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VI. Iteration packing

Figure 6.2: Parallel loop with a packing factor of 
2 iterations per context. Updates “in the middle” 
of contexts are bypassed using value prediction.

Figure 6.3: We predict updates using 3 predictors:

Size predictor: suggests a suitable packing factor.
IV predictor: predicts induction variable registers.
Value predictor: predicts IV registers (stride).

Packing is performed if all predictors are confident and 
predicted iteration size is low.

Parallelisation must improve utilisation to get a speedup.
However, short contexts cannot effectively fill the re-order 
buffer (ROB), as shown in Fig. 6.1.

We mitigate this by packing multiple iterations into each 
context. We predict updates to facilitate the jump-ahead.
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Figure 6.1: Performance depends on high ROB occupancy. This is low after startup (filling) and before shutdown 
(draining). If the context is long, the middle (running) phase dominates, otherwise performance is poor.
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V. Microarchitecture

Pipeline resources are shared dynamically between multiple 
execution contexts, like in simultaneous multithreading (SMT).
Each context has its own

• slice of the out-of-order window,
• control state,
• architectural registers,  and
• place in program order (totally ordered).

Figure 5.2: We add a speculative buffer between the CPU and the L1 data cache to buffer, hide 
and atomically commit speculation, and a conflict detector to check for violations.
(*=new component, blue=exposed to speculation).
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Figure 5.1: We add execution contexts to the pipeline. Each context runs one iteration, on an 
independent slice of the out-of-order window. This provides abundant instruction-level 
parallelism, which increases pipeline utilisation.

IV. Compatibility: crucial

Figure 4.1: The Apple M3® Max chip. 
Modern high-performance processors 
are highly optimised and complex. 

Source: Apple.com

Modern high-performance CPU cores are incredibly 
complex, with technology developed over decades. 
Thus, compatibility is key for obtaining real gains.

We achieve this in four ways:

• Maintain sequential semantics (locally).

• Coherence: constrain speculation to a single core.

• Consistency: expose operations in order, or 
atomically.

• Limit modifications to the pipeline, ISA and 
programming model.

Figure 7.2: Number of contexts active by percentage of run time in SPEC CPU2006 
benchmarks (base impl.). Many loops are unprofitable, thus coverage is only 27%. Figure 7.3: Results are stable with respect to small changes in 

latency and granule size, but larger changes hurt speedups.

Three hint instructions, called detach, reattach, and sync mark the 
bounds of speculation (Fig 2.1). These expose a possible parallel 
schedule (Fig 2.2).

The hints do not change sequential semantics. They can be safely 
ignored, leading to sequential execution.

Parallel semantics: The compiler says that
• all live registers likely have the same value between detach 

and reattach, and
• the body may be memory-parallel with future sections.

II. Architecture: hints
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Figure 2.1: Hints (d e tach , re attach , sync) are added by the compiler.
Detach and reattach mark the potentially-parallel body, and sync marks the exits.

Figure 2.2: In program order, the sections appear sequentially (left). As ever, out-of-order execution 
is allowed, so long as sequential semantics are maintained. Thus, the core may parallelise (right).

Figure 7.1: Speedup over an 8-wide out-of-order baseline core in Gem5 for SPEC CPU2006 benchmarks using 
Simpoints with optimisations added in one-by-one. The base implementation achieves a geometric mean 
speedup of 6.4%, with eager forwarding adding 3.0% and iteration packing a further 2.4%, for a total of 11.8%.

We implement a detailed prototype in the Gem5 
microarchitectural simulator, and a prototype 
compiler in LLVM (see other poster) that can 
automatically transform loops and insert hints.

We achieve some promising results, although 
future work remains to parallelise more loops well.
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I. Motivation: single-threaded scaling limits

DIVERGENCE

Out-of-order window size: rapidly increasing Single-threaded performance: tailing off

Figure 1.1. Out-of-order windows are rapidly getting longer in order to find more 
instruction-level parallelism (ILP).

Figure 1.2. SPEC® CPU 2006 and 2017 integer rate scores scaled by frequency and 
core count (all submissions). Used as a proxy for single-thread performance.

Source: spec.org

Figure 1.3. Slowdown of SPEC CPU2006 loops from duplicating 
each instruction (approximating utilisation) against base IPC. 
Run on a 4-wide Intel® Xeon® W-2195 CPU from 2017.

Modern out-of-order superscalars are wider and speculate deeper into the program than 
ever (Fig 1.1) to find instruction-level parallelism. This has lead to diminishing returns in 
performance (Fig 1.2), due to under-utilisation of pipeline resources (Fig 1.3).
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We proposes to apply the idea of thread-level speculation (TLS) to a single modern CPU core, based 
on lightweight hint instructions, in order to expose more parallelism using speculative jumps.
Our co-design approach aims to ensure compatibility and ease potential adoption in practice.

III. Conflicts: squashing
The compiler is allowed to guess and be wrong.

Hardware verifies independence of register and 
memory operations, hides out-of-order speculation, 
and squashes if it detects a conflict.

Figure 3.1: Violations of sequential semantics 
cannot be committed, so we squash and restart 
the violating iteration (using a checkpoint).
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The oldest context runs architecturally, reading from & writing 
to the main memory system directly.
Other contexts are speculative and their writes are buffered. 
These can be restarted or discarded for any reason. 
The conflict detector checks for conflicts between contexts, 
preserving sequential semantics locally.
The speculative buffer
• Eliminates write-after-write (WaW) and write-after-read (WaR) 

hazards using multi-versioning,
• Detects coherence conflicts with other cores by acquiring 

cache lines and snooping coherence traffic, and
• Enables atomic commit of contexts in program order.
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CPU pipelines: underutilised
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