3% P
l‘t‘i

7% UNIVERSITY OF Compiler techniques for in-core Thread-Level
&Y CAMBRIDGE Speculation

Department of Computer 1

Science and Technology Utpal Bora' Akshay Bhosale! Marton Erdés’ Alexandra W. Chadwick! Yuxin Guo! Bob Lytton?

Giacomo Gabirielli Timothy M. Jones'
'Computer Laboratory, University of Cambridge 2Arm Ltd, Cambridge

Introduction Optimisation 2: Reduction Transformation
Automatic parallelization of loops is a challenging problem. Reductions in loops inhibit speculative parallelization if not handled explicitly. This transformation
parallelizes reduction patterns in loops by demoting through-register reductions to through-memory,
= Traditional multi-threading schemes incur substantial overheads (setup, communication, allowing the microarchitecture to resolve them as part of conflict checking.
data-movement etc.) — useful for very large loop bodies. entry
= |LP schemes use the out-of-order window and provide diminishing returns in loops with large he;‘?i 0 (00, entry] . Clinc, eont])
. . . hl = , /o€ , hblncC, /4CO
iterations — useful for very small loop bodies. entzy - ¢ Lo, aty), (s n
rbody: |) P
— This leaves medium-sized loop bodies unparallelized. % = ¢([0, %entryl, [%inc, %bodyl) body:
_ _ _ . _ Ysum.0 = ¢ ([0, %entryl, [%sum.1, %bodyl) helm = GEP 132, ptr ja, i64 %i
Our research group is exploring a hardware-software codesign approach combining the benefits of %elm = GEP i32, ptr %a, i64 %i i = Loedl 5182, b fhelii
Instruction Level Parallelism (ILP) and Thread Level Parallelism (TLP) into a modern Thread-Level #x = load i32, ptr helm fsun.0 = load 132, ptr fsun
_) _ _ _ _ _ _ ysum.1 = add nsw i32 %sum.0, Yx hsum.1 = add nsw i32 %x, %sum.O
Speculation (TLS) scheme. This poster covers compiler techniques targeting parallelism in medium 5 store 132 Y%sum.1, ptr %sum
graHUIarity IOOpS- %inc = add nuw nsw i32 %i, 1 | reattach cont
hcond = icmp eq i32 %inc, N) ~ .
br il %cond, %exit, %body cont:
Background ‘ e ___J sync: '
sync %inc = add nuw nsw i32 %i, 1 —
C : _] Jhsum.2 = load i32, ptr %sum %hcond = icmp eq i32 %inc, N
We leverage three hint instructions to encode parallelism based on Tapir [2]. o br i1 %cond, %sync, %head
" A detach is the point at which a speculative thread can be forked. Figure 4. Loop on the left has through-register reduction pattern which is demoted to memory for speculative
= A reattach is the point of joining with the speculative thread. There can only be one reattach parallelization as shown on the right.
per detach.
= A sync marks the end of the speculative region, and all outstanding speculative threads are - : : : :
y P J J SP Optimisation 3: Write-After-Write (WAW) Transformation

squashed. There can be more than one sync per detach, one for each loop exit.

Through-register control-dependent WAW conflicts inhibit parallelization. However, memory conflict

1 tracking in the microarchitecture must already handle such patterns. We demote through-register
detach 15 WAW conflits to through-memory exposing parallelism.
detach 13 , entry
reattach head:
7 l reattach entry %i = ¢ ([0, %entryl, [%inc, %cont])
JOlned o] T head: | %emp = call il @cmp(i32 %i)
JOlned detach f %i = ¢ ([0, Y%entryl, [%inc, %elsel) \ br il %cmp, %det, label Ycont
, %d.0 = ¢ [%0, %entryl,[)d.1, %elsel . ¥
~ Sync SquaShed %hemp = call il @cmp(i32 %i) det: 1
. 4o o o detach body, cont |
continue br il %cmp, %then, label Jelse | ~ -
Z ,
. o . . o (hen: \ body:
Figure 1. Fork-join execution of the threads. T; forks a new thread 7, on detach hint. Threads 7; and 7; joins on ’ jrel _ GEP 132, ptr %a, 132 %i %e = GEP i32, ptr %a, i32 %i
reattach and speculative thread 7, is squashed when T; encounters a sync. x = load i32, ptr %e %x = load 132, ptr %e
_ _ _ _ _ br %else store i32 %x, ptr %d
A (speculatively parallel) body consists of the instructions, on all paths, between a detach and its \ C J | reattch cont)
corresponding reattach. else: ‘ (<
%d.1 = ¢ [%x, %thenl, [%d.0, %head] cont: o
]] %inc = add nuw nsw i32 %i, 1 - o/°1nc = a<?1d nuw n?‘” 1?2 hi, 1
nghllghts %cond = icmp eq i32 Y%inc, N heond = icmp eq 132 %kinc, N
br il %cond, %end, %head br il jcond, %sync, ’head

Implemented an LLVM based automatic-parallelizing compiler for speculative execution.

Sync:

end:

= Tapir based parallel IR with detach, reattach, and sync instructions %d.out = add nsw 132 %d.1, 1 e o 150 btr % boxit
* These are encoded as hint instructions exit %d.out = add msw 132 %d.e, 1

= Serial Elision property holds (hints can be replaced with NO-OPs) ‘ .

= Custom post-dominator for program point equivalence checking Figure 5. Loop on the left with WAW conflict can be speculatively parallelized as shown on the right.
= 16% geomean speedup on SPEC CPU 2006

Implementation
Baseline Compiler We have implemented these speculative auto-parallelization techniques in OpenCilk LLVM ver-

sion 16.0 [1]. Our enabling transformations are added at the late stage in the O3 pipeline, and
hints are inserted just before lowering. We currently support both pragma-based selective paral-
lelization and full-fury aggressive loop parallelization.

In the baseline scheme, we insert detach and reattach hints on program points that are executed
exactly once in each iteration of the loop. The live registers at detach and reattach should be
identical. Memory conflicts are handled in the microarchitecture and store-to-load forwarding is
supported. However, in the event of misspeculation the speculative thread is squashed.

t
i \ Results
bbl:
t %i = ¢ ([0, %entryl, [%inc, %contl) .

(ob1 - — \ d;tacﬁ body ejo;i’ T R We evaluated the performance of our hardware-assisted TLS scheme on the SPEC CPU 2006
% = ¢ ([0, %entryl, [hinc, %bb31) | ! benchmark suite using a gemb-based architectural simulator. We achieve a 16% geomean
%call = call il @cond() body: | speedup over -0O3 optimized binaries.
br il %call, %bb2, %bb3 icall = call il @cond() .

br il Y%call, %bb2, %bb3

bb2: e N
call void @work() bb2:] {bbsz

br %bb3 bb3- call void @work() call void @work2() 1
L call void @work2() bz {bibE J reattach cont ;
%inc = add nuw nsw i32 %i, 1) v | 1a b e
%icond = icmp eq i32 %inc, N cont: '
br il %cond, %exit, %bbl it sync: %inc = add nuw nsw 132 %i, 1
V- sync hcond = icmp eq i32 %inc, N Q. T A T
ex1t)]
br il %cond, %sync, %bbl 8
S
_ _ _ _ _ . . . n 121 B DESICCIIGAOMMMELAREEEREEREEEEEY [ISAAARMMARREREERN [RSLRLSLSLISIORMRLLELEERLPALEIEIIREE I OREREE RREEEELT B e
Figure 2. Loop on the right is transformed with detach, reattach, and sync instructions. In the baseline scheme, hints
are executed exactly once in each iteration of the loop. There are no through-register dependencies originating in the I I T e 1 B e 1 0 B B "
body.
= = = . . gom] 1.0 — | | | | | | | | | | | | | |
Optimisation 1: Path Specific Hints 1 11 | 1 | 1 |
? O ¥ QR ENNLCINGT AT O L LR SDLD Y o
. LR P S FS LSE.E LN NS W KL TS R
In contrast to DOALL and DOACROSS loops, real-world loops often involve complex control flow, & & ‘Q@? & @3 F & ¥ QO“ g Q@‘Q 2 gQ & & @é” L Q§§ S
. . . . O @) N <
where only a portion of the loop can be parallelized. In this approach, we extract parallelism from © & @Q‘Q N\, ¥ ©
such loops by placing hints on specific paths.
Figure 6. Speedup on SPEC CPU 2006 benchmarks. Purple indicates no speedup.
enEry enEry
bb1: bbi: |
hi = ¢ ([0, %entryl, [%kinc, %bb3]) | %i = ¢ ([0, %entryl, [%inc, %contl]) ACknOWIedgements
hcall = call il @cond(i32 %i) %call = call il @cond(i32 %i)
br il %call, %bb2, %seq br i1 Y%call, %head, %seq This work was supported by EPSRC (grant EP/W00576X/1) and Arm.
N) v) C . ’
bb2: sequential: head: sequential:
call void @work() s detach body, cont ; References
br %bbB br %bbB E— br %Cont
’ \ / \ boiZil void @work()) \ . [1] Tao B. Schardl and I-Ting Angelina Lee. Opencilk: A modular and extensible software infrastructure for fast task-parallel code. In
bb?f o IR cont: Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, PPoPP 23, pages
°/°1HC = a‘?d nuw n?‘“’ 1?2 hi, 1] . %inc = add nuw nsw i32 %i, 1 189—203, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700156. doi: 10.1145/3572848.3577509. URL
éconi 7 1C2P jq 132 f;gi’ N Sync. %cond = icmp eq i32 %inc, N https://doi.org/10.1145/3572848.3577509.
I oo ’ o0 .ta o0 1 .] 0 0 0 -
T kool v b exit sync br il %cond, %sync, %bbl | [2] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir. Embedding fork-join parallelism into llvm’s intermediate representation.
ex1t In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP '17, pages 249—265,
. New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450344937. doi: 10.1145/3018743.3018758. URL https:
Figure 3. Loop on the right is transformed exposing parallelism on one path. The detach should be control-flow //doi.org/10.1145/3018743.3018758.
equivalent to the reattach, i.e. detach dominates reattach and reattach post-dominates detach, excluding the loop

exits.

www.cst.cam.ac.uk/research/comparch CASCADE Event 2025, CL, Cambridge utpal.bora@cl.cam.ac.uk

