rate under a 5x gate improvement. In
the WISE architecture with cooling, cycle times scale quadratically with code distance, leading to a logical clock
speed of 0.1 operations per second for a 10~ target error rate. In contrast, the standard, no cooling, trap
capacity two architecture exhibits linear scaling of cycle times with increasing code distance.

Figure 17. Benchmark test of the QEC compiler outlined with other QCCD compilers, namely QCCDSim and
MuzzleTheShuttle. Each test determines the movement time and number of movement operations in the
compiled schedules for a particular software-hardware configuration. A 4-tuple specifies each configuration:
QEC code (R = repetition code, S = 2D Rotated Surface Code), Code Distance, Trap Capacity, and QCCD
Communication Topology (L = linear, G = grid). In some cases, a QCCD constraint was violated, or the
compilation failed, in which cases’ NaN' is reported.

Figure 3. QCCD reconfiguration primitives for ion transport and rearrangement. lons (grey circles) can be split,
merged, moved, or guided across junctions (orange) using dynamic electrodes (green). Although the gate swap is
not a hardware-level primitive, it consists of three MS gates that effectively reposition ions in a linear chain to

facilitate splitting or movement to another trap. Collectively, these operations provide all-to-all connectivity in a
QCCD system.
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