
Fast and secure compartmentalisation on CHERI
Franz A. Fuchs, Jonathan Woodruff, Peter Rugg, Robert N. M. Watson, and Simon W. Moore
Department of Computer Science and Technology, University of Cambridge
franz.fuchs@cl.cam.ac.uk
Project URL: cheri-cpu.org

Speculative execution is used to leak secrets to an 
unprivileged attacker. Attacks rely on two microarchitectural 
mechanisms: First, speculative execution accesses a 
secret and encodes it in the microarchitecture. Second, a 
microarchitectural side channel is used to decode the 
secret.

CHERI adds fine-grained memory capabilities that allow for 
fine-grained compartmentalisation. Capabilities not only 
describe a region of memory, but also authorise access to 
it. A core feature of CHERI are sealed capabilities. Sealed 
capabilities are immutable and non-dereferenceable.

Conventional Compartmentalisation

CHERI Capabilities

Transient-Execution Attacks

Compartmentalisation enables privilege decomposition. A 
traditional compartmentalisation strategy is to separate one 
process into multiple smaller processes, which are then 
referred to as compartments. Compartmentalisation 
decreases the attack surface because malicious code 
cannot escape its compartment.

Compartmentalisation can be used as a mitigation 
mechanism against transient-execution attacks. By isolating 
speculation state within compartments, attackers are not 
able to conduct cross-compartment attacks.

CHERI-RISC-V

Spectre-PHT Safe*

Spectre-BTB Vulnerable

Spectre-RSB Vulnerable

Spectre-STL Vulnerable

Meltdown-US-CHERI Safe

Meltdown-GP-CHERI Safe

Table 1. Results obtained on CHERI-Toooba; *when used 
bypass bounds check, and when running in pure-capability 
mode.

Architectural Specification Vacuum

The CHERI v9 specification currently defines two 
mechanism for domain-crossing:

● Sealed entry capabilities.
● Use otypes to link a pair of capabilities.

We are evaluating the mechanisms above and propose to 
research additional mechanisms to suffice the requirements 
of software compartmentalisation models:

● Immutable entry points: Trusted code can only be called 
through. 

● Reliable source of trusted data capability: Needed to 
save information that cannot leak to any other 
compartments.

● Nestability: Multiple compartmentalisation models need 
to be nestable  in order to guarantee different levels of 
protection.

● ...

Identifying Microarchitectural State

Microarchitectures have become increasingly complex in 
the past decades to fuel the ever increasing need for 
single-core performance. Therefore, microarchitectures 
employ a great amount of state. In order to secure 
compartments, we need to identify state all over the entire 
microarchitecture. 

Securing microarchitectural state likely comes at a 
performance cost. Therefore, we envision the need for 
software to decide whether it wants to share state with other 
compartments. A natural way could be compartment IDs 
(CIDs) that can be used by microarchitectures to separate 
state between compartments.

Domain-Crossing Mechanisms

Architectures suffer from a specification vacuum with respect to behaviour in speculation. On the one hand, hardware designers 
can freely operate as long as their designs uphold the architectural abstraction, allowing aggressive speculation to be conducted 
under the hood. On the other hand, software mitigations are being developed around ad hoc mental models of speculative 
execution that may bear little relation to the range of speculative behaviours that have been implemented.

Therefore, we have the strong need for architectural guarantees. These guarantees provide strong and simple security primitives 
for software. This means that software can be verified to be secure against the ISA, including the new speculative isolation 
guarantees. On the hardware side, the guarantees of isolation of speculation state are mandated to be implemented, but 
hardware designers are free to operate within the constraints. These designs can then be tested against the ISA.

What does the roadmap for secure CHERI compartments look like?Background

Implementing secure compartments on CHERI is a complex process and requires input from multiple parties. We have laid out 
the main challenges on the road towards transient-execution security via CHERI compartments:

● Filling the architectural void to specify speculative execution paths.
● Identifying microarchitectural state and constraining sharing it between compartments.
● Defining and evaluating domain-crossing mechanisms, and making transitions themselves secure.

Figure 1. Split one process into multiple compartments. 
Speculation across compartments is not allowed and thus 
mitigates cross-compartment transient-execution attacks.

Figure 2. A 129-bit CHERI capability enabling fine-grained 
memory protection.

Figure 3. Architectural guarantees play an integral role for transient-execution attack mitigations 
for compartmentalised applications.

Figure 4. Compartment A and B can express their trust 
relationship through their respective CIDs.

Figure 5. The trampoline needs access to a reliable data 
capability to separate Comp A and Comp B. 

This work was supported by the Engineering and Physical Sciences Research Council EP/S030867/1.

UNIVERSITY OF 
CAMBRIDGE
Computer Science & Technology

In collaboration with


