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Comprehensive security can only be ensured if all the 
code that an application executes is protected: any 
unprotected code, including shared-object library code, 
becomes a potential attack surface. 
Existing static or dynamic binary security
tools either lack in code coverage[1] or 
soundness[2], or incur high performance
overhead[3].  

Our hybrid binary mechanism, Janitizer, provides 
comprehensive code coverage equivalent to that of high-
overhead dynamic techniques, while maintaining 
performance levels of low-coverage static techniques.
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Background

Janitizer: A Hybrid Binary Mechanism   
   for Security

Conclusion

- Complex cross-block static analysis to offset runtime 
overhead for static code (PIC/non-PIC)

- Optimisation or transformation hints passed on to 
dynamic translator

For evaluation of Janitizer, we provide hybrid binary 
implementations of 
a) memory address sanitiser – JASan
b) forward and backward Control-flow Integrity (CFI) 
scheme – JCFI  
We use different static analyses such as liveness, scalar 
evoultion and cross-block control-flow target analysis to 
improve performance and precision of these scheme. 

References
[1] S. Dinesh et al., “Retrowrite: Statically Instrumenting COTS 
binaries for Fuzzing and Sanitization”, S&P’20
[2] M. Zhang et al., “Control Flow Integrity for COTS Binaries”, 
USENIX Sec’13
[3] N. Nethercote et al., “Valgrind: A framework for heavy-weight 
dynamic binary instrumentation,” PLDI’07

Code CoveragePerformance

Soundness

Dynam
icSt

at
ic

Evaluation

- Weaker/simpler dynamic analysis for statically 
unseen/unavailable code (e.g. dynamically-loaded 
libraries, dynamically-generated code)

- Instrument/transform at runtime to ensure soundness 
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Valgrind(dynamic) Retrowrite(static) JAsan(hybrid)

Performance overhead of binary address sanitizer implementations 
(compared to native implementation) on SPEC CPU2006 – lower is better

Average Indirect-target Reduction (AIR) of lockdown(dynamic), JCFI 
(hybrid) and binCFI(static) on SPEC CPU2006 – higher is better


