The future of instruction-level

O b parallelism (ILP)

Alexandra W. Chadwick, Marton Erdos, Utpal Bora, Akshay Bhosale, Yuxin Guo, Timothy M. Jones

0 : = < - 8, » stur x8, [x29, #-8] ' ~ [movw | X14, = —

/ \ @ Ix8, x10]] [Wy - \
| ' f

nstruction-level parallelism { Dynamic dependency graphs (DDG)
Programs consist of instructions. These are simple operations that a | ang When a program executes, each dynamic instruction may consume values produced by previous instruc- ‘
microprocessor can execute, such as addition or multiplication. ' eof tions, and produce values that future instructions may consume. By tracking these producer/consumer rela-
Abstractly, executing a program consists of executing its instructions |15 <2, 52 + | s tionships we can build a dynamic dependency graph (DDG). This consists of one node per dynamic instruc-
In program order. However, for decades, processors have utilised stur tion, with directed edges from producers to consumers. The background of this poster is a tiny fraction of a
instruction-level parallelism (ILP) to execute multiple instructions == T DDG for the deepsjeng benchmark from the SPEC CPU2017 benchmark suite, compiled for AArch64. The
simultaneously, and thus to execute programs faster than the impli- — full DDG for this program would have 2 trillion nodes, a modern high-performance processor would execute
cations of program order allow. Processor vendors have recently — J all of the instructions on this poster in about 0.3 microseconds.
started to use ILP more aggressively to achieve performance. | e
B oAl |~ —— | mul (1dr x10, [x14,#0]) (1dr =10, [x14,#%#071)(1dr =11, [x14,#87)
— X27, X0 _ Usr — —a v
12 e x86/64 ————————— ldr x11, [x14,#8] (add x11, x10, x11)
_ | A an
o 107 4 ARM aa | — add x11, x10, x11 C cbz =11, #0x40)
& a Ldr —y : —A
o 8- T II\D/IOWER AN @ ‘ TaF %24, cbz x11, #0x40 (add =11, =11, #1)
[oving average | and ,add =11, =11, #1 | Dynamic Dependency Graph
= 6 + o 2000 ‘ - f Program Order
% T T+ ¢ Al | ‘ Sl The longest path through a DDG is called the critical path. Assuming no processor can ever execute any
“— « uadc . . . " . .
© 4 + ee-t o 0866 ¢ @ ioid |_nstruct|on In less than one cycle, the Iength of the critical path_ §hou|d be a lower bound fo_r the execqu_n
3 f time of the program. This Is because the instructions on the critical path must all execute, in sequence, In
‘IJ S sub w21, order for the program to finish. The critical path for the DDG in the background of the poster is shown in
g @ oo o @ A A A A Stp X22 bold in the middle. The function that each instruction belongs to is indicated by a coloured background. /
an | Tdp xzz,x}*, e
e 5 | o T orr x8, x8, x22 — ' = e S
| | | — . str x8, [sp, #64](/ i _ *\\\
2000 2010 2020 o035 #3217 [1dr X8, I8, #64] Speculative execution
Figure 1: Maximum measurable instructions per cycle (IPC) of an ‘ and x0, ix27, X8 !—Iigh-performance MICroprocessors use a Fechnique called speculative execu.tion to
optimal program executed on commercial processors from six o : | _fmov ?@’ <0 improve performance. The processor predicts the result or outcome of some Instruc-
| vendors. Notice the increasing trend since 2015. — SR RCERTORGE tlons_, gnd can thus exe_cute Instructions that depend upon that result earlier. If the
\ / JaddTy hlo 50 prediction Is correct, this can allow a processor to achieve higher performance than the

1 critical path in the DDG would suggest. Speculative execution is used for all branch out-

Tmov YO' 3¢ comes in state-of-the-art processors, as well as to disambiguate memory operations.
add w9, w9, wO

add w9, w9,l w9, Lsl #1 We can nevertheless model the effects of speculative execution in a DDG; we simply
madd w9, wi@‘, wil, w9 delete any edges representing results that predictors would allow the processor to
add Wg’l WO W8 predict. In practice this means we delete the edges outward from most branch instruc-
Sdd w8 lwl@, g tions as can be seen in the indicated positions. These branch instructions have no

\dependencies because a simulated branch predictor could predict their target. /

¢ cbz !8, 843c | \ b.!q 1528

1 b.eq 1594 {1 b.eq 164 1 b.eq 1768 |

stp x28, x27, [sp, #192]
ldp x28, x27, [sp, #192]
| mov x8, x27 | :
add x27, x8, #Ox1 |
5 —_— o l'w*“""—"'****f”f"
stp x28, x27, [sp, #192]
ldp x28, x27, [sp, #192

b.gt b7a8

, :
sbfiz x25, x20, #2, #32
—_—
ldr wl, [x19, x25]

= j [ubfx w9, Wi, #6, #6 \
/Limits of ILP A ~ add X3, x0, W9, UXtW #2 Opportunities for the future? ~

= . —_— . : : : :
Using the DDG, we can evaluate the limits of instruction-level ldr w5, [x3, #4] ’ The limits of ILP found in this study are concerning, suggesting that future
parallelism in current code. We created the DDG for the first 9 Sxtw >l<5, w5 microprocessors would struggle to ever achieve more than 16 IPC on
billion instructions of each of the SPEC CPU2017 benchmark : : : add x17, x‘@f x5 1s1 #3 , average as shown in figure 2. This is concerning given the current scaling

programs. We break any dependencies that state-of-the-art trend towards increasing hardware IPC resources shown in figure 1.

branch prediction could successfully predict, thus modelling
speculative execution. We then split the DDG into contiguous

|
ldr x1, [x17, #288]

; |
eor xi, xi, x16 Can we use our knowledge of the DDG to spot improvements? Take a look at

; 1

'‘windows' of power-of-two sized groups of instructions. This str xl, Dfl?' #288 ’ the indicated parts of the critical path in the DDG. Instructions are coloured
models the execution paradigm of real-world processors, | ldr x9, [)1(21' #368] according to the function they are part of in the source code. The calling con-
which cannot view the entire DDG simultaneously, but instead) orr x21, x9, x8 vention utilised by this architecture dictates that callee functions must save

and restore certain registers (x19-x29). We see sequences of instructions on
the critical path that are enforcing this convention. The caller moves values it
wishes to save into these registers, and the callee saves and restores them.
The fact that these convention-enforcing instructions are on the critical path
suggests a missed opportunity.

see only small finite groups of instructions (about 2° = 512 for
the biggest processors today).

For each of these windows we can use the DDG to compute
the length of the critical path. This gives the minimum execu-
tion time of that window. If we divide the number of instruc-
tions in each window by its execution time, we obtain the
average number of instructions that can execute in parallel

mov X0, x21

mov x19, x0 |

1
mov X0) x19 To investigate, we cut the edges in the DDG that just amounted to saving

and restoring callee-saved registers, and recomputed the critical path. Doing

in that part of the program. These average parallelism values * . T Stur x8, *[X'zgr #-8] . so allows us to evaluate the potential IPC improvement for a processor that
vary considerably in different parts of the program. ldr X81 xo] could somehow avoid the cost of this calling convention (either via architect-
o 5 ural or microarchitectural innovation).
100% neg x9, x8
1
c 32[1 and x9, x8, x9 100% o8
- 800/0 1 : . () v
b 16 = mul x8, x9, x8 £ 809 2 o
c o) l = —
2 60% g Lsr x8, x8, #56 o 64 o
O I c &)
g = and x8, x8, #0xfc 2 60% 30 >
= 1 ‘
s 40% g S ldr wo, [x9, x8] £ @
= = | 5 40% 16 3
9 20% = mov x1, x0O 2 5
= 4 1 S =
mov w}@, wl %’ 20% 8
0% UsT x10, x10, #3 4
08 210 pf2 ol ol6 I8 520 | ldr x11, tx1i, x16] | 0% T ST S AT ST T
. . - e
Window size and x12, x11, x8 1 and 2 2 V%/'nd 2 _ 2 2 2
Figure 2: Worryingly, according to our model, even with mul x8, x8, x13 | mul x12, lX12, <13 INQOW SI2€
extreme window scaling, a large majority of program exec- TsF X8 X8 #52 R 1X12’ ey Figure 3: As figure 2, but with edges cut representing the calling convention.
\utlon time Is spent in regions with an average ILP below 16 / and X8, X8, #OXFCo and X12. %12, #0xFco Q&gnlflcant boost to ILP is observed /

L .
add x8, x14, x8 add x12, x14, x12

March 2025 — Alexandra.Chadwick@cl.cam.ac.uk Computer Architecture Group

This work was supported by EPSRC (grant EP/W00576X/1) and Arm. https://www.cst.cam.ac.uk/research/comparch

