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nstruction-level parallelism { Dynamic dependency graphs (DDG)
Programs consist of instructions. These are simple operations that a | ang When a program executes, each dynamic instruction may consume values produced by previous instruc- ‘
microprocessor can execute, such as addition or multiplication. ' eof tions, and produce values that future instructions may consume. By tracking these producer/consumer rela-
Abstractly, executing a program consists of executing its instructions |15 <2, 52 + | s tionships we can build a dynamic dependency graph (DDG). This consists of one node per dynamic instruc-
In program order. However, for decades, processors have utilised stur tion, with directed edges from producers to consumers. The background of this poster is a tiny fraction of a
instruction-level parallelism (ILP) to execute multiple instructions == T DDG for the deepsjeng benchmark from the SPEC CPU2017 benchmark suite, compiled for AArch64. The
simultaneously, and thus to execute programs faster than the impli- — full DDG for this program would have 2 trillion nodes, a modern high-performance processor would execute
cations of program order allow. Processor vendors have recently — J all of the instructions on this poster in about 0.3 microseconds.
started to use ILP more aggressively to achieve performance. | e
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Figure 1: Maximum measurable instructions per cycle (IPC) of an ‘ and x0, ix27, X8 !—Iigh-performance MICroprocessors use a Fechnique called speculative execu.tion to
optimal program executed on commercial processors from six o : | _fmov ?@’ <0 improve performance. The processor predicts the result or outcome of some Instruc-
| vendors. Notice the increasing trend since 2015. — SR RCERTORGE tlons_, gnd can thus exe_cute Instructions that depend upon that result earlier. If the
\ / JaddTy hlo 50 prediction Is correct, this can allow a processor to achieve higher performance than the

1 critical path in the DDG would suggest. Speculative execution is used for all branch out-
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add Wg’l WO W8 predict. In practice this means we delete the edges outward from most branch instruc-
Sdd w8 lwl@, g tions as can be seen in the indicated positions. These branch instructions have no

\dependencies because a simulated branch predictor could predict their target. /

¢ cbz !8, 843c | \ b.!q 1528

1 b.eq 1594 {1 b.eq 164 1 b.eq 1768 |

stp x28, x27, [sp, #192]
ldp x28, x27, [sp, #192]
| mov x8, x27 | :
add x27, x8, #Ox1 |
5 —_— o l'w*“""—"'****f”f"
stp x28, x27, [sp, #192]
ldp x28, x27, [sp, #192

b.gt b7a8

, :
sbfiz x25, x20, #2, #32
—_—
ldr wl, [x19, x25]

= j  [ubfx w9, Wi, #6, #6 \
/Limits of ILP A ~ add X3, x0, W9, UXtW #2 Opportunities for the future? ~

= . —_— . : : : :
Using the DDG, we can evaluate the limits of instruction-level ldr w5, [x3, #4] ’ The limits of ILP found in this study are concerning, suggesting that future
parallelism in current code. We created the DDG for the first 9 Sxtw >l<5, w5 microprocessors would struggle to ever achieve more than 16 IPC on
billion instructions of each of the SPEC CPU2017 benchmark : : : add x17, x‘@f x5 1s1 #3 , average as shown in figure 2. This is concerning given the current scaling

programs. We break any dependencies that state-of-the-art trend towards increasing hardware IPC resources shown in figure 1.

branch prediction could successfully predict, thus modelling
speculative execution. We then split the DDG into contiguous
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'‘windows' of power-of-two sized groups of instructions. This str xl, Dfl?' #288 ’ the indicated parts of the critical path in the DDG. Instructions are coloured
models the execution paradigm of real-world processors, | ldr x9, [)1(21' #368] according to the function they are part of in the source code. The calling con-
which cannot view the entire DDG simultaneously, but instead ) orr x21, x9, x8 vention utilised by this architecture dictates that callee functions must save

and restore certain registers (x19-x29). We see sequences of instructions on
the critical path that are enforcing this convention. The caller moves values it
wishes to save into these registers, and the callee saves and restores them.
The fact that these convention-enforcing instructions are on the critical path
suggests a missed opportunity.

see only small finite groups of instructions (about 2° = 512 for
the biggest processors today).

For each of these windows we can use the DDG to compute
the length of the critical path. This gives the minimum execu-
tion time of that window. If we divide the number of instruc-
tions in each window by its execution time, we obtain the
average number of instructions that can execute in parallel
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and restoring callee-saved registers, and recomputed the critical path. Doing

in that part of the program. These average parallelism values * . T Stur x8, *[X'zgr #-8] . so allows us to evaluate the potential IPC improvement for a processor that
vary considerably in different parts of the program. ldr X81 xo] could somehow avoid the cost of this calling convention (either via architect-
o 5 ural or microarchitectural innovation).
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