
Comprehensive and Practical Security for Program Binaries

Mahwish Arif

Supervisor: Timothy M. Jones

Comprehensive security can only be ensured if all the
code that an application executes is protected: any
unprotected code, including shared-object library code,
becomes a potential attack surface.
Existing static or dynamic binary security
tools either lack in code coverage[1] or
soundness[2], or incur high performance
overhead[3].

Our hybrid binary mechanism, Janitizer, provides
comprehensive code coverage equivalent to that of high-
overhead dynamic techniques, while maintaining
performance levels of low-coverage static techniques.

Email: mahwish.arif@cl.cam.ac.uk Computer Architecture Group

Background

Janitizer: A Hybrid Binary Mechanism
 for Security

Conclusion

- Complex cross-block static analysis to offset runtime
overhead for static code (PIC/non-PIC)

- Optimisation or transformation hints passed on to
dynamic translator

For evaluation of Janitizer, we provide hybrid binary
implementations of
a) memory address sanitiser – JASan
b) forward and backward Control-flow Integrity (CFI)
scheme – JCFI
We use different static analyses such as liveness, scalar
evoultion and cross-block control-flow target analysis to
improve performance and precision of these scheme.

References
[1] S. Dinesh et al., “Retrowrite: Statically Instrumenting COTS
binaries for Fuzzing and Sanitization”, S&P’20
[2] M. Zhang et al., “Control Flow Integrity for COTS Binaries”,
USENIX Sec’13
[3] N. Nethercote et al., “Valgrind: A framework for heavy-weight
dynamic binary instrumentation,” PLDI’07

Code CoveragePerformance

Soundness

Dynam
icSt

at
ic

Evaluation

- Weaker/simpler dynamic analysis for statically
unseen/unavailable code (e.g. dynamically-loaded
libraries, dynamically-generated code)

- Instrument/transform at runtime to ensure soundness

Security layer

Core layer

Static code Marking

ELF Loader and
Disassembler

CFG Constructor Generic Static Analysis
Encoding of

instrumt. & Opt.
hints

Custom Security Techniques (JASan, JCFI)

Extended
Disassembly and

CFG

Disassembly &
ControlFlow

Static Analysis Results & Hint
Generation

Generic Security Analysis

Dataflow Tracing Canary Analysis

Enhanced Static Analysis

Stack Size Analysis SCEV based Loop
bound Analysis

Arithmetic Flag
Liveness Analysis

Security layer

Core layer

Populating
hashtable for
static hints

Custom Security Techniques (JASan, JCFI)

Statically-analyzed and
unanalyzed code classifier

Load-time address
adjustment for PIC

code

Front End Basic Block Handling Analysis &
Modification

Decoder for Instr. & Opt.
Hints

DynamoRIO

Basic Block Builder and Dispatcher Dynamic Modifier

Dynamic Analyzer

9.
13

2.
98

2.
85

0
2
4
6
8

10
12
14
16
18
20

pe
rlb
en
ch

bz
ip2 gc

c
mc

f
na
md

go
bm

k

hm
me

r
sje
ng

lib
qu
an
tum

h2
64
ref mi

lc lbm
om

ne
t

sp
hin

x3

GE
OM

EA
N

Sl
ow

do
w

n

Valgrind(dynamic) Retrowrite(static) JAsan(hybrid)

Performance overhead of binary address sanitizer implementations
(compared to native implementation) on SPEC CPU2006 – lower is better

Average Indirect-target Reduction (AIR) of lockdown(dynamic), JCFI
(hybrid) and binCFI(static) on SPEC CPU2006 – higher is better

