
We would like to thank ARM Ltd. and EPSRC (grant EP/W00576X/1) for generously funding our research. ARM, Apple M3, SPEC CPU 2006 and SPEC CPU 2017 (intrate) are registered trademarks of ARM Ltd, Apple Inc and SPEC. This poster makes no claim about ARM’s products, patents, partners, strategy or intellectual property. The views expressed are the authors’ own.

VI. Iteration packing

Figure 6.2: Parallel loop with a packing factor of
2 iterations per context. Updates “in the middle”
of contexts are bypassed using value prediction.

Figure 6.3: We predict updates using 3 predictors:

Size predictor: suggests a suitable packing factor.
IV predictor: predicts induction variable registers.
Value predictor: predicts IV registers (stride).

Packing is performed if all predictors are confident and
predicted iteration size is low.

Parallelisation must improve utilisation to get a speedup.
However, short contexts cannot effectively fill the re-order
buffer (ROB), as shown in Fig. 6.1.

We mitigate this by packing multiple iterations into each
context. We predict updates to facilitate the jump-ahead.

Approx. ROB
occupancy

0%
Detached Reattach

fetched

100%

Reattach
committed

Filled

Running

Figure 6.1: Performance depends on high ROB occupancy. This is low after startup (filling) and before shutdown
(draining). If the context is long, the middle (running) phase dominates, otherwise performance is poor.

VII. Results

In-core, hint-based, speculative multithreading
Marton Erdos Alexandra Chadwick Utpal Bora Akshay Bhosale Yuxin Guo

Timothy Jones Giacomo Gabrielli (ARM) Ali Zaidi (ARM)

PARASOL

V. Microarchitecture

Pipeline resources are shared dynamically between multiple
execution contexts, like in simultaneous multithreading (SMT).
Each context has its own

• slice of the out-of-order window,
• control state,
• architectural registers, and
• place in program order (totally ordered).

Figure 5.2: We add a speculative buffer between the CPU and the L1 data cache to buffer, hide
and atomically commit speculation, and a conflict detector to check for violations.
(*=new component, blue=exposed to speculation).

CPU pipeline

L1 I-cache L1 D-cache

L2, L3, DRAM

Speculative
Buffer*

Conflict
detector*

Speculative
state

Coherent
memory

Figure 5.1: We add execution contexts to the pipeline. Each context runs one iteration, on an
independent slice of the out-of-order window. This provides abundant instruction-level
parallelism, which increases pipeline utilisation.

IV. Compatibility: crucial

Figure 4.1: The Apple M3® Max chip.
Modern high-performance processors
are highly optimised and complex.

Source: Apple.com

Modern high-performance CPU cores are incredibly
complex, with technology developed over decades.
Thus, compatibility is key for obtaining real gains.

We achieve this in four ways:

• Maintain sequential semantics (locally).

• Coherence: constrain speculation to a single core.

• Consistency: expose operations in order, or
atomically.

• Limit modifications to the pipeline, ISA and
programming model.

Figure 7.2: Number of contexts active by percentage of run time in SPEC CPU2006
benchmarks (base impl.). Many loops are unprofitable, thus coverage is only 27%. Figure 7.3: Results are stable with respect to small changes in

latency and granule size, but larger changes hurt speedups.

Three hint instructions, called detach, reattach, and sync mark the
bounds of speculation (Fig 2.1). These expose a possible parallel
schedule (Fig 2.2).

The hints do not change sequential semantics. They can be safely
ignored, leading to sequential execution.

Parallel semantics: The compiler says that
• all live registers likely have the same value between detach

and reattach, and
• the body may be memory-parallel with future sections.

II. Architecture: hints

Update

Body Update

Body Update

Body Update

Body

Update

Body

Update

Body

Update

Body

Header

Body

Continuation

Exit

Exit

Exit

sync

sync

sync

detach

reattach

Header

Body

Continuation

Exit

Exit

Exit

Loop

Figure 2.1: Hints (d e tach , re attach , sync) are added by the compiler.
Detach and reattach mark the potentially-parallel body, and sync marks the exits.

Figure 2.2: In program order, the sections appear sequentially (left). As ever, out-of-order execution
is allowed, so long as sequential semantics are maintained. Thus, the core may parallelise (right).

Figure 7.1: Speedup over an 8-wide out-of-order baseline core in Gem5 for SPEC CPU2006 benchmarks using
Simpoints with optimisations added in one-by-one. The base implementation achieves a geometric mean
speedup of 6.4%, with eager forwarding adding 3.0% and iteration packing a further 2.4%, for a total of 11.8%.

We implement a detailed prototype in the Gem5
microarchitectural simulator, and a prototype
compiler in LLVM (see other poster) that can
automatically transform loops and insert hints.

We achieve some promising results, although
future work remains to parallelise more loops well.

0

100

200

300

400

500

600

700

R
O

B
s

iz
e

Year of Launch

Nehalem

Sandy Bridge
Haswell

Skylake

Sunny Cove

Golden Cove

Cortex-A76

Cortex-A77

Cortex-X1

Cortex-X2

Cortex-X3

Cortex-X4

I. Motivation: single-threaded scaling limits

DIVERGENCE

Out-of-order window size: rapidly increasing Single-threaded performance: tailing off

Figure 1.1. Out-of-order windows are rapidly getting longer in order to find more
instruction-level parallelism (ILP).

Figure 1.2. SPEC® CPU 2006 and 2017 integer rate scores scaled by frequency and
core count (all submissions). Used as a proxy for single-thread performance.

Source: spec.org

Figure 1.3. Slowdown of SPEC CPU2006 loops from duplicating
each instruction (approximating utilisation) against base IPC.
Run on a 4-wide Intel® Xeon® W-2195 CPU from 2017.

Modern out-of-order superscalars are wider and speculate deeper into the program than
ever (Fig 1.1) to find instruction-level parallelism. This has lead to diminishing returns in
performance (Fig 1.2), due to under-utilisation of pipeline resources (Fig 1.3).

Utilisation

Perform
ance

We proposes to apply the idea of thread-level speculation (TLS) to a single modern CPU core, based
on lightweight hint instructions, in order to expose more parallelism using speculative jumps.
Our co-design approach aims to ensure compatibility and ease potential adoption in practice.

III. Conflicts: squashing
The compiler is allowed to guess and be wrong.

Hardware verifies independence of register and
memory operations, hides out-of-order speculation,
and squashes if it detects a conflict.

Figure 3.1: Violations of sequential semantics
cannot be committed, so we squash and restart
the violating iteration (using a checkpoint).

Update

Body

Update

Body Update

BodyUpdate

Body

Checkpoint

Reload

Checkpoint

Commit
Squash

The oldest context runs architecturally, reading from & writing
to the main memory system directly.
Other contexts are speculative and their writes are buffered.
These can be restarted or discarded for any reason.
The conflict detector checks for conflicts between contexts,
preserving sequential semantics locally.
The speculative buffer
• Eliminates write-after-write (WaW) and write-after-read (WaR)

hazards using multi-versioning,
• Detects coherence conflicts with other cores by acquiring

cache lines and snooping coherence traffic, and
• Enables atomic commit of contexts in program order.

Compiler
pass

0%

2%

4%

6%

Conflict
checking

Speculative
read

Speculative
write

Granule size

Latency (cycles)

1 2 4 8 16 32 641 2 4 8 160 2 4 8 160 16 32 64

Conflict
checking

Speculative
read

Speculative
write

Granule size
(bytes)

Sp
ee

d
u

p
 (

%
)

CPU pipelines: underutilised

Update

Body Update

Body Update

Body

Update

Body Update

Body Update

Body

	Untitled Section
	Slide 1

