OptIWISE: Combining Sampling and
Instrumentation for Granular CPI Analysis

Yuxin Guo 1 3
llias Vougioukas ©

*University of Cambridge

Summary

Alexandra W. Chadwick 3
Giacomo Gabrielli 3

Arm, USA

= Problem: Existing profiling techniques do not always correctly
and directly identify the optimisation opportunities.

= Our Goal: Develop a profiling tool providing fine-grained CPI
metrics, finding the bottleneck of applications easily.

= Key idea: Run the sampling twice: once for sampling and
another for instrumentation, and then combine their results.

= Implementation: Sampling is done by perf, and DynamoRI0
does instrumentation. The CPI metric i1s computed by the ratio
of samples to execution counts.

= Results: OptiWISE accurately estimates the CPI of instructions
and sets of instructions at varying granularities (from single

instruction to loop) with acceptable overhead: 8.1x geometric
mean slowdown tested on SPEC CPU 2017.

Background

Marton Erdos* Utpal Bora *

Timothy M. Jones ?
3Arm, UK

Implementation of OptiWISE

= Sampling-based profiling
= Generate interrupts to read hardware counters.
= |f interrupts are generated periodically, then a higher number of samples
on an instruction indicates a higher execution time.
= But it has no idea about why there is a high execution time.

N S S N
add | mul

= [nstrumentation-based profiling
= |nsert monitoring code to read times or obtain other program behaviours
(e.g., execution count of each instruction).
= But this information is not usually related to real performance: inserted
code strongly impacts the performance.

Motivation of OptiWISE

Application]
First execution of Second S~
App execution of ™~
App TN,
A"
DynamoRIO :
Perf v : Objdump
client
\\ | ,’
\\\ l,'
N 4
\\ //
Sampling result Execution Name of each
. . 4
™ count instruction ¢
\

v V4
D
E ata j ------ { Profiling result]
Processor

" Perf is used to sample the application (first execution), generating interrupts
neriodically to read the hardware CPU cycle counter.

" DynamoRIO is used to instrument the application (second execution),
obtaining the execution counts of each instruction and a CFG with edge
counts of the program.

" Objdump is used to read the name of each instruction and debug
information (if available).

= All the above information is fed into a static data processor to output the
profiling information.

Results

= Using sampling or instrumentation alone does not always
identify the true bottleneck.

= But the optimisation insights are clear after combining
sampling and instrumentation.

OptiWISE
Instruction Samples Executions CPI
» 00 sub S0x2770d4ee, $eax 574 256*10° 0.91
04 xor $0x7aa341l1f, %eax 618 256*10° 0.97
0f sub $0x1, $edx 0 256*10° 0.00
— 12 jne 00 65 256*10° 0.10
14 mov %eax, $edx 0 1*10° 0.00
16 add $0x1, $ecx 0 1*10°6 0.00
19 and $SOx1ffffff, Sedx 1 1*10° 0.40
1f xor (%rsi,%rdx,4),%eax 247 1*10° 98.97
22 cmp %ecx, $ebx 0 1*10° 0.00
24 mov S0x100, $edx 0 1*10° 0.00
—— 29 jne 00 0 1*10° 0.00

§ These authors contributed equally to this paper.

= Overhead

= SPEC CPU 2017 benchmarks.
= Fvaluated on an Intel Xeon W-2195 system.

Ubuntu 20.04, 2.30GHz, 256GB memory, 1.1/18/24 MiB L1/L2/L3 cache.
= 8.1x geomean slowdown and 5/ x for the worst case.

60 x

B DynamoRIO
50x . ~

T s
30 [
20« IR
10 B m B Ba - -y

pg= 1 f 81 8 F 1 81 F 3 0 8 ||
5\ X & <

= Accuracy

= OptiWISE’s accuracy only depends on the sampling part (i.e., perf).
= Some Instructions are never sampled due to the out-of-order execution.
= Samples may not be attributed to the correct instruction, known as 'skid’.

= Case Study

= \We optimise three workloads based on their OptiWISE profiling results.
505.mcf, 531.deepsjeng, and 603.bwaves.
= OptIWSE clearly shows the optimisation opportunities.

E.g., branch miss predictions, cache misses.

= Optimisations give 12%, 6.8%, and 2% whole-benchmark speedups.

This work was supported by EPSRC (grant EP/WO00576X/1) and Arm.

contact: yg413@cam.ac.uk

